ai.py 26.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
import asyncio
from datetime import datetime

from flask import Blueprint, request, render_template, Response, current_app
from sqlalchemy import text

from app.context import exchange_db, create_engine_db
from app.models.Resp import Resp
from app.util.common_util import CommonUtil
from app.util.openai_session import GptChatSession, num_tokens_from_messages

ai_bp = Blueprint('ai_bp', __name__, url_prefix="/ai")


def save_ai_log(asin, type, question, reply, cost_token, cost_time, site_name):
    if reply is None:
        return
    db = create_engine_db("us")
    sql = """
    insert into open_ai_log (asin, type, question, reply, cost_token, cost_time, site_name)
    values (:asin, :type, :question, :reply, :cost_token, :cost_time, :site_name);
    """
    db.execute(text(sql), {
        "asin": asin,
        "type": type,
        "question": question,
        "reply": reply,
        "cost_token": cost_token,
        "cost_time": cost_time,
        "site_name": site_name
    })
    pass


def save_user_request_ai_log(user_id, request_api, request_type, request_param, replay_param):
    db = create_engine_db("us")
    sql = """
    insert into user_request_ai_log(user_id, request_api, request_type, request_param, replay_param)
    values (:user_id, :request_api, :request_type, :request_param, :replay_param);
    """
    db.execute(text(sql), {
        "user_id": user_id,
        "request_api": request_api,
        "request_type": request_type,
        "request_param": request_param,
        "replay_param": replay_param,
    })
    pass


def get_exist(asin, type):
    db = exchange_db("us")
    sql = """
        select reply,updated_time 
        from open_ai_log
        where asin = :asin
          and type = :type
        order by created_time desc
        limit 1
    """
    result = db.session.execute(text(sql), {"asin": asin, "type": type})
    row = result.fetchone()
    if row is not None:
        # 获取当前时间
        current_time = datetime.now()
        created_time = row['created_time']
        # 判断答复日志的效期是否超过15天,如超过则返回None,重新请求GPT获取最新答复
        if CommonUtil.date_day_diff(created_time, current_time) > 30:
            return None
        return row['reply']
    return None


@ai_bp.route('', methods=['GET', 'POST'])
def common_question():
    """一般性问题直接查询
### args
|  args | required | request type | type |  remarks |
|-------|----------|--------------|------|----------|
| question |  true    |    form_data      | str  | 问题    |

### request
```json
{"question": "xxx"}
```
### return
```html
返回html
```
"""
    if request.method == 'POST':
        if len(request.form['question']) < 1:
            return render_template('message.html', question="NULL", res="输入的问题不能为空")
        question = request.form['question']
        # print("======================================")
        # print("接收到的问题为:", question)

        session = GptChatSession()
        reply, cost_token, cost_time = session.send_msg(question)

        # print("Q:\n", question)
        # print("A:\n", reply)

        return render_template('message.html', question=question, res=str(reply))
    return render_template('message.html', question=0)


@ai_bp.route("/token_num", methods=['POST'])
def token_num():
    """检查token数量
### args
|  args | required | request type | type |  remarks |
|-------|----------|--------------|------|----------|
| text  |  true    |    body      | str  | 字符串 |

### request
```json
{"str": "xxx"}
```

### return
```json
{"status": "success", "code": "200", "data": null}
```
"""
    data: dict = request.json
    assert data is not None, "data 不能为空!"
    # 评论分析
    text = data.get('text')
    assert text is not None, "text 不能为空!"

    messages = [
        {"role": "system", "content": "You are a research assistant."},
    ]
    messages.append(
        {"role": "user", "content": text},
    )
    model = "gpt-3.5-turbo"
    num = num_tokens_from_messages(messages, model)
    return Resp.ok(num)


@ai_bp.route("/comment_analysis", methods=['POST'])
def comment_analysis():
    """评论分析
   ### args
   |  args | required | request type | type |  remarks |
   |-------|----------|--------------|------|----------|
   | asin |  true    |    body      | str  | asin    |
   | site_name  |  true    |    body      | str  | 站点 |

   ### request
   ```json
   {"asin": "xxx", "site_name": "xxx"}
   ```

   ### return
   ```json
   {"status": "success", "code": "200", "data": null}
   ```
   """
    start = CommonUtil.current_time()
    data: dict = request.json
    assert data is not None, "data 不能为空!"
    # 评论分析
    asin = data.get('asin')
    site_name = data.get('site_name')
    assert site_name is not None, "站点不能为空"
    assert asin is not None, "asin不能为空"
    asin = str(asin).strip()
    site_name = site_name.lower()
    type = 'comment_analysis'
    reply = get_exist(asin, type)
    if reply is not None:
        return Resp.ok(reply)
    else:
        db = exchange_db(site_name)
        sql = """select table_name ,alias_name from us_asin_association where alias_name = lower(substr(:asin, 1, 3));"""
        results = db.session.execute(text(sql), params={"asin": asin}).fetchone()
        # 增加判断,不存在asin_association表中的asin规则全归类到asin_comment_other
        if CommonUtil.notNone(results):
            # from builtins import type
            # print(type(results))
            table_name = results['table_name']
        else:
            table_name = "_asin_comment_other"
        table_name = f"{site_name}{table_name}"
        #  评分5.0和评分1.0各取10条
        sql = f"""    
        select *
        from (
                 select content
                 from {table_name}
                 where asin = :asin
                   and is_vp = 1
          		   and OCTET_LENGTH(content) > 50
		           and OCTET_LENGTH(content) < 500
                   and rating >= 4
                 order by agree_num desc
                 limit 15
             ) tmp
        union all
        (
            select content
            from {table_name}
            where asin = :asin
              and is_vp = 1
              and OCTET_LENGTH(content) > 50
              and OCTET_LENGTH(content) < 500
              and rating <= 2
            order by agree_num desc
            limit 15
        )
    """
        rows = db.session.execute(text(sql), {"asin": asin})
        comment = []
        for row in rows:
            comment.append(row['content'])

        assert len(comment) > 0, "当前商品可供抽样的review太少无法分析,请切换商品进行分析。"

        # 构建评论发送模板 使用五条任务
        format_str = "\n".join(list(map(lambda it: f"{it[0] + 1}.{it[1]}", enumerate(comment))))
        send = f"""Complete the analysis of the following six tasks based on this product reviews information, Note that each answer must include the title of the current task :
Task 1:Summarize the top 5 motivations customers used to buy this product and give the reviews proportion
Task 2:Summarize the top 5 reasons why customers like this product and give the reviews proportion
Task 3:Summarize the top 5 reasons why customers dislike this product and give the reviews proportion
Task 4:Summarize the top 5 most common usage scenarios and give the reviews proportion
Task 5:Summarize 5 suggestions for customer desired improvements and give the reviews proportion
Task 6:Summarize the user portrait of this product
Below is a list of comments:
{format_str}"""
        session = GptChatSession()
        reply, cost_token, cost_time = session.send_msg(send)

        if reply.count("Task") > 5:
            save_ai_log(
                asin=asin,
                type=type,
                question=send,
                reply=reply,
                cost_token=cost_token,
                cost_time=cost_time,
                site_name=site_name
            )
        else:
            assert False, "gpt资源繁忙,请重试!"
        end = CommonUtil.current_time()
        print(end - start)
        return Resp.ok(reply)


@ai_bp.route("/comment_analysis_v2", methods=['POST'])
def comment_analysis_v2():
    """评论分析
   ### args
   |  args | required | request type | type |  remarks |
   |-------|----------|--------------|------|----------|
   | asin |  true    |    body      | str  | asin    |
   | asin_list |  true    |    body      | str  | asin以及变体    |
   | site_name  |  true    |    body      | str  | 站点 |

   ### request
   ```json
   {"asin":xxx,"asin_list": ["xxx","xxx"], "site_name": "xxx"}
   ```

   ### return
   ```json
   {"status": "success", "code": "200", "data": null}
   ```
   """
    start = CommonUtil.current_time()
    data: dict = request.json
    assert data is not None, "data 不能为空!"
    # 评论分析
    asin = data.get('asin')
    asin_list = data.get('asin_list')
    site_name = data.get('site_name')
    user_id = data.get('user_id')
    assert CommonUtil.notBlank(site_name), "站点传参不能为空"
    assert CommonUtil.listNotNone(asin_list), "asin_list传参不能为空"
    assert CommonUtil.notBlank(asin), "asin传参不能为空"
    assert CommonUtil.notBlank(user_id), "user_id传参不能为空"
    asin = str(asin).strip()
    site_name = site_name.lower()
    type = 'comment_analysis'
    reply = get_exist(asin, type)
    if reply is not None:
        save_user_request_ai_log(
            user_id=user_id,
            request_api="comment_analysis_v2",
            request_type="post",
            request_param=str(data),
            replay_param=str(Resp.ok(reply).json)
        )
        return Resp.ok(reply)
    else:
        db = exchange_db(site_name)
        #  评分超过4.0 按好评提取样本,频分低于2.0按差评提取样本;---提取所有主体和变体后再进一步按照评分和赞同数进行分析
        sql = f"""
        select content
        from (select content
              from (select asin, content, rating, agree_num, is_vp
                    from {site_name}_asin_comment_other
                    union all
                    (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b00)
                    union all
                    (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b01_b06)
                    union all
                    (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b07)
                    union all
                    (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b08)
                    union all
                    (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b09)) t1
              where asin in ({CommonUtil.list_to_insql(asin_list)})
                and is_vp = 1
                and rating >= 4
                and OCTET_LENGTH(content) > 50
                and OCTET_LENGTH(content) < 500
              order by agree_num desc
              limit 20) as great_cont
        union all
        (select content
         from (select asin, content, rating, agree_num, is_vp
               from {site_name}_asin_comment_other
               union all
               (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b00)
               union all
               (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b01_b06)
               union all
               (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b07)
               union all
               (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b08)
               union all
               (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b09)) t1
         where asin in ({CommonUtil.list_to_insql(asin_list)})
           and is_vp = 1
           and rating <= 2
           and OCTET_LENGTH(content) > 50
           and OCTET_LENGTH(content) < 500
         order by agree_num desc
         limit 20)
    """
        try:
            rows = db.engines[site_name].execute(text(sql), {"asin": asin})
        except:
            raise Exception(f"asin{asin}评论查询失败!请稍后重试或联系管理员。")
        comment = []
        for row in rows:
            comment.append(row['content'])

        assert len(comment) > 5, "当前商品可供抽样的review太少无法分析,请切换商品或重新爬取商品评论后进行分析。"

        # 构建评论发送模板 使用五条任务
        format_str = "\n".join(list(map(lambda it: f"{it[0] + 1}.{it[1]}", enumerate(comment))))
        send = f"""Complete the analysis of the following six tasks based on this product reviews information, Note that each answer must include the title of the current task:
Task 1:Summarize the top 5 motivations customers used to buy this product and give the percentage of reviews
Task 2:Summarize the top 5 reasons why customers like this product and give the percentage of reviews
Task 3:Summarize the top 5 reasons why customers dislike this product and give the percentage of reviews
Task 4:Summarize the top 5 most common usage scenarios and give the percentage of reviews
Task 5:Summarize 5 suggestions for customer desired improvements and give the percentage of reviews
Task 6:Summarize the user profile of the product from the aspects of (who, where, why, what)
Below is a list of comments:
{format_str}"""
        session = GptChatSession()
        reply, cost_token, cost_time = session.send_message_qwen(send)
        #  此处去掉着重符号
        reply = reply.replace("**", "")
        if reply.count("Task") > 5:
            start_save_time = CommonUtil.current_time()
            save_ai_log(
                asin=asin,
                type=type,
                question=send,
                reply=reply,
                cost_token=cost_token,
                cost_time=cost_time,
                site_name=site_name
            )
            save_user_request_ai_log(
                user_id=user_id,
                request_api="comment_analysis_v2",
                request_type="post",
                request_param=str(data),
                replay_param=str(Resp.ok(reply).json)
            )
            end_save_time = CommonUtil.current_time()
            print("储存数据耗时:", end_save_time - start_save_time)
        else:
            assert False, "请求资源繁忙,请重试!"
        end = CommonUtil.current_time()
        print("评论接口完整耗时:", end - start)
        return Resp.ok(reply)


@ai_bp.route("/optimize_listing", methods=['POST'])
def optimize_listing():
    """listing 优化建议

   ### args
   |  args | required | request type | type |  remarks |
   |-------|----------|--------------|------|----------|
   | asin |  true    |    body      | str  | asin    |
   | content  |  true    |    body      | str  | asin标题 |

   ### request
   ```json
   {"asin": "xxx", "content": "xxx"}
   ```

   ### return
   ```json
   {"status": "success", "code": "200", "data": null}
   ```
   """
    data: dict = request.json
    assert data is not None, "data 不能为空!"
    content = data.get('content')
    asin = data.get('asin')
    site_name = data.get('site_name')
    assert asin is not None, "asin不能为空"
    assert content is not None, "content不能为空"
    type = 'optimize_listing'
    reply = get_exist(asin, type)
    if reply is not None:
        return Resp.ok(reply)
    else:
        session = GptChatSession()
        send = f"""Please propose Listing optimization suggestions for amazon product titles,list the top five points,the result Keyword should be capitalized,here is the title:"{content}"
"""
        reply, cost_token, cost_time = session.send_msg(send)

        save_ai_log(
            asin=asin,
            type=type,
            question=send,
            reply=reply,
            cost_token=cost_token,
            cost_time=cost_time,
            site_name=site_name
        )
    return Resp.ok(reply)


@ai_bp.route("/qa_analysis", methods=['POST'])
def qa_analysis():
    """ QA分析

   ### args
   |  args | required | request type | type |  remarks |
   |-------|----------|--------------|------|----------|
   | asin |  true    |    body      | str  | asin    |
   | site_name  |  true    |    body      | str  | 站点 |

   ### request
   ```json
   {"asin": "xxx", "site_name": "xxx"}
   ```

   ### return
   ```json
   {"status": ”success“, "code": "200", "data": null}
   ```
   """
    data: dict = request.json
    assert data is not None, "data 不能为空!"
    site_name = data.get('site_name')
    asin = data.get('asin')
    assert asin is not None, "asin不能为空"
    assert site_name is not None, "站点不能为空"
    asin = str(asin).strip()
    site_name = site_name.lower()

    type = "qa_analysis"
    reply = get_exist(asin, type)
    if reply is not None:
        return Resp.ok(reply)
    else:
        db = exchange_db(site_name)
        sql = """select replace(table_name,'comment','qa') as table_name from us_asin_association where alias_name = lower(substr(:asin, 1, 3));"""
        # table_name = db.session.execute(text(sql), {"asin": asin}).fetchone()['table_name']
        results = db.session.execute(text(sql), {"asin": asin}).fetchone()
        # 增加判断,不存在asin_association表中的asin规则全归类到asin_qa_other
        if CommonUtil.notNone(results):
            table_name = results['table_name']
        else:
            table_name = "_asin_qa_other"
        table_name = f"{site_name}{table_name}"
        sql = f"""select question, answer from {table_name} where asin = :asin limit 20;"""
        rows = db.session.execute(text(sql), {"asin": asin})
        qa_list_str = ""
        for row in rows:
            question = row['question']
            answer = row['answer']
            qa_list_str += "\n"
            qa_list_str += f"Question:{question}" + "\n" + f"Answer:{answer}"
            qa_list_str += "\n"
        send = f"""Complete the following tasks according to the information at the end of this article,Note that each answer must include the title of the current task:
Task 1:Organize the text information in terms of Question type, Keywords and Mention Times, and output it in table form
Task 2:List the top 5 most frequently asked question type
Task 3:According to these question answer dialogue information summed up What customers care about most and the  product optimization suggestions
Here is the transcript of the conversation, which consists of Question (Q) and Answer (A):
{qa_list_str}
       """
        print(send)
        session = GptChatSession()
        reply, cost_token, cost_time = session.send_msg(send)
        save_ai_log(
            asin=asin,
            type=type,
            question=send,
            reply=reply,
            cost_token=cost_token,
            cost_time=cost_time,
            site_name=site_name
        )
        return Resp.ok(reply)


@ai_bp.route("/comment_analysis_v3", methods=['POST'])
def comment_analysis_v3():
    """评论分析
   ### args
   |  args | required | request type | type |  remarks |
   |-------|----------|--------------|------|----------|
   | asin |  true    |    body      | str  | asin    |
   | asin_list |  true    |    body      | str  | asin以及变体    |
   | site_name  |  true    |    body      | str  | 站点 |

   ### request
   ```json
   {"asin":xxx,"asin_list": ["xxx","xxx"], "site_name": "xxx", "user_id":"xxx"}
   ```

   ### return
   ```json
   {"status": "success", "code": "200", "data": null}
   ```
   """
    data: dict = request.json
    args: dict = request.args
    assert data is not None, "data 不能为空!"
    # 评论分析
    asin = data.get('asin')
    asin_list = data.get('asin_list')
    site_name = data.get('site_name')
    user_id = data.get('user_id') or args.get("user_id")
    assert CommonUtil.notBlank(site_name), "站点传参不能为空"
    assert CommonUtil.listNotNone(asin_list), "asin_list传参不能为空"
    assert CommonUtil.notBlank(asin), "asin传参不能为空"
    assert CommonUtil.notBlank(user_id), "user_id传参不能为空"
    asin = str(asin).strip()
    site_name = site_name.lower()
    type = 'comment_analysis'
    # 判断15天内,是否存储过对应asin的评论请求
    reply = get_exist(asin, type)
    if reply is not None:
        save_user_request_ai_log(
            user_id=user_id,
            request_api="comment_analysis_v3",
            request_type="post",
            request_param=str(data),
            replay_param=str(Resp.ok(reply).json)
        )
        return Resp.ok(reply)
    else:
        db = exchange_db(site_name)
        #  评分超过4.0 按好评提取样本,频分低于2.0按差评提取样本;---提取所有主体和变体后再进一步按照评分和赞同数进行分析
        sql = f"""
        select content
        from (select content
              from (select asin, content, rating, agree_num, is_vp
                    from {site_name}_asin_comment_other
                    union all
                    (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b00)
                    union all
                    (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b01_b06)
                    union all
                    (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b07)
                    union all
                    (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b08)
                    union all
                    (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b09)) t1
              where asin in ({CommonUtil.list_to_insql(asin_list)})
                and is_vp = 1
                and rating >= 4
                and OCTET_LENGTH(content) > 50
                and OCTET_LENGTH(content) < 500
              order by agree_num desc
              limit 20) as great_cont
        union all
        (select content
         from (select asin, content, rating, agree_num, is_vp
               from {site_name}_asin_comment_other
               union all
               (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b00)
               union all
               (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b01_b06)
               union all
               (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b07)
               union all
               (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b08)
               union all
               (select asin, content, rating, agree_num, is_vp from {site_name}_asin_comment_b09)) t1
         where asin in ({CommonUtil.list_to_insql(asin_list)})
           and is_vp = 1
           and rating <= 2
           and OCTET_LENGTH(content) > 50
           and OCTET_LENGTH(content) < 500
         order by agree_num desc
         limit 20)
    """
        try:
            rows = db.engines[site_name].execute(text(sql), {"asin": asin})
        except:
            raise Exception(f"asin{asin}评论查询失败!请稍后重试或联系管理员。")
        comment = []
        for row in rows:
            comment.append(row['content'])

        assert len(comment) > 5, "当前商品可供抽样的review太少无法分析,请切换商品或重新爬取商品评论后进行分析。"

        # 构建评论发送模板 使用五条任务
        format_str = "\n".join(list(map(lambda it: f"{it[0] + 1}.{it[1]}", enumerate(comment))))
        send = f"""Complete the analysis of the following six tasks based on this product reviews information, Note that each answer must include the title of the current task:
Task 1:Summarize the top 5 motivations customers used to buy this product and give the percentage of reviews
Task 2:Summarize the top 5 reasons why customers like this product and give the percentage of reviews
Task 3:Summarize the top 5 reasons why customers dislike this product and give the percentage of reviews
Task 4:Summarize the top 5 most common usage scenarios and give the percentage of reviews
Task 5:Summarize 5 suggestions for customer desired improvements and give the percentage of reviews
Task 6:Summarize the user profile of the product from the aspects of (who, where, why, what)
Below is a list of comments:
{format_str}"""

        # 流式调用
        def qwen_stream_chat(send, app_context):
            from http import HTTPStatus
            session = GptChatSession()
            start_save_time = CommonUtil.current_time()
            output = None
            cost_token = None
            try:
                res_generator = session.send_message_qwen_stream(send)
                last_content = None
                for response in res_generator:
                    if response.status_code == HTTPStatus.OK:
                        output = response.output.get("choices")[0].get("message").get("content")
                        cost_token = response.usage.get("output_tokens")
                        if last_content is None:
                            add_content = output
                        else:
                            add_content = output[len(last_content):]
                        last_content = output
                        print(last_content)
                        yield str(add_content).encode("utf-8")
                    else:
                        code = response.code
                        message = response.message
                        yield f"通义千问调用失败 code: {code}, message:{message},请重试或联系管理员!!".encode("utf-8")
                        pass
            finally:
                # 入栈否则会db失效
                app_context.push()
                end_save_time = CommonUtil.current_time()
                cost_time = end_save_time - start_save_time
                save_ai_log(
                    asin=asin,
                    type=type,
                    question=send,
                    reply=output,
                    cost_token=cost_token,
                    cost_time=cost_time,
                    site_name=site_name
                )

                save_user_request_ai_log(
                    user_id=user_id,
                    request_api="comment_analysis_v3",
                    request_type="post",
                    request_param=str(data),
                    replay_param=str(Resp.ok(output).json)
                )
                end_save_time = CommonUtil.current_time()
                print("储存数据耗时:", end_save_time - start_save_time)
                pass

        return Response(qwen_stream_chat(send, current_app.app_context()), mimetype="text/event-stream")