1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
import os
import sys
sys.path.append(os.path.dirname(sys.path[0]))
from utils.common_util import CommonUtil, DateTypes
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F, Window
from pyspark.sql.types import IntegerType, StringType
from pyspark.sql.dataframe import DataFrame
from yswg_utils.common_udf import udf_detect_phrase_reg
class DwtAbaLast365(object):
def __init__(self, site_name, date_type, date_info):
self.site_name = site_name
self.date_info = date_info
self.date_type = date_type
self.date_type_original = DateTypes.month.name
assert date_type in [DateTypes.month.name, DateTypes.year.name], "date_type 输入有误!!"
app_name = f"{self.__class__.__name__}:{self.site_name}:{self.date_type}:{self.date_info}"
self.spark = SparkUtil.get_spark_session(app_name)
self.hive_tb = "dwt_aba_last365"
# 全局df
self.df_base = self.spark.sql(f"select 1+1;")
self.df_orders = self.spark.sql(f"select 1+1;")
self.df_st_sv_rank = self.spark.sql(f"select 1+1;")
self.df_history = self.spark.sql(f"select 1+1;")
self.df_last_year = self.spark.sql(f"select 1+1;")
self.df_sv_change_rate = self.spark.sql(f"select 1+1;")
self.df_label = self.spark.sql(f"select 1+1;")
self.df_base_lastest = self.spark.sql(f"select 1+1;")
self.df_change_rate_lastest = self.spark.sql(f"select 1+1;")
# 过去12月list
self.last_12_month = []
for i in range(0, 12):
self.last_12_month.append(CommonUtil.get_month_offset(self.date_info, -i))
# 12个月前
self.last_year_month = CommonUtil.get_month_offset(self.date_info, -12)
pass
# 对指定的行进行行转列
def pivot_df(self, last_12_month: list, df_all: DataFrame, df_agg: DataFrame, group_col: str, pivot_col: str, agg_col_arr: list):
"""
对指定的行进行行转列
"""
# 列名如下: 2024-07_st_num|2024-06_st_num|……|2024-07_bsr_orders|2024-06_bsr_orders|……
df_tmp = df_all.groupBy(group_col).pivot(pivot_col, last_12_month).agg(
*list(map(lambda col: F.first(col).alias(col), agg_col_arr))
).cache()
# 列名如下: st_num1|st_num2|……|bsr_orders1|bsr_orders2|……
for index in range(0, len(last_12_month)):
for col in agg_col_arr:
prefix = last_12_month[index]
month = int(prefix.split('-')[-1])
df_tmp = df_tmp.withColumnRenamed(f"{prefix}_{col}", f"{col}{month}")
return df_agg.join(df_tmp, group_col, "inner")
def run(self):
self.read_data()
self.handle_data()
self.save_data()
def read_data(self):
# ABA月数据
sql1 = f"""
select
search_term,
id,
st_bsr_cate_1_id_new as category_id,
bsr_orders,
search_volume,
st_ao_avg,
st_ao_val_rate,
price_avg,
weight_avg,
volume_avg,
rating_avg,
total_comments_avg,
total_asin_num,
aadd_proportion,
sp_proportion,
fbm_proportion,
cn_proportion,
amzon_proportion,
top3_seller_orders,
top3_seller_bsr_orders,
top3_brand_orders,
top3_brand_bsr_orders,
page3_brand_num,
page3_seller_num,
new_bsr_orders_proportion,
new_asin_proportion,
supply_demand,
max_num,
most_proportion,
gross_profit_fee_sea,
gross_profit_fee_air,
st_bsr_cate_current_id_new as category_current_id,
color_proportion,
max_num_asin,
is_self_max_num_asin,
multi_color_proportion,
multi_size_proportion,
is_new_market_segment,
market_cycle_type,
brand_monopoly,
seller_monopoly,
is_ascending_text,
is_search_text,
st_word_num,
date_info,
st_num,
rank
from dwt_aba_st_analytics
where site_name = '{self.site_name}'
and date_type = '{self.date_type_original}'
and date_info in ({CommonUtil.list_to_insql(self.last_12_month)})
"""
self.df_base = self.spark.sql(sql1).repartition(80, "search_term", "date_info").cache()
# 搜索词同比、环比
sql2 = f"""
select
search_term,
rank_change_rate as rank_change_rate_lastest,
rank_rate_of_change as rank_rate_of_change_lastest
from dwt_aba_last_change_rate
where site_name = '{self.site_name}'
and date_type = '{self.date_type_original}'
and date_info = '{self.date_info}';
"""
self.df_change_rate_lastest = self.spark.sql(sql2).repartition(80, 'search_term').cache()
# 搜索词预估销量
if date_info < '2023-09':
old_list = list(filter(lambda it: it < '2022-10', self.last_12_month))
new_list = list(filter(lambda it: it >= '2022-10', self.last_12_month))
sql3 = f"""
select
search_term,
st_search_sum as orders,
date_info
from dim_st_detail
where site_name = '{self.site_name}'
and date_type = 'month_old'
and date_info in ({CommonUtil.list_to_insql(old_list)})
union
select
search_term,
orders as orders,
date_info
from dwt_aba_st_analytics
where site_name = '{self.site_name}'
and date_type = 'month'
and date_info in ({CommonUtil.list_to_insql(new_list)})
"""
else:
sql3 = f"""
select
search_term,
orders as orders,
date_info
from dwt_aba_st_analytics
where site_name = '{self.site_name}'
and date_type = 'month'
and date_info in ({CommonUtil.list_to_insql(self.last_12_month)})
"""
self.df_orders = self.spark.sql(sql3).repartition(80, "search_term", "date_info").cache()
# 搜索量排名:本次和上年度排名
sql = f"""
select
search_term_id,
collect_set(rank)[0] as rank,
collect_set(last_rank)[0] as last_rank
from (
select
search_term_id,
case date_info when '{self.date_info}' then sv_rank end as rank,
case date_info when '{self.last_year_month}' then sv_rank end as last_rank
from dwt_st_sv_last365
where site_name = '{self.site_name}'
and date_info in ('{self.date_info}', '{self.last_year_month}')
) tmp
group by search_term_id;
"""
self.df_st_sv_rank = self.spark.sql(sql).na.fill({"last_rank": 0}).cache()
# 历史新增词识别:读取月表所有历史数据,判断是否为历史新增
sql = f"""
select
search_term,
0 as is_history_first_text,
min(date_info) as history_first_appear_month
from dwt_aba_st_analytics
where site_name = '{self.site_name}'
and date_type = '{self.date_type_original}'
and date_info <= '{self.last_year_month}'
group by search_term;
"""
self.df_history = self.spark.sql(sql).repartition(80, 'search_term').cache()
# 新增词识别:读取年表同比数据,判断是否为近1年新增
sql = f"""
select
search_term,
0 as is_first_text
from dwt_aba_last365
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.last_year_month}';
"""
self.df_last_year = self.spark.sql(sql).repartition(80, 'search_term').cache()
# 搜索量同比增长识别:判断持续上升/下降
sql = f"""
select
search_term,
search_volume_change_rate
from dwt_aba_last_change_rate
where site_name = '{self.site_name}'
and date_type = '{self.date_type_original}'
and date_info in ({CommonUtil.list_to_insql(self.last_12_month)});
"""
self.df_sv_change_rate = self.spark.sql(sql).repartition(80, 'search_term').cache()
# 影视+品牌标签识别
sql = f"""
select
search_term,
asin_movie_type_count,
total_asin_num,
st_brand_label
from dwt_aba_st_analytics
where site_name = '{self.site_name}'
and date_type = '{self.date_type_original}'
and date_info in ({CommonUtil.list_to_insql(self.last_12_month)});
"""
self.df_label = self.spark.sql(sql).repartition(80, 'search_term').fillna({
'asin_movie_type_count': 0,
'total_asin_num': 0
}).cache()
def handle_data(self):
# st最新月数据
self.handle_month_lastest()
# 聚合字段处理
self.handle_agg()
# 标签处理
self.handle_label()
# 语种处理
self.handle_calc_lang()
# 入库前处理
self.handle_save()
def handle_month_lastest(self):
# 保留最新的月数据
self.df_base_lastest = self.df_base.filter(f"date_info = '{self.date_info}'").select(
"search_term", "rank", "color_proportion", "multi_color_proportion", "multi_size_proportion", "st_ao_avg",
"st_ao_val_rate", "supply_demand", "total_asin_num", "new_asin_proportion", "bsr_orders",
"new_bsr_orders_proportion", "price_avg", "weight_avg", "volume_avg", "page3_brand_num", "brand_monopoly",
"page3_seller_num", "seller_monopoly", "aadd_proportion", "sp_proportion", "fbm_proportion", "cn_proportion",
"amzon_proportion", "most_proportion", "max_num", "max_num_asin", "is_self_max_num_asin", "rating_avg",
"total_comments_avg", "date_info"
).withColumnRenamed(
'rank', 'rank_lastest'
).withColumnRenamed(
'multi_color_proportion', 'multi_color_avg_proportion'
).withColumnRenamed(
'multi_size_proportion', 'multi_size_avg_proportion'
).withColumnRenamed(
'new_asin_proportion', 'new_asin_num_avg_monopoly'
).withColumnRenamed(
'new_bsr_orders_proportion', 'new_asin_bsr_orders_avg_monopoly'
).withColumnRenamed(
'most_proportion', 'most_avg_proportion'
).withColumnRenamed(
'date_info', 'appear_month_lastest'
).repartition(80, 'search_term').cache()
def handle_agg(self):
self.df_base = self.df_base.join(
other=self.df_orders, on=["search_term", "date_info"], how="left"
)
self.df_orders.unpersist()
df_agg = self.df_base.groupBy("id").agg(
F.first("search_term").alias("search_term"),
F.first("category_id").alias("category_id"),
F.first("category_current_id").alias("category_current_id"),
F.expr("round(sum(top3_seller_orders)/12,4)").alias("top3_seller_orders"),
F.expr("round(sum(top3_seller_bsr_orders)/12,4)").alias("top3_seller_bsr_orders"),
F.expr("round(sum(top3_brand_orders)/12,4)").alias("top3_brand_orders"),
F.expr("round(sum(top3_brand_bsr_orders)/12,4)").alias("top3_brand_bsr_orders"),
F.expr("round(sum(gross_profit_fee_sea)/12,4)").alias("gross_profit_fee_sea"),
F.expr("round(sum(gross_profit_fee_air)/12,4)").alias("gross_profit_fee_air"),
F.sum(F.col("orders")).alias("orders"),
F.sum(F.col("st_num")).alias("total_st_num"),
F.max("st_word_num").alias("st_word_num"),
# bsr销量最高对应的月
F.max(F.struct("bsr_orders", "date_info")).alias("tmp_row_1"),
# 销量最高对应的月
F.max(F.struct("orders", "date_info")).alias("tmp_row_2"),
# 首次出现对应的月
F.min("date_info").alias("first_appear_month"),
# 所有出现的月
F.concat_ws(
",", F.sort_array(F.collect_set(F.split("date_info", "-")[1].cast(IntegerType())))
).alias("total_appear_month"),
# 是否新细分市场 非平均数算法 12个月都是新出现 表明同比年也是新出现 即 sum=12 表示为1 否则都是0
F.avg("is_new_market_segment").cast(IntegerType()).alias("is_new_market_segment"),
# 同比是否是热搜词 热搜词:最近1月/年中,出现的次数大于80% 如果月热搜词 is_search_text的和>=10 则是热搜词
F.expr("sum(is_search_text) / 9.6").cast(IntegerType()).alias("is_search_text")
)
# 行转列的字段
agg_col_arr = ['st_num', 'bsr_orders', 'orders', 'market_cycle_type', 'search_volume']
self.df_base = self.pivot_df(
self.last_12_month, self.df_base, df_agg, "id", "date_info", agg_col_arr
).repartition(80, "search_term").cache()
def handle_label(self):
# 影视品牌标签
self.df_label = self.df_label.groupBy('search_term').agg(
F.round((F.sum("asin_movie_type_count") / F.sum("total_asin_num")) * 100, 2).alias('movie_prop'),
F.max('st_brand_label').alias('st_brand_label')
).withColumn(
# 影视标记类型 0:非影视; 1:0< 比例 <= 20%; 2: 20% < 比例 <= 50%; 3:50% < 比例
'st_movie_label',
F.when(
(F.col("movie_prop") > 0) & (F.col("movie_prop") <= 20), F.lit(1)
).when(
(F.col("movie_prop") > 20) & (F.col("movie_prop") <= 50), F.lit(2)
).when(
(F.col("movie_prop") > 50), F.lit(3)
).otherwise(F.lit(0))
).withColumn(
'st_brand_label',
F.when(F.col('st_brand_label') == 1, F.lit(4)).otherwise(F.lit(0))
).withColumn(
'st_movie_brand_label',
F.sort_array(F.expr("array_distinct(array(st_movie_label, st_brand_label))"))
).withColumn(
'st_movie_brand_label',
F.when(
F.array_contains(F.col('st_movie_brand_label'), 0) & (F.size(F.col('st_movie_brand_label')) > 1),
F.expr("filter(st_movie_brand_label, x -> x != 0)")
).otherwise(F.col('st_movie_brand_label'))
).withColumn(
'st_movie_brand_label',
F.concat_ws(",", F.col('st_movie_brand_label'))
).select(
'search_term', 'st_movie_brand_label'
)
self.df_base = self.df_base.join(
self.df_label, on='search_term', how='left'
)
# 上升词判断
self.df_base = self.df_base.join(
self.df_st_sv_rank, self.df_base['id'].eqNullSafe(self.df_st_sv_rank['search_term_id']), "left"
).withColumn(
"is_ascending_text",
F.expr("rank / last_rank <= 0.5").cast(IntegerType())
)
# 新增词判断
self.df_base = self.df_base.join(
self.df_last_year, on='search_term', how='left'
).fillna({'is_first_text': 1})
# 历史新增词判断
self.df_base = self.df_base.join(
self.df_history, on='search_term', how='left'
).fillna({
'is_history_first_text': 1
}).withColumn(
'history_first_appear_month',
F.when(F.col('history_first_appear_month').isNotNull(), F.col('history_first_appear_month'))
.otherwise(F.col('first_appear_month'))
)
# 判断市场周期类型,优先保留最近月的数据,若为null则往前推
num = int(self.date_info.split('-')[-1])
fields_first_round = [F.col(f'market_cycle_type{i}') for i in range(num, 0, -1)]
fields_second_round = [F.col(f'market_cycle_type{i}') for i in range(12, num, -1)]
fields = fields_first_round + fields_second_round
self.df_base = self.df_base.withColumn('market_cycle_type', F.coalesce(*fields))
# 持续上升、下降判断
self.df_sv_change_rate = self.df_sv_change_rate.withColumn(
'sv_rising_flag', F.when(F.col('search_volume_change_rate') > 0, 1).otherwise(0)
).withColumn(
'sv_decline_flag', F.when(F.col('search_volume_change_rate') < 0, 1).otherwise(0)
)
# # 计算上升率、下降率
self.df_sv_change_rate = self.df_sv_change_rate.groupBy('search_term').agg(
F.round(F.sum('sv_rising_flag') / F.count('search_term'), 4).alias('sv_rising_rate'),
F.round(F.sum('sv_decline_flag') / F.count('search_term'), 4).alias('sv_decline_rate')
)
self.df_base = self.df_base.join(
self.df_sv_change_rate, on='search_term', how='left'
).withColumn(
'sv_change_rate_flag',
F.when(F.col('sv_rising_rate') > 0.7, 1).when(F.col('sv_decline_rate') > 0.7, 2).otherwise(0)
).cache()
self.df_label.unpersist()
self.df_st_sv_rank.unpersist()
self.df_last_year.unpersist()
self.df_history.unpersist()
self.df_sv_change_rate.unpersist()
def handle_calc_lang(self):
sql = """
select word, langs from big_data_selection.tmp_lang_word_frequency;
"""
lang_word_list = self.spark.sql(sql).collect()
# 转为map
lang_word_map = {row['word']: row['langs'] for row in lang_word_list}
self.df_base = self.df_base.withColumn(
"lang",
F.coalesce(udf_detect_phrase_reg(lang_word_map)(F.col("search_term")).getField("lang"), F.lit("other"))
).cache()
def handle_save(self):
# 关联月数据
self.df_base = self.df_base.join(
other=self.df_base_lastest, on="search_term", how="left"
).join(
other=self.df_change_rate_lastest, on="search_term", how="left"
).cache()
self.df_base_lastest.unpersist()
self.df_change_rate_lastest.unpersist()
self.df_base = self.df_base.select(
F.col("id"),
F.col("search_term"),
F.col("category_id"),
F.col("category_current_id"),
F.col('rank').cast(IntegerType()),
F.col("total_st_num"),
# 后缀数字表示对应的月份,如:2024-07则为st_num7,2023-12则为st_num12。下面字段同理
F.col("st_num1").cast(IntegerType()),
F.col("st_num2").cast(IntegerType()),
F.col("st_num3").cast(IntegerType()),
F.col("st_num4").cast(IntegerType()),
F.col("st_num5").cast(IntegerType()),
F.col("st_num6").cast(IntegerType()),
F.col("st_num7").cast(IntegerType()),
F.col("st_num8").cast(IntegerType()),
F.col("st_num9").cast(IntegerType()),
F.col("st_num10").cast(IntegerType()),
F.col("st_num11").cast(IntegerType()),
F.col("st_num12").cast(IntegerType()),
F.col("orders1").cast(IntegerType()),
F.col("orders2").cast(IntegerType()),
F.col("orders3").cast(IntegerType()),
F.col("orders4").cast(IntegerType()),
F.col("orders5").cast(IntegerType()),
F.col("orders6").cast(IntegerType()),
F.col("orders7").cast(IntegerType()),
F.col("orders8").cast(IntegerType()),
F.col("orders9").cast(IntegerType()),
F.col("orders10").cast(IntegerType()),
F.col("orders11").cast(IntegerType()),
F.col("orders12").cast(IntegerType()),
F.col("bsr_orders1").cast(IntegerType()),
F.col("bsr_orders2").cast(IntegerType()),
F.col("bsr_orders3").cast(IntegerType()),
F.col("bsr_orders4").cast(IntegerType()),
F.col("bsr_orders5").cast(IntegerType()),
F.col("bsr_orders6").cast(IntegerType()),
F.col("bsr_orders7").cast(IntegerType()),
F.col("bsr_orders8").cast(IntegerType()),
F.col("bsr_orders9").cast(IntegerType()),
F.col("bsr_orders10").cast(IntegerType()),
F.col("bsr_orders11").cast(IntegerType()),
F.col("bsr_orders12").cast(IntegerType()),
F.col("market_cycle_type1").cast(IntegerType()),
F.col("market_cycle_type2").cast(IntegerType()),
F.col("market_cycle_type3").cast(IntegerType()),
F.col("market_cycle_type4").cast(IntegerType()),
F.col("market_cycle_type5").cast(IntegerType()),
F.col("market_cycle_type6").cast(IntegerType()),
F.col("market_cycle_type7").cast(IntegerType()),
F.col("market_cycle_type8").cast(IntegerType()),
F.col("market_cycle_type9").cast(IntegerType()),
F.col("market_cycle_type10").cast(IntegerType()),
F.col("market_cycle_type11").cast(IntegerType()),
F.col("market_cycle_type12").cast(IntegerType()),
F.col("search_volume1").cast(IntegerType()),
F.col("search_volume2").cast(IntegerType()),
F.col("search_volume3").cast(IntegerType()),
F.col("search_volume4").cast(IntegerType()),
F.col("search_volume5").cast(IntegerType()),
F.col("search_volume6").cast(IntegerType()),
F.col("search_volume7").cast(IntegerType()),
F.col("search_volume8").cast(IntegerType()),
F.col("search_volume9").cast(IntegerType()),
F.col("search_volume10").cast(IntegerType()),
F.col("search_volume11").cast(IntegerType()),
F.col("search_volume12").cast(IntegerType()),
F.col("st_ao_avg"),
F.expr("round(st_ao_val_rate, 4)").alias("st_ao_val_rate"),
F.col("price_avg"),
F.col("weight_avg"),
F.col("volume_avg"),
F.col("rating_avg"),
F.col("total_comments_avg"),
F.col("multi_size_avg_proportion"),
F.col("multi_color_avg_proportion"),
F.col("brand_monopoly"),
F.col("seller_monopoly"),
F.col("most_avg_proportion"),
F.col("supply_demand"),
F.col("aadd_proportion"),
F.col("sp_proportion"),
F.col("fbm_proportion"),
F.col("cn_proportion"),
F.col("amzon_proportion"),
F.col("top3_seller_orders"),
F.col("top3_seller_bsr_orders"),
F.col("top3_brand_orders"),
F.col("top3_brand_bsr_orders"),
F.col("page3_brand_num").cast(IntegerType()),
F.col("page3_seller_num").cast(IntegerType()),
F.col("new_asin_num_avg_monopoly"),
F.col("new_asin_bsr_orders_avg_monopoly"),
F.col("orders").cast(IntegerType()),
F.col("bsr_orders"),
F.col("gross_profit_fee_sea"),
F.col("gross_profit_fee_air"),
F.col("color_proportion"),
F.col("total_asin_num"),
F.col("max_num"),
F.col("max_num_asin"),
F.col("is_self_max_num_asin"),
F.col("tmp_row_1").getField("date_info").alias("max_bsr_orders_month"),
F.col("tmp_row_2").getField("date_info").alias("max_orders_month"),
F.col("is_new_market_segment").alias("is_new_market_segment"),
F.col("is_ascending_text").alias("is_ascending_text"),
F.col("is_search_text").alias("is_search_text"),
F.col("st_word_num").alias("st_word_num"),
F.current_date().alias("updated_time").cast(StringType()),
F.current_date().alias("created_time").cast(StringType()),
F.lit(None).alias("usr_mask_type"),
F.lit(None).alias("usr_mask_progress"),
F.col("lang"),
# 历史新增词判断,对比所有历史数据
F.col("is_history_first_text"),
# 该词首次出现的月份
F.col("history_first_appear_month"),
# 新增词判断,同比上一年
F.col("is_first_text"),
# 该词今年首次出现的月份
F.col("first_appear_month"),
# 搜索量上升率
F.col("sv_rising_rate"),
# 搜索量下降率
F.col("sv_decline_rate"),
# 持续上升或下降标签,1上升 2下降 0都不是
F.col("sv_change_rate_flag"),
# 影视品牌标签
F.col("st_movie_brand_label"),
# 该词今年出现的所有月份
F.col("total_appear_month"),
# 市场周期类型
F.col("market_cycle_type"),
# 最新月份的排名
F.col("rank_lastest"),
# 最新月份的同比
F.col("rank_change_rate_lastest"),
# 最新月份的环比
F.col("rank_rate_of_change_lastest"),
# 最新出现的月份
F.col("appear_month_lastest"),
F.lit(self.site_name).alias("site_name"),
F.lit(self.date_type).alias("date_type"),
F.lit(self.date_info).alias("date_info")
)
# 四个季度bsr销量
self.df_base = self.df_base.withColumn(
"q1_bsr_orders",
F.expr("coalesce(bsr_orders1,0) + coalesce(bsr_orders2,0) + coalesce(bsr_orders3,0)")
).withColumn(
"q2_bsr_orders",
F.expr("coalesce(bsr_orders4,0) + coalesce(bsr_orders5,0) + coalesce(bsr_orders6,0)")
).withColumn(
"q3_bsr_orders",
F.expr("coalesce(bsr_orders7,0) + coalesce(bsr_orders8,0) + coalesce(bsr_orders9,0)")
).withColumn(
"q4_bsr_orders",
F.expr("coalesce(bsr_orders10,0) + coalesce(bsr_orders11,0) + coalesce(bsr_orders12,0)")
)
# 四个季度预估销量
self.df_base = self.df_base.withColumn(
"q1_orders",
F.expr("coalesce(orders1,0) + coalesce(orders2,0) + coalesce(orders3,0)")
).withColumn(
"q2_orders",
F.expr("coalesce(orders4,0) + coalesce(orders5,0) + coalesce(orders6,0)")
).withColumn(
"q3_orders",
F.expr("coalesce(orders7,0) + coalesce(orders8,0) + coalesce(orders9,0)")
).withColumn(
"q4_orders",
F.expr("coalesce(orders10,0) + coalesce(orders11,0) + coalesce(orders12,0)")
)
# top_rank 兼容
self.df_base = self.df_base.withColumn(
"top_rank", F.col("rank")
).na.fill({
"rank": 0,
"top_rank": 0
}).cache()
def save_data(self):
# 重新分区
self.df_base = self.df_base.repartition(20)
partition_by = ["site_name", "date_type", "date_info"]
print(f"当前存储的表名为:{self.hive_tb},分区为{partition_by}", )
hdfs_path = CommonUtil.build_hdfs_path(
self.hive_tb,
partition_dict={
"site_name": self.site_name,
"date_type": self.date_type,
"date_info": self.date_info,
}
)
print(f"清除hdfs目录中:{hdfs_path}")
HdfsUtils.delete_file_in_folder(hdfs_path)
self.df_base.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=partition_by)
print("success")
if __name__ == '__main__':
site_name = CommonUtil.get_sys_arg(1, None)
date_type = CommonUtil.get_sys_arg(2, None)
date_info = CommonUtil.get_sys_arg(3, None)
obj = DwtAbaLast365(site_name=site_name, date_type=date_type, date_info=date_info)
obj.run()