1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
import copy
import json
import os
import random
import re
import ast
import sys
import threading
import time
import logging
import traceback
import zlib
import pandas as pd
import numpy as np
import redis
from datetime import datetime
sys.path.append("/opt/module/spark-3.2.0-bin-hadoop3.2/demo/py_demo/")
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from sqlalchemy import create_engine
from utils.templates import Templates
# from ..utils.templates import Templates
from utils.templates_mysql import TemplatesMysql
# from ..utils.templates_mysql import TemplatesMysql
from pyspark.sql.types import IntegerType
from pyspark.sql import functions as F
from pyspark.sql.types import *
from psycopg2.errors import NumericValueOutOfRange
from sqlalchemy.exc import OperationalError, DataError, PendingRollbackError
from utils.mysql_db import sql_connect, sql_update_many, sql_delete, get_country_engine
from pyspark.sql import SparkSession
logging.basicConfig(format='%(asctime)s %(name)s %(levelname)s %(message)s', level=logging.INFO)
# from ..utils.DolphinschedulerHelper import DolphinschedulerHelper
from utils.DolphinschedulerHelper import DolphinschedulerHelper
from utils.db_util import DbTypes, DBUtil
from queue import Queue
class SpiderAsinDetail(Templates):
def __init__(self, site_name='us', date_type="day", date_info='2022-10-01', consumer_type='lastest', topic_name="us_asin_detail", batch_size_history=100000, processing_time=900):
super(SpiderAsinDetail, self).__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.consumer_type = consumer_type # 消费实时还是消费历史
self.topic_name = topic_name
self.batch_size_history = batch_size_history
self.processing_time = processing_time
self.db_save = f'spider_asin_detail'
self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}, {self.consumer_type}")
# 通过date_type 获取 topic
self.get_topic_name()
# 获取日期变量
self.get_year_week_tuple()
# 连接数据库
self.engine_mysql = DBUtil.get_db_engine(db_type=DbTypes.mysql.name, site_name=self.site_name)
self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name, site_name=self.site_name)
# 获取数据库表名
self.db_detail_name = str()
self.db_variation_name = str()
self.db_image_name = str()
self.get_db_name()
self.columns_detail_list = self.get_db_detail_columns()
# self.get_db_columns()
# 通过date_type 获取 schema
self.init_schema()
# self.topic_name = topic_name # 主题名字
# self.schema = self.init_schema()
self.pdf_type_list = ["asin_vartion_list", "img_list", "asin_detail"]
self.chunk_size = 1000
# 创建分区表队列
self.part_name_queue_image = Queue()
self.part_name_queue_variation = Queue()
self.beginning_offsets = 338_0000 if self.site_name == 'us' else 0
def init_schema(self):
self.schema = StructType([
StructField("asin", StringType(), True),
StructField("week", StringType(), True),
StructField("month", StringType(), True),
StructField("asin_vartion_list", StringType(), True),
StructField("img_list", StringType(), True),
StructField("title", StringType(), True),
StructField("img_url", StringType(), True),
StructField("rating", StringType(), True),
StructField("total_comments", StringType(), True),
StructField("price", FloatType(), True),
StructField("rank", StringType(), True),
StructField("category", StringType(), True),
StructField("launch_time", StringType(), True),
StructField("volume", StringType(), True),
StructField("weight", StringType(), True),
StructField("page_inventory", IntegerType(), True),
StructField("buy_box_seller_type", IntegerType(), True),
StructField("title_len", IntegerType(), True),
StructField("img_num", IntegerType(), True),
StructField("img_type", StringType(), True),
StructField("activity_type", StringType(), True),
StructField("one_two_val", StringType(), True),
StructField("three_four_val", StringType(), True),
StructField("eight_val", StringType(), True),
StructField("qa_num", IntegerType(), True),
StructField("five_star", IntegerType(), True),
StructField("four_star", IntegerType(), True),
StructField("three_star", IntegerType(), True),
StructField("two_star", IntegerType(), True),
StructField("one_star", IntegerType(), True),
StructField("low_star", IntegerType(), True),
StructField("together_asin", StringType(), True),
StructField("brand", StringType(), True),
StructField("ac_name", StringType(), True),
StructField("material", StringType(), True),
StructField("node_id", StringType(), True),
StructField("data_type", IntegerType(), True),
StructField("sp_num", StringType(), True),
StructField("describe", StringType(), True),
StructField("date_info", StringType(), True),
StructField("weight_str", StringType(), True),
StructField("package_quantity", StringType(), True),
StructField("pattern_name", StringType(), True),
StructField("seller_id", StringType(), True),
StructField("variat_num", IntegerType(), True),
StructField("site_name", StringType(), True),
StructField("best_sellers_rank", StringType(), True),
StructField("best_sellers_herf", StringType(), True),
StructField("account_url", StringType(), True),
StructField("account_name", StringType(), True),
StructField("parentAsin", StringType(), True),
StructField("asinUpdateTime", StringType(), True),
StructField("spider_int", StringType(), True),
StructField("follow_sellers", StringType(), True),
StructField("buy_sales", StringType(), True),
StructField("product_description", StringType(), True),
StructField("category_state", IntegerType(), True),
StructField("five_six_val", IntegerType(), True),
StructField("image_view", IntegerType(), True),
StructField("review_label_json", StringType(), True),
StructField("product_json", StringType(), True),
StructField("review_ai_text", StringType(), True),
StructField("product_detail_json", StringType(), True),
StructField("lob_asin_json", StringType(), True),
StructField("sp_initial_seen_asins_json", StringType(), True),
StructField("sp_4stars_initial_seen_asins_json", StringType(), True),
StructField("sp_delivery_initial_seen_asins_json", StringType(), True),
StructField("compare_similar_asin_json", StringType(), True),
StructField("customer_reviews_json", StringType(), True),
StructField("together_asin_json", StringType(), True),
StructField("min_match_asin_json", StringType(), True),
StructField("seller_json", StringType(), True),
])
def get_topic_name(self):
# 需要注意表名问题22
if self.date_type == "month" and self.site_name == 'us':
# 月表主题
self.topic_name = f"{self.site_name}_asin_detail_month_{self.date_info.replace('-', '_')}"
elif self.date_type == "week":
# 周表主题
self.topic_name = f"{self.site_name}_asin_detail"
elif self.date_type == "day":
# 天表主题
self.topic_name = f"{self.site_name}_self_asin_detail"
else:
print("date_type传参有问题,中断程序")
quit()
def get_db_name(self):
self.db_detail_name = f"{self.site_name}_asin_detail_{self.date_info.split('-')[0]}_{self.date_info.split('-')[1]}"
self.db_detail_name = self.db_detail_name.replace("_detail", "_detail_month") if self.date_type=='month' else self.db_detail_name
self.db_variation_name = f"{self.site_name}_variat"
self.db_image_name = f"{self.site_name}_asin_image"
logging.info(f"db_detail_name:{self.db_detail_name}, db_variation_name:{self.db_variation_name}, db_image_name:{self.db_image_name}")
def get_db_detail_columns(self):
sql = f"select * from {self.db_detail_name} limit 0;"
df = pd.read_sql(sql, con=self.engine_pg14)
columns_list = list(set(df.columns))
columns_list.remove("id")
columns_list.remove("updated_time")
return columns_list
def field_length_dispose(self, pdf):
pdf.price = pdf.price.apply(lambda x: round(x, 2) if x is not None else None) # 截取字符
pdf.ac_name = pdf.ac_name.apply(lambda x: str(x)[:100] if x is not None else None) # 截取字符
pdf.brand = pdf.brand.apply(lambda x: str(x)[:100] if x is not None else None) # 截取字符
pdf.title = pdf.title.apply(lambda x: str(x)[:400] if x is not None else None) # 截取字符
pdf.category = pdf.category.apply(lambda x: str(x)[:400] if x is not None else None) # 截取字符
# pdf.img_url = pdf.img_url.apply(lambda x: str(x)[:400] if x is not None else None) # 截取字符
pdf.img_url = pdf.img_url.apply(lambda x: str(x)[:390] if x is not None else None) # 截取字符
pdf.material = pdf.material.apply(lambda x: str(x)[:150] if x is not None else None) # 截取字符
pdf.volume = pdf.volume.apply(lambda x: str(x)[:50] if x is not None else None) # 截取字符
if self.date_type in ["month", "week"]:
pdf.package_quantity = pdf.package_quantity.apply(lambda x: str(x)[:50] if x is not None else None) # 截取字符
pdf.pattern_name = pdf.pattern_name.apply(lambda x: str(x)[:50] if x is not None else None) # 截取字符
pdf.weight_str = pdf.weight_str.apply(lambda x: str(x)[:250] if x is not None else None) # 截取字符
return pdf
def start_process_instance(self):
if site_name == 'us':
# 最后一周走月流程
# year, week = self.year_week_tuple[-1].split("-")
# sql = f"select count(*) as st_count from {self.site_name}_brand_analytics_{year} where week={week} ;"
# print("sql:", sql)
# year, month = self.date_info.split("-")
# sql = f"select count(*) from {self.site_name}_brand_analytics_month_{year} where year={year} and month={month} ;"
# df = pd.read_sql(sql, con=self.engine_mysql)
# if list(df.st_count)[0] >= 100_0000:
# process_df_name = f"{site_name}-月流程-ABA+反查(旧版)+流量选品(旧版)-api"
# else:
# self.date_type = "month_week"
# process_df_name = f"{site_name}-30day+反查(旧版)+流量选品(旧版)-api"
process_df_name = f"ALL站点-图片+变体表清洗" # 先走变体清洗
else:
# process_df_name = f"{site_name}-ABA+反查(旧版)+流量选品(旧版)-api"
process_df_name = f"ALL站点-图片+变体表清洗" # 先走变体清洗
print(f"process_df_name:{process_df_name}")
DolphinschedulerHelper.start_process_instance(
project_name="big_data_selection",
process_df_name=process_df_name,
startParams={
"site_name": self.site_name,
"date_type": self.date_type,
"date_info": self.date_info
},
warning_Type="ALL"
)
@staticmethod
# 将asin转换成数值--从而可以划分指定分区表
def asin_to_number(asin):
"""
Convert a 10-character ASIN string to a unique number.
This function assumes that ASIN consists of uppercase letters and digits.
"""
def char_to_number(char):
if char.isdigit():
return int(char)
else:
return ord(char) - 55 # 'A' -> 10, 'B' -> 11, ..., 'Z' -> 35
if len(asin) != 10:
raise ValueError("ASIN must be 10 characters long")
base = 36
asin_number = 0
for i, char in enumerate(reversed(asin)):
asin_number += char_to_number(char) * (base ** i)
# The final number is taken modulo 1 billion to fit the range 1-10 billion
return asin_number % 1000000000
@staticmethod
# 列表均匀拆分成多个列表
def divide_list_into_equal_parts(lst, n):
"""
Divide a list into n equal parts.
:param lst: List to be divided.
:param n: Number of parts to divide into.
:return: List of n lists.
"""
# Calculate the size of each part
part_size = len(lst) // n
return [lst[i * part_size:(i + 1) * part_size] for i in range(n)]
@staticmethod
# 将df对象的一行裂变成多行
def handle_data_df_explode(pdf, pdf_type='asin_vartion_list', columns=[]):
# 根据不同表类型解析df对象
pdf[pdf_type] = pdf[pdf_type].apply(json.loads)
# 对对应数据进行处理,将df_type内列表展开
exploded_list = pdf[pdf_type].explode()
# 展开后转换为一个大列表
df_type_list = [i for i in exploded_list.tolist() if not isinstance(i, float)]
df_type_list = [i for i in df_type_list if isinstance(i, list)]
if df_type_list:
df = pd.DataFrame(df_type_list, columns=columns)
return df
else:
return None
def save_data_image_common(self, df, thread_id):
while True:
# 从队列里面获取一个part_name
if not self.part_name_queue_image.empty():
part_name = self.part_name_queue_image.get(timeout=3) # 设置超时以避免线程永久阻塞
df_del = df.loc[df.part_name == part_name]
df_del.drop(columns=['part_name', 'site'], inplace=True)
asin_tuple = list(set(df_del.asin))
logging.info(f"thread_id: {thread_id}, 图片表删除: {df_del.shape}, len: {len(asin_tuple)} {part_name}")
# chunk_size = 500
# split_list = [asin_tuple[i:i + chunk_size] for i in range(0, len(asin_tuple), chunk_size)]
while True:
try:
# with self.engine_pg14.begin() as conn:
# for asin_list in split_list:
# if len(asin_list) == 1:
# sql_del = f"delete from {part_name} where asin in ('{asin_list[0]}');"
# else:
# sql_del = f"delete from {part_name} where asin in {tuple(asin_list)}"
# logging.info(f"删除 {part_name} 表中数据, sql: {sql_del[0:100]}")
# conn.execute(sql_del)
df_del.to_sql(name=f"{part_name}", con=self.engine_pg14, if_exists='append', index=False)
logging.info(f"入库{part_name} 成功 {df_del.head(10)}")
break
except Exception as e:
print(e, traceback.format_exc())
time.sleep(random.randint(3, 10))
self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name, site_name=self.site_name)
continue
else:
break
def save_data_image_common_old(self, df, part_name):
# self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name, site_name=self.site_name)
df_del = df.loc[df.part_name == part_name]
df_del.drop(columns=['part_name', 'site'], inplace=True)
# mapped_asin_tuple = list(set(df_del.mapped_asin))
asin_tuple = list(set(df_del.asin))
logging.info(f"图片表删除: {df_del.shape}, len: {len(asin_tuple)} {part_name}")
# sql_del
# chunk_size = 500 if self.site_name != 'us' else 100
chunk_size = 100
split_list = [asin_tuple[i:i + chunk_size] for i in range(0, len(asin_tuple), chunk_size)]
while True:
try:
for i in split_list:
with self.engine_pg14.begin() as conn:
if len(i) == 1:
sql_del = f"delete from {part_name} where asin in ('{i[0]}');"
else:
sql_del = f"delete from {part_name} where asin in {tuple(i)}"
logging.info(f"清理 {part_name} 表中数据, sql: {sql_del[0:100]}")
conn.execute(sql_del)
# try:
logging.info(f"{df_del.keys()}")
# df_del.drop(columns=['site'], inplace=True)
# df_del.drop(columns=['part_name', 'site'], inplace=True)
# df_del.to_csv(f"/root/{self.site_name}_asin_mapped_image_{time.time()}.csv")
df_del.to_sql(name=f"{part_name}", con=self.engine_pg14, if_exists='append', index=False)
logging.info(f"入库{part_name} 成功 {df.head(10)}")
break
except Exception as e:
# logging.info(f"img入库字段超过长度 {e}")
# df_del.to_csv(f"/root/{self.site_name}_asin_image_{time.time()}.csv")
print(e, traceback.format_exc())
time.sleep(random.randint(3, 10))
self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name, site_name=self.site_name)
continue
def save_data_image(self, pdf):
logging.info("img处理")
# 获取对应表字段
if "site" not in pdf.keys():
pdf["site"] = self.site_name
logging.info("site is not null")
pdf["site"] = pdf['site'].fillna(self.site_name)
pdf['mapped_asin'] = pdf['asin'].apply(self.asin_to_number)
# if self.site_name == "us":
# pdf['part_name'] = pdf.mapped_asin.apply(lambda x: f"{self.site_name}_asin_image_part{int(x / 1000_0000) + 1}_{int(x % 1000_0000 / 200_0000) + 1}")
# else:
# # pdf['part_name'] = pdf.mapped_asin.apply(lambda x: f"{self.site_name}_asin_image_part{int(x / 500_0000) + 1}")
# pdf['part_name'] = pdf.mapped_asin.apply(lambda x: f"{self.site_name}_asin_image_part{int(x / 1000_0000) + 1}")
pdf['part_name'] = pdf.mapped_asin.apply(lambda x: f"{self.site_name}_asin_image_part{int(x / 1000_0000) + 1}")
# int(522 % 100 / 20) + 1
# Example usage
part_name_list = list(set(pdf.part_name))
print(f"当前批次图片要处理{len(part_name_list)}张图片表")
# 将列表元素放入队列
for item in part_name_list:
self.part_name_queue_image.put(item)
# 多线程调用图片处理公共方法
threads = []
for thread_id in range(10):
thread = threading.Thread(target=self.save_data_image_common, args=(pdf, thread_id))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
logging.info(f"多线程图片处理完成")
def save_data_image_old(self, pdf):
logging.info("img处理")
# 获取对应表字段
if "site" not in pdf.keys():
pdf["site"] = self.site_name
logging.info("site is not null")
pdf["site"] = pdf['site'].fillna(self.site_name)
pdf['mapped_asin'] = pdf['asin'].apply(self.asin_to_number)
# if self.site_name == "us":
# pdf['part_name'] = pdf.mapped_asin.apply(lambda x: f"{self.site_name}_asin_image_part{int(x / 1000_0000) + 1}_{int(x % 1000_0000 / 200_0000) + 1}")
# else:
# pdf['part_name'] = pdf.mapped_asin.apply(lambda x: f"{self.site_name}_asin_image_part{int(x / 1000_0000) + 1}")
pdf['part_name'] = pdf.mapped_asin.apply(lambda x: f"{self.site_name}_asin_image_part{int(x / 1000_0000) + 1}")
# int(522 % 100 / 20) + 1
# Example usage
part_name_list = list(set(pdf.part_name))
n = 15 if self.site_name == 'us' else 15
part_name_list = self.divide_list_into_equal_parts(part_name_list, n)
for p_list in part_name_list:
index = part_name_list.index(p_list)
threads = []
for part_name in p_list:
thread = threading.Thread(target=self.save_data_image_common, args=(pdf, part_name))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
logging.info(f"第{index+1}批次图片处理完成")
def save_data_variation_common(self, pdf, thread_id):
while True:
# 从队列里面获取一个part_name
if not self.part_name_queue_variation.empty():
part_name = self.part_name_queue_variation.get(timeout=3) # 设置超时以避免线程永久阻塞
df_part = pdf.loc[pdf.part_name == part_name]
df_part.drop(columns=['part_name'], inplace=True)
asin_tuple = list(set(df_part.parent_asin))
logging.info(f"thread_id: {thread_id}, 变体表删除: {df_part.shape}, len: {len(asin_tuple)} {part_name}")
# chunk_size = 500
# split_list = [asin_tuple[i:i + chunk_size] for i in range(0, len(asin_tuple), chunk_size)]
while True:
try:
# with self.engine_pg14.begin() as conn:
# for asin_list in split_list:
# if len(asin_list) == 1:
# sql_del = f"delete from {part_name} where parent_asin in ('{asin_list[0]}');"
# else:
# sql_del = f"delete from {part_name} where parent_asin in {tuple(asin_list)}"
# logging.info(f"删除 {part_name} 表中数据, sql: {sql_del[0:100]}")
# conn.execute(sql_del)
df_part.to_sql(name=f"{part_name}", con=self.engine_pg14, if_exists='append', index=False)
logging.info(f"入库{part_name} 成功 {df_part.head(10)}")
break
except Exception as e:
print(e, traceback.format_exc())
time.sleep(random.randint(3, 10))
self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name, site_name=self.site_name)
continue
else:
break
def save_data_variation(self, pdf):
pdf.drop_duplicates(subset=["asin", "parent_asin"], inplace=True)
# 处理字段长度问题
pdf['color'] = pdf['color'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
pdf['size'] = pdf['size'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
pdf['style'] = pdf['style'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
pdf['column_2'] = pdf['column_2'].apply(
lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
logging.info(f"变体数量为:{pdf.shape}")
# 处理分区名称问题
pdf['mapped_asin'] = pdf['parent_asin'].apply(self.asin_to_number)
# pdf['part_name'] = pdf.mapped_asin.apply(lambda x: f"{self.site_name}_variat_part{int(x / 10000_0000) + 1}_{int(x % 10000_0000 / 500_0000) + 1}")
pdf['part_name'] = pdf.mapped_asin.apply(lambda x: f"{self.site_name}_asin_variation_part{int(x / 1000_0000) + 1}")
part_name_list = list(set(pdf.part_name))
print(f"当前批次变体要处理{len(part_name_list)}张变体表")
# 将列表元素放入队列
for item in part_name_list:
self.part_name_queue_variation.put(item)
# 多线程调用变体处理公共方法
threads = []
for thread_id in range(10):
thread = threading.Thread(target=self.save_data_variation_common, args=(pdf, thread_id))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
logging.info(f"多线程变体处理完成")
def save_data_variation_old(self, pdf):
pdf.drop_duplicates(subset=["asin", "parent_asin"], inplace=True)
asins = list(set(pdf["parent_asin"]))
logging.info(f"{pdf}")
if asins:
# chunk_size = 1000
split_list = [asins[i:i + self.chunk_size] for i in range(0, len(asins), self.chunk_size)]
for chunk in split_list:
if len(chunk) == 1:
sql_del = f"delete from `{self.db_variation_name}` where parent_asin in ('{tuple(chunk)[0]}');"
else:
sql_del = f"delete from `{self.db_variation_name}` where parent_asin in {tuple(chunk)};"
logging.info(f"sql: {sql_del[0:100]}")
# for i in range(5):
while True:
try:
with self.engine_mysql.begin() as conn:
conn.execute(sql_del)
logging.info(f"清理 {self.db_variation_name} 表中数据 {chunk[0:10]} 清理 {self.db_variation_name} 表中数据")
break
except Exception as e:
print(e, traceback.format_exc(e))
time.sleep(random.randint(3, 10))
self.engine_mysql = DBUtil.get_db_engine(db_type=DbTypes.mysql.name, site_name=self.site_name)
continue
# row_id = sql_delete(sql_del)
# if row_id == -1:
# logging.info(f"删除失败 {self.db_variation_name} 表中数据 {chunk}")
# time.sleep(6)
# sql_connect(self.site_name)
# continue
# else:
# logging.info(f"清理 {self.db_variation_name} 表中数据 {chunk[0:10]} 清理 {self.db_variation_name} 表中数据")
# break
pdf['color'] = pdf['color'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
pdf['size'] = pdf['size'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
pdf['style'] = pdf['style'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
pdf['column_2'] = pdf['column_2'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
logging.info(f"变体数量为:{pdf.shape}")
for i in range(3):
try:
pdf.to_sql(name=f'{self.db_variation_name}', con=self.engine_mysql, if_exists='append', index=False)
logging.info(f"入库 {self.db_variation_name} 成功 {pdf.head(10)}")
break
except PendingRollbackError as e:
logging.info(f"链接错误 重试{e}")
continue
def save_data_asin_detail(self, pdf):
print(f"{self.db_detail_name}: {pdf.columns}")
pdf.rename(columns={"asinUpdateTime": "created_time"}, inplace=True)
pdf = pdf.loc[:, self.columns_detail_list]
pdf = self.field_length_dispose(pdf)
while True:
try:
# 分批次删除
asin_tuple_all = tuple(pdf.asin)
for i in range(0, len(asin_tuple_all)+1, self.chunk_size):
asin_tuple = asin_tuple_all[i: i+self.chunk_size]
if asin_tuple:
asin_tuple = asin_tuple if len(asin_tuple) > 1 else f"('{asin_tuple[0]}')"
with self.engine_pg14.begin() as conn:
sql_del = f"delete from {self.db_detail_name} where asin in {asin_tuple};"
print("sql_del:", sql_del[:100])
conn.execute(sql_del)
# 存储
pdf.to_sql(name=self.db_detail_name, con=self.engine_pg14, if_exists='append', index=False)
break
except Exception as e:
logging.info(f"error: {e}")
time.sleep(random.randint(5, 20))
self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name, site_name=self.site_name)
continue
def save_data_common(self, pdf, pdf_type):
logging.info(f"{pdf_type} 处理")
start_time = time.time()
if pdf_type == 'asin_vartion_list':
columns_list = ['asin', 'color', 'parent_asin', 'size', 'state', 'style', 'column_2']
pdf = self.handle_data_df_explode(pdf, pdf_type=pdf_type, columns=columns_list)
pdf.asin = pdf.asin.apply(lambda x: str(x)[:10])
self.save_data_variation(pdf=pdf)
elif pdf_type == "img_list":
columns_list = ['asin', 'img_url', 'img_order_by', 'data_type']
pdf = self.handle_data_df_explode(pdf, pdf_type=pdf_type, columns=columns_list)
pdf.asin = pdf.asin.apply(lambda x: str(x)[:10])
self.save_data_image(pdf=pdf)
elif pdf_type == "asin_detail":
if self.site_name != 'us' and self.date_type != 'month':
self.save_data_asin_detail(pdf=pdf)
logging.info(f"{pdf_type}: 耗时 -- {time.time() - start_time}")
def save_data(self, pdf):
threads = []
for pdf_type in self.pdf_type_list:
thread = threading.Thread(target=self.save_data_common, args=(pdf, pdf_type))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
logging.info("所有线程处理完成")
def handle_kafka_df(self, kafka_df):
kafka_df.show(20)
# kafka_df.filter("asin in ('B0D1K8WQ9P', 'B0C3H46VM8')").show(20)
# pyspark的kafka_df对象转换成pandas的df对象
pdf = kafka_df.toPandas()
# 去重
pdf = pdf.drop_duplicates(['asin'])
# 过滤--不符合当前周期的数据
pdf = pdf.loc[(~pdf.date_info.isna()) & (pdf.date_info == self.date_info)]
if pdf.shape[0]:
logging.info(f"{pdf.keys()}")
logging.info(f"----------------------------")
if self.date_type == "day":
logging.info(f"天数据处理")
img_columns = ['asin', 'img_url', 'img_order_by', 'data_type']
img_df = self.handle_data_df(pdf, df_type='asin_vartion_list', columns=img_columns)
if img_df.shape[0]:
self.save_data_image(df=img_df)
vartion_columns = ['asin', 'color', 'parent_asin', 'size', 'state', 'style', 'column_2']
vartion_df = self.handle_data_df(pdf, df_type='asin_vartion_list', columns=vartion_columns)
if vartion_df.shape[0]:
self.save_data_variation(df=vartion_df)
df = pdf[self.detail_col]
df['site'] = df['site'].fillna(self.site_name)
df.drop_duplicates(['asin', 'site'], inplace=True)
now_date = time.strftime("%Y-%m-%d", time.gmtime(time.time()))
detail_table_data_info = f"{self.site_name}_self_asin_detail"
for name, group in df.groupby(['site']):
asins = list(group["asin"])
# 详情入库表名
if asins:
if len(asins) == 1:
sql_del = f"delete from `{detail_table_data_info}` where `asin`= '{asins[0]}' and `site`='{name[0]}' and created_at>='{now_date}';"
else:
sql_del = f"delete from `{detail_table_data_info}` where `asin` in {tuple(asins)} and `site`='{name[0]}' and created_at>='{now_date}';"
logging.info(f"{name}, {sql_del}")
sql_delete(sql_del)
logging.info(f"清理 {detail_table_data_info} 表中 {asins[0:10]} 数据")
df.to_sql(name=f'{detail_table_data_info}', con=self.engine_pg14, if_exists='append', index=False)
logging.info(f"入库 {detail_table_data_info} 成功 {df.head(10)}")
else:
self.save_data(pdf=pdf)
else:
logging.info(f"{pdf.shape}")
def handle_kafka_history(self, kafka_df):
self.handle_kafka_df(kafka_df)
def handle_kafka_stream(self, kafka_df, epoch_id):
self.handle_kafka_df(kafka_df)
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
batch_size_history = 15000 if site_name == 'us' else 10000
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter/day
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
consumer_type = sys.argv[4] # 参数4:实时 latest 历史 history
# us day date_info 2023-11-07
handle_obj = SpiderAsinDetail(site_name=site_name, date_type=date_type, date_info=date_info, consumer_type=consumer_type, batch_size_history=batch_size_history)
handle_obj.run_kafka()