dwt_aba_last365.py 28.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
import os
import sys


sys.path.append(os.path.dirname(sys.path[0]))
from utils.common_util import CommonUtil, DateTypes
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F, Window
from pyspark.sql.types import IntegerType, StringType
from pyspark.sql.dataframe import DataFrame
from yswg_utils.common_udf import udf_detect_phrase_reg


class DwtAbaLast365(object):

    def __init__(self, site_name, date_type, date_info):
        self.site_name = site_name
        self.date_info = date_info
        self.date_type = date_type
        self.date_type_original = DateTypes.month.name
        assert date_type in [DateTypes.month.name, DateTypes.year.name], "date_type 输入有误!!"
        app_name = f"{self.__class__.__name__}:{self.site_name}:{self.date_type}:{self.date_info}"
        self.spark = SparkUtil.get_spark_session(app_name)
        self.hive_tb = "dwt_aba_last365"
        # 全局df
        self.df_base = self.spark.sql(f"select 1+1;")
        self.df_orders = self.spark.sql(f"select 1+1;")
        self.df_st_sv_rank = self.spark.sql(f"select 1+1;")
        self.df_history = self.spark.sql(f"select 1+1;")
        self.df_last_year = self.spark.sql(f"select 1+1;")
        self.df_sv_change_rate = self.spark.sql(f"select 1+1;")
        self.df_label = self.spark.sql(f"select 1+1;")
        self.df_base_lastest = self.spark.sql(f"select 1+1;")
        self.df_change_rate_lastest = self.spark.sql(f"select 1+1;")
        # 过去12月list
        self.last_12_month = []
        for i in range(0, 12):
            self.last_12_month.append(CommonUtil.get_month_offset(self.date_info, -i))
        # 12个月前
        self.last_year_month = CommonUtil.get_month_offset(self.date_info, -12)
        pass

    #  对指定的行进行行转列
    def pivot_df(self, last_12_month: list, df_all: DataFrame, df_agg: DataFrame, group_col: str, pivot_col: str, agg_col_arr: list):
        """
        对指定的行进行行转列
        """
        # 列名如下: 2024-07_st_num|2024-06_st_num|……|2024-07_bsr_orders|2024-06_bsr_orders|……
        df_tmp = df_all.groupBy(group_col).pivot(pivot_col, last_12_month).agg(
            *list(map(lambda col: F.first(col).alias(col), agg_col_arr))
        ).cache()

        # 列名如下: st_num1|st_num2|……|bsr_orders1|bsr_orders2|……
        for index in range(0, len(last_12_month)):
            for col in agg_col_arr:
                prefix = last_12_month[index]
                month = int(prefix.split('-')[-1])
                df_tmp = df_tmp.withColumnRenamed(f"{prefix}_{col}", f"{col}{month}")
        return df_agg.join(df_tmp, group_col, "inner")

    def run(self):
        self.read_data()
        self.handle_data()
        self.save_data()

    def read_data(self):
        # ABA月数据
        sql1 = f"""
            select 
                search_term,
                id,
                st_bsr_cate_1_id_new as category_id,
                bsr_orders,
                search_volume,
                st_ao_avg,
                st_ao_val_rate,
                price_avg,
                weight_avg,
                volume_avg,
                rating_avg,
                total_comments_avg,
                total_asin_num,
                aadd_proportion,
                sp_proportion,
                fbm_proportion,
                cn_proportion,
                amzon_proportion,
                top3_seller_orders,
                top3_seller_bsr_orders,
                top3_brand_orders,
                top3_brand_bsr_orders,
                page3_brand_num,
                page3_seller_num,
                new_bsr_orders_proportion,
                new_asin_proportion,
                supply_demand,
                max_num,
                most_proportion,
                gross_profit_fee_sea,
                gross_profit_fee_air,
                st_bsr_cate_current_id_new as category_current_id,
                color_proportion,
                max_num_asin,
                is_self_max_num_asin,
                multi_color_proportion,
                multi_size_proportion,
                is_new_market_segment,
                market_cycle_type,
                brand_monopoly,
                seller_monopoly,
                is_ascending_text,
                is_search_text,
                st_word_num,
                date_info,
                st_num,
                rank
            from dwt_aba_st_analytics
            where site_name = '{self.site_name}'
              and date_type = '{self.date_type_original}'
              and date_info in ({CommonUtil.list_to_insql(self.last_12_month)})
        """
        self.df_base = self.spark.sql(sql1).repartition(80, "search_term", "date_info").cache()

        # 搜索词同比、环比
        sql2 = f"""
            select 
                search_term, 
                rank_change_rate as rank_change_rate_lastest, 
                rank_rate_of_change as rank_rate_of_change_lastest 
            from dwt_aba_last_change_rate
            where site_name = '{self.site_name}'
              and date_type = '{self.date_type_original}'
              and date_info = '{self.date_info}';
        """
        self.df_change_rate_lastest = self.spark.sql(sql2).repartition(80, 'search_term').cache()

        # 搜索词预估销量
        if date_info < '2023-09':
            old_list = list(filter(lambda it: it < '2022-10', self.last_12_month))
            new_list = list(filter(lambda it: it >= '2022-10', self.last_12_month))
            sql3 = f"""
                select 
                    search_term,
                    st_search_sum as orders,
                    date_info
                from dim_st_detail
                where site_name = '{self.site_name}'
                  and date_type = 'month_old'
                  and date_info in ({CommonUtil.list_to_insql(old_list)})
                union
                select 
                    search_term,
                    orders as orders,
                    date_info
                from dwt_aba_st_analytics
                where site_name = '{self.site_name}'
                  and date_type = 'month'
                  and date_info in ({CommonUtil.list_to_insql(new_list)})
            """
        else:
            sql3 = f"""
                select 
                    search_term,
                    orders as orders,
                    date_info
                from dwt_aba_st_analytics
                where site_name = '{self.site_name}'
                  and date_type = 'month'
                  and date_info in ({CommonUtil.list_to_insql(self.last_12_month)})
            """
        self.df_orders = self.spark.sql(sql3).repartition(80, "search_term", "date_info").cache()

        # 搜索量排名:本次和上年度排名
        sql = f"""
            select 
                search_term_id,
                collect_set(rank)[0]      as rank,
                collect_set(last_rank)[0] as last_rank
            from (
                select 
                    search_term_id,
                    case date_info when '{self.date_info}' then sv_rank end as rank,
                    case date_info when '{self.last_year_month}' then sv_rank end as last_rank
                from dwt_st_sv_last365
                where site_name = '{self.site_name}'
                  and date_info in ('{self.date_info}', '{self.last_year_month}')
            ) tmp
            group by search_term_id;
        """
        self.df_st_sv_rank = self.spark.sql(sql).na.fill({"last_rank": 0}).cache()

        # 历史新增词识别:读取月表所有历史数据,判断是否为历史新增
        sql = f"""
            select 
                search_term, 
                0 as is_history_first_text, 
                min(date_info) as history_first_appear_month 
            from dwt_aba_st_analytics
            where site_name = '{self.site_name}'
              and date_type = '{self.date_type_original}'
              and date_info <= '{self.last_year_month}'
            group by search_term;
        """
        self.df_history = self.spark.sql(sql).repartition(80, 'search_term').cache()

        # 新增词识别:读取年表同比数据,判断是否为近1年新增
        sql = f"""
            select 
                search_term, 
                0 as is_first_text 
            from dwt_aba_last365
            where site_name = '{self.site_name}'
              and date_type = '{self.date_type}'
              and date_info = '{self.last_year_month}';
        """
        self.df_last_year = self.spark.sql(sql).repartition(80, 'search_term').cache()

        # 搜索量同比增长识别:判断持续上升/下降
        sql = f"""
            select 
                search_term, 
                search_volume_change_rate 
            from dwt_aba_last_change_rate
            where site_name = '{self.site_name}'
              and date_type = '{self.date_type_original}'
              and date_info in ({CommonUtil.list_to_insql(self.last_12_month)});
        """
        self.df_sv_change_rate = self.spark.sql(sql).repartition(80, 'search_term').cache()

        # 影视+品牌标签识别
        sql = f"""
            select
                search_term, 
                asin_movie_type_count, 
                total_asin_num, 
                st_brand_label 
            from dwt_aba_st_analytics
            where site_name = '{self.site_name}'
              and date_type = '{self.date_type_original}'
              and date_info in ({CommonUtil.list_to_insql(self.last_12_month)});
        """
        self.df_label = self.spark.sql(sql).repartition(80, 'search_term').fillna({
            'asin_movie_type_count': 0,
            'total_asin_num': 0
        }).cache()

    def handle_data(self):
        # st最新月数据
        self.handle_month_lastest()
        # 聚合字段处理
        self.handle_agg()
        # 标签处理
        self.handle_label()
        # 语种处理
        self.handle_calc_lang()
        # 入库前处理
        self.handle_save()

    def handle_month_lastest(self):
        # 保留最新的月数据
        self.df_base_lastest = self.df_base.filter(f"date_info = '{self.date_info}'").select(
            "search_term", "rank", "color_proportion", "multi_color_proportion", "multi_size_proportion", "st_ao_avg",
            "st_ao_val_rate", "supply_demand", "total_asin_num", "new_asin_proportion", "bsr_orders",
            "new_bsr_orders_proportion", "price_avg", "weight_avg", "volume_avg", "page3_brand_num", "brand_monopoly",
            "page3_seller_num", "seller_monopoly", "aadd_proportion", "sp_proportion", "fbm_proportion", "cn_proportion",
            "amzon_proportion", "most_proportion", "max_num", "max_num_asin", "is_self_max_num_asin", "rating_avg",
            "total_comments_avg", "date_info"
        ).withColumnRenamed(
            'rank', 'rank_lastest'
        ).withColumnRenamed(
            'multi_color_proportion', 'multi_color_avg_proportion'
        ).withColumnRenamed(
            'multi_size_proportion', 'multi_size_avg_proportion'
        ).withColumnRenamed(
            'new_asin_proportion', 'new_asin_num_avg_monopoly'
        ).withColumnRenamed(
            'new_bsr_orders_proportion', 'new_asin_bsr_orders_avg_monopoly'
        ).withColumnRenamed(
            'most_proportion', 'most_avg_proportion'
        ).withColumnRenamed(
            'date_info', 'appear_month_lastest'
        ).repartition(80, 'search_term').cache()

    def handle_agg(self):
        self.df_base = self.df_base.join(
            other=self.df_orders, on=["search_term", "date_info"], how="left"
        )
        self.df_orders.unpersist()

        df_agg = self.df_base.groupBy("id").agg(
            F.first("search_term").alias("search_term"),
            F.first("category_id").alias("category_id"),
            F.first("category_current_id").alias("category_current_id"),
            F.expr("round(sum(top3_seller_orders)/12,4)").alias("top3_seller_orders"),
            F.expr("round(sum(top3_seller_bsr_orders)/12,4)").alias("top3_seller_bsr_orders"),
            F.expr("round(sum(top3_brand_orders)/12,4)").alias("top3_brand_orders"),
            F.expr("round(sum(top3_brand_bsr_orders)/12,4)").alias("top3_brand_bsr_orders"),
            F.expr("round(sum(gross_profit_fee_sea)/12,4)").alias("gross_profit_fee_sea"),
            F.expr("round(sum(gross_profit_fee_air)/12,4)").alias("gross_profit_fee_air"),
            F.sum(F.col("orders")).alias("orders"),
            F.sum(F.col("st_num")).alias("total_st_num"),
            F.max("st_word_num").alias("st_word_num"),
            # bsr销量最高对应的月
            F.max(F.struct("bsr_orders", "date_info")).alias("tmp_row_1"),
            # 销量最高对应的月
            F.max(F.struct("orders", "date_info")).alias("tmp_row_2"),
            # 首次出现对应的月
            F.min("date_info").alias("first_appear_month"),
            # 所有出现的月
            F.concat_ws(
                ",", F.sort_array(F.collect_set(F.split("date_info", "-")[1].cast(IntegerType())))
            ).alias("total_appear_month"),
            # 是否新细分市场 非平均数算法 12个月都是新出现 表明同比年也是新出现 即 sum=12 表示为1 否则都是0
            F.avg("is_new_market_segment").cast(IntegerType()).alias("is_new_market_segment"),
            # 同比是否是热搜词 热搜词:最近1月/年中,出现的次数大于80% 如果月热搜词 is_search_text的和>=10 则是热搜词
            F.expr("sum(is_search_text) / 9.6").cast(IntegerType()).alias("is_search_text")
        )

        # 行转列的字段
        agg_col_arr = ['st_num', 'bsr_orders', 'orders', 'market_cycle_type', 'search_volume']
        self.df_base = self.pivot_df(
            self.last_12_month, self.df_base, df_agg, "id", "date_info", agg_col_arr
        ).repartition(80, "search_term").cache()

    def handle_label(self):
        # 影视品牌标签
        self.df_label = self.df_label.groupBy('search_term').agg(
            F.round((F.sum("asin_movie_type_count") / F.sum("total_asin_num")) * 100, 2).alias('movie_prop'),
            F.max('st_brand_label').alias('st_brand_label')
        ).withColumn(
            # 影视标记类型 0:非影视; 1:0< 比例 <= 20%; 2: 20% < 比例 <= 50%; 3:50% < 比例
            'st_movie_label',
            F.when(
                (F.col("movie_prop") > 0) & (F.col("movie_prop") <= 20), F.lit(1)
            ).when(
                (F.col("movie_prop") > 20) & (F.col("movie_prop") <= 50), F.lit(2)
            ).when(
                (F.col("movie_prop") > 50), F.lit(3)
            ).otherwise(F.lit(0))
        ).withColumn(
            'st_brand_label',
            F.when(F.col('st_brand_label') == 1, F.lit(4)).otherwise(F.lit(0))
        ).withColumn(
            'st_movie_brand_label',
            F.sort_array(F.expr("array_distinct(array(st_movie_label, st_brand_label))"))
        ).withColumn(
            'st_movie_brand_label',
            F.when(
                F.array_contains(F.col('st_movie_brand_label'), 0) & (F.size(F.col('st_movie_brand_label')) > 1),
                F.expr("filter(st_movie_brand_label, x -> x != 0)")
            ).otherwise(F.col('st_movie_brand_label'))
        ).withColumn(
            'st_movie_brand_label',
            F.concat_ws(",", F.col('st_movie_brand_label'))
        ).select(
            'search_term', 'st_movie_brand_label'
        )
        self.df_base = self.df_base.join(
            self.df_label, on='search_term', how='left'
        )

        # 上升词判断
        self.df_base = self.df_base.join(
            self.df_st_sv_rank, self.df_base['id'].eqNullSafe(self.df_st_sv_rank['search_term_id']), "left"
        ).withColumn(
            "is_ascending_text",
            F.expr("rank / last_rank <= 0.5").cast(IntegerType())
        )

        # 新增词判断
        self.df_base = self.df_base.join(
            self.df_last_year, on='search_term', how='left'
        ).fillna({'is_first_text': 1})

        # 历史新增词判断
        self.df_base = self.df_base.join(
            self.df_history, on='search_term', how='left'
        ).fillna({
            'is_history_first_text': 1
        }).withColumn(
            'history_first_appear_month',
            F.when(F.col('history_first_appear_month').isNotNull(), F.col('history_first_appear_month'))
                .otherwise(F.col('first_appear_month'))
        )

        # 判断市场周期类型,优先保留最近月的数据,若为null则往前推
        num = int(self.date_info.split('-')[-1])
        fields_first_round = [F.col(f'market_cycle_type{i}') for i in range(num, 0, -1)]
        fields_second_round = [F.col(f'market_cycle_type{i}') for i in range(12, num, -1)]
        fields = fields_first_round + fields_second_round
        self.df_base = self.df_base.withColumn('market_cycle_type', F.coalesce(*fields))

        # 持续上升、下降判断
        self.df_sv_change_rate = self.df_sv_change_rate.withColumn(
            'sv_rising_flag', F.when(F.col('search_volume_change_rate') > 0, 1).otherwise(0)
        ).withColumn(
            'sv_decline_flag', F.when(F.col('search_volume_change_rate') < 0, 1).otherwise(0)
        )
        # # 计算上升率、下降率
        self.df_sv_change_rate = self.df_sv_change_rate.groupBy('search_term').agg(
            F.round(F.sum('sv_rising_flag') / F.count('search_term'), 4).alias('sv_rising_rate'),
            F.round(F.sum('sv_decline_flag') / F.count('search_term'), 4).alias('sv_decline_rate')
        )
        self.df_base = self.df_base.join(
            self.df_sv_change_rate, on='search_term', how='left'
        ).withColumn(
            'sv_change_rate_flag',
            F.when(F.col('sv_rising_rate') > 0.7, 1).when(F.col('sv_decline_rate') > 0.7, 2).otherwise(0)
        ).cache()

        self.df_label.unpersist()
        self.df_st_sv_rank.unpersist()
        self.df_last_year.unpersist()
        self.df_history.unpersist()
        self.df_sv_change_rate.unpersist()

    def handle_calc_lang(self):
        sql = """
            select word, langs from big_data_selection.tmp_lang_word_frequency;
        """
        lang_word_list = self.spark.sql(sql).collect()
        # 转为map
        lang_word_map = {row['word']: row['langs'] for row in lang_word_list}
        self.df_base = self.df_base.withColumn(
            "lang",
            F.coalesce(udf_detect_phrase_reg(lang_word_map)(F.col("search_term")).getField("lang"), F.lit("other"))
        ).cache()

    def handle_save(self):
        # 关联月数据
        self.df_base = self.df_base.join(
            other=self.df_base_lastest, on="search_term", how="left"
        ).join(
            other=self.df_change_rate_lastest, on="search_term", how="left"
        ).cache()
        self.df_base_lastest.unpersist()
        self.df_change_rate_lastest.unpersist()

        self.df_base = self.df_base.select(
            F.col("id"),
            F.col("search_term"),
            F.col("category_id"),
            F.col("category_current_id"),
            F.col('rank').cast(IntegerType()),
            F.col("total_st_num"),

            # 后缀数字表示对应的月份,如:2024-07则为st_num7,2023-12则为st_num12。下面字段同理
            F.col("st_num1").cast(IntegerType()),
            F.col("st_num2").cast(IntegerType()),
            F.col("st_num3").cast(IntegerType()),
            F.col("st_num4").cast(IntegerType()),
            F.col("st_num5").cast(IntegerType()),
            F.col("st_num6").cast(IntegerType()),
            F.col("st_num7").cast(IntegerType()),
            F.col("st_num8").cast(IntegerType()),
            F.col("st_num9").cast(IntegerType()),
            F.col("st_num10").cast(IntegerType()),
            F.col("st_num11").cast(IntegerType()),
            F.col("st_num12").cast(IntegerType()),

            F.col("orders1").cast(IntegerType()),
            F.col("orders2").cast(IntegerType()),
            F.col("orders3").cast(IntegerType()),
            F.col("orders4").cast(IntegerType()),
            F.col("orders5").cast(IntegerType()),
            F.col("orders6").cast(IntegerType()),
            F.col("orders7").cast(IntegerType()),
            F.col("orders8").cast(IntegerType()),
            F.col("orders9").cast(IntegerType()),
            F.col("orders10").cast(IntegerType()),
            F.col("orders11").cast(IntegerType()),
            F.col("orders12").cast(IntegerType()),

            F.col("bsr_orders1").cast(IntegerType()),
            F.col("bsr_orders2").cast(IntegerType()),
            F.col("bsr_orders3").cast(IntegerType()),
            F.col("bsr_orders4").cast(IntegerType()),
            F.col("bsr_orders5").cast(IntegerType()),
            F.col("bsr_orders6").cast(IntegerType()),
            F.col("bsr_orders7").cast(IntegerType()),
            F.col("bsr_orders8").cast(IntegerType()),
            F.col("bsr_orders9").cast(IntegerType()),
            F.col("bsr_orders10").cast(IntegerType()),
            F.col("bsr_orders11").cast(IntegerType()),
            F.col("bsr_orders12").cast(IntegerType()),

            F.col("market_cycle_type1").cast(IntegerType()),
            F.col("market_cycle_type2").cast(IntegerType()),
            F.col("market_cycle_type3").cast(IntegerType()),
            F.col("market_cycle_type4").cast(IntegerType()),
            F.col("market_cycle_type5").cast(IntegerType()),
            F.col("market_cycle_type6").cast(IntegerType()),
            F.col("market_cycle_type7").cast(IntegerType()),
            F.col("market_cycle_type8").cast(IntegerType()),
            F.col("market_cycle_type9").cast(IntegerType()),
            F.col("market_cycle_type10").cast(IntegerType()),
            F.col("market_cycle_type11").cast(IntegerType()),
            F.col("market_cycle_type12").cast(IntegerType()),

            F.col("search_volume1").cast(IntegerType()),
            F.col("search_volume2").cast(IntegerType()),
            F.col("search_volume3").cast(IntegerType()),
            F.col("search_volume4").cast(IntegerType()),
            F.col("search_volume5").cast(IntegerType()),
            F.col("search_volume6").cast(IntegerType()),
            F.col("search_volume7").cast(IntegerType()),
            F.col("search_volume8").cast(IntegerType()),
            F.col("search_volume9").cast(IntegerType()),
            F.col("search_volume10").cast(IntegerType()),
            F.col("search_volume11").cast(IntegerType()),
            F.col("search_volume12").cast(IntegerType()),

            F.col("st_ao_avg"),
            F.expr("round(st_ao_val_rate, 4)").alias("st_ao_val_rate"),
            F.col("price_avg"),
            F.col("weight_avg"),
            F.col("volume_avg"),
            F.col("rating_avg"),
            F.col("total_comments_avg"),

            F.col("multi_size_avg_proportion"),
            F.col("multi_color_avg_proportion"),

            F.col("brand_monopoly"),
            F.col("seller_monopoly"),
            F.col("most_avg_proportion"),
            F.col("supply_demand"),
            F.col("aadd_proportion"),
            F.col("sp_proportion"),
            F.col("fbm_proportion"),
            F.col("cn_proportion"),
            F.col("amzon_proportion"),
            F.col("top3_seller_orders"),
            F.col("top3_seller_bsr_orders"),
            F.col("top3_brand_orders"),
            F.col("top3_brand_bsr_orders"),
            F.col("page3_brand_num").cast(IntegerType()),
            F.col("page3_seller_num").cast(IntegerType()),
            F.col("new_asin_num_avg_monopoly"),
            F.col("new_asin_bsr_orders_avg_monopoly"),
            F.col("orders").cast(IntegerType()),
            F.col("bsr_orders"),

            F.col("gross_profit_fee_sea"),
            F.col("gross_profit_fee_air"),
            F.col("color_proportion"),

            F.col("total_asin_num"),

            F.col("max_num"),
            F.col("max_num_asin"),
            F.col("is_self_max_num_asin"),

            F.col("tmp_row_1").getField("date_info").alias("max_bsr_orders_month"),
            F.col("tmp_row_2").getField("date_info").alias("max_orders_month"),

            F.col("is_new_market_segment").alias("is_new_market_segment"),
            F.col("is_ascending_text").alias("is_ascending_text"),
            F.col("is_search_text").alias("is_search_text"),
            F.col("st_word_num").alias("st_word_num"),

            F.current_date().alias("updated_time").cast(StringType()),
            F.current_date().alias("created_time").cast(StringType()),

            F.lit(None).alias("usr_mask_type"),
            F.lit(None).alias("usr_mask_progress"),
            F.col("lang"),

            # 历史新增词判断,对比所有历史数据
            F.col("is_history_first_text"),
            # 该词首次出现的月份
            F.col("history_first_appear_month"),
            # 新增词判断,同比上一年
            F.col("is_first_text"),
            # 该词今年首次出现的月份
            F.col("first_appear_month"),
            # 搜索量上升率
            F.col("sv_rising_rate"),
            # 搜索量下降率
            F.col("sv_decline_rate"),
            # 持续上升或下降标签,1上升 2下降 0都不是
            F.col("sv_change_rate_flag"),
            # 影视品牌标签
            F.col("st_movie_brand_label"),
            # 该词今年出现的所有月份
            F.col("total_appear_month"),
            # 市场周期类型
            F.col("market_cycle_type"),
            # 最新月份的排名
            F.col("rank_lastest"),
            # 最新月份的同比
            F.col("rank_change_rate_lastest"),
            # 最新月份的环比
            F.col("rank_rate_of_change_lastest"),
            # 最新出现的月份
            F.col("appear_month_lastest"),

            F.lit(self.site_name).alias("site_name"),
            F.lit(self.date_type).alias("date_type"),
            F.lit(self.date_info).alias("date_info")
        )
        # 四个季度bsr销量
        self.df_base = self.df_base.withColumn(
            "q1_bsr_orders",
            F.expr("coalesce(bsr_orders1,0) + coalesce(bsr_orders2,0) + coalesce(bsr_orders3,0)")
        ).withColumn(
            "q2_bsr_orders",
            F.expr("coalesce(bsr_orders4,0) + coalesce(bsr_orders5,0) + coalesce(bsr_orders6,0)")
        ).withColumn(
            "q3_bsr_orders",
            F.expr("coalesce(bsr_orders7,0) + coalesce(bsr_orders8,0) + coalesce(bsr_orders9,0)")
        ).withColumn(
            "q4_bsr_orders",
            F.expr("coalesce(bsr_orders10,0) + coalesce(bsr_orders11,0) + coalesce(bsr_orders12,0)")
        )
        # 四个季度预估销量
        self.df_base = self.df_base.withColumn(
            "q1_orders",
            F.expr("coalesce(orders1,0) + coalesce(orders2,0) + coalesce(orders3,0)")
        ).withColumn(
            "q2_orders",
            F.expr("coalesce(orders4,0) + coalesce(orders5,0) + coalesce(orders6,0)")
        ).withColumn(
            "q3_orders",
            F.expr("coalesce(orders7,0) + coalesce(orders8,0) + coalesce(orders9,0)")
        ).withColumn(
            "q4_orders",
            F.expr("coalesce(orders10,0) + coalesce(orders11,0) + coalesce(orders12,0)")
        )
        # top_rank 兼容
        self.df_base = self.df_base.withColumn(
            "top_rank", F.col("rank")
        ).na.fill({
            "rank": 0,
            "top_rank": 0
        }).cache()

    def save_data(self):
        # 重新分区
        self.df_base = self.df_base.repartition(20)
        partition_by = ["site_name", "date_type", "date_info"]
        print(f"当前存储的表名为:{self.hive_tb},分区为{partition_by}", )
        hdfs_path = CommonUtil.build_hdfs_path(
            self.hive_tb,
            partition_dict={
                "site_name": self.site_name,
                "date_type": self.date_type,
                "date_info": self.date_info,
            }
        )
        print(f"清除hdfs目录中:{hdfs_path}")
        HdfsUtils.delete_file_in_folder(hdfs_path)
        self.df_base.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=partition_by)
        print("success")


if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)
    date_type = CommonUtil.get_sys_arg(2, None)
    date_info = CommonUtil.get_sys_arg(3, None)
    obj = DwtAbaLast365(site_name=site_name, date_type=date_type, date_info=date_info)
    obj.run()