1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
import os
import re
import sys
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from pyspark.storagelevel import StorageLevel
from utils.templates import Templates
# from ..utils.templates import Templates
# from AmazonSpider.pyspark_job.utils.templates_test import Templates
from pyspark.sql.types import StringType, IntegerType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from textblob import Word
class DwdStMeasure(Templates):
def __init__(self, site_name='us', date_type="month", date_info='2022-01'):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save_st_asin = f'dwd_st_asin_measure'
self.db_save_st = f'dwd_st_measure'
self.db_save_asin = f'dwd_asin_measure'
self.spark = self.create_spark_object(
app_name=f"{self.db_save_st_asin}, {self.db_save_st}, {self.db_save_asin}: {self.site_name}, {self.date_type}, {self.date_info}")
# self.df_date = self.get_year_week_tuple() # pandas的df对象
self.get_date_info_tuple()
self.get_year_week_tuple()
self.get_year_month_days_dict(year=int(self.year))
self.orders_transform_rate = self.get_orders_transform_rate() # 获取月销-->日销,周销
self.df_st_asin = self.spark.sql(f"select 1+1;")
self.df_st_asin_flow = self.spark.sql(f"select 1+1;")
self.df_st = self.spark.sql(f"select 1+1;")
self.df_brand_analytics = self.spark.sql(f"select 1+1;")
self.df_st_rate = self.spark.sql(f"select 1+1;")
self.df_st_quantity = self.spark.sql(f"select 1+1;")
self.df_asin_bs = self.spark.sql(f"select 1+1;")
self.df_asin_detail = self.spark.sql(f"select 1+1;")
self.df_bs_report = self.spark.sql(f"select 1+1;")
self.df_st_asin_duplicated = self.spark.sql(f"select 1+1;")
self.df_save_st_asin = self.spark.sql(f"select 1+1;")
self.df_save_asin = self.spark.sql(f"select 1+1;")
self.df_save_st = self.spark.sql(f"select 1+1;")
self.df_asin_stable = self.spark.sql(f"select 1+1;")
self.df_asin_price_weight = self.spark.sql(f"select 1+1;")
self.df_asin_amazon_orders = self.spark.sql(f"select 1+1;")
self.df_asin_self = self.spark.sql(f"select 1+1;")
self.df_st_templates = self.spark.sql("select st_zr_counts, st_sp_counts, st_sb1_counts,st_sb2_counts,st_sb3_counts,st_ac_counts,st_bs_counts,st_er_counts,st_tr_counts from dwd_st_measure limit 0")
self.df_asin_templates = self.spark.sql("select asin_zr_counts, asin_sp_counts, asin_sb1_counts,asin_sb2_counts,asin_sb3_counts,asin_ac_counts,asin_bs_counts,asin_er_counts,asin_tr_counts from dwd_asin_measure limit 0")
self.partitions_by = ['site_name', 'date_type', 'date_info']
self.u_is_title_appear = self.spark.udf.register("u_is_title_appear", self.udf_is_title_appear, IntegerType())
def get_orders_transform_rate(self):
month_days = self.year_month_days_dict[int(self.month)]
if self.date_type in ['day', 'week']:
if self.date_type == 'day':
return 1 / month_days
if self.date_type == 'week':
return 7 / month_days
else:
return 1
@staticmethod
def udf_is_title_appear(search_term, title):
english_prepositions = ["aboard", "about", "above", "across", "after", "against", "along", "amid", "among",
"around", "as", "at", "before", "behind", "below", "beneath", "beside", "between",
"beyond", "but", "by", "concerning", "considering", "despite", "down", "during",
"except", "for", "from", "in", "inside", "into", "like", "near", "of", "off", "on",
"onto", "out", "outside", "over", "past", "regarding", "round", "since", "through",
"to", "toward", "under", "underneath", "until", "unto", "up", "upon", "with", "within",
"without"]
symbol_list = [',', '。', '?', '!', ':', '?', '!', '-', '%', '|', ';', '·', '…', '~', '&', '@', '#', '、', '…', '~', '&', '@', '#', '“', '”', '‘', '’', '〝', '〞', '"', "'", '"', ''', '´', ''', '(', ')', '【', '】', '《', '》', '<', '>', '﹝', '﹞', '<', '>', '«', '»', '‹', '›', '〔', '〕', '〈', '〉', '{', '}', '[', ']', '「', '」', '{', '}', '〖', '〗', '『', '』', '︵', '︷', '︹', '︿', '︽', '﹁', '﹃', '︻', '︗', '/', '\\', '︶', '︸', '︺', '﹀', '︾', '﹂', '﹄', '︼', '︘', '/', '|', '\', '_', '_', '﹏', '﹍', '﹎', '``', '¦', '¡', '^', '\xad', '¨', 'ˊ', '¯', ' ̄', '﹋', '﹉', '﹊', 'ˋ', '︴', '¿', 'ˇ']
# 小写
search_term = str(search_term).lower().replace(",", " ").replace(":", " ").replace(";", " ") # 新增逗号匹配
title = f" {str(title).lower().replace(',', ' ').replace(';', ' ').replace(':', ' ')} "
# 1. 去掉特殊符号
# search_term = re.sub(r'[,:()]', '', search_term) # 去掉特殊符号
# title = re.sub(r'[,:()]', '', title) # 去掉特殊符号
# for symbol in symbol_list:
# if symbol in title:
# title = title.replace(symbol, "")
# if symbol in search_term:
# search_term = search_term.replace(symbol, "")
# 改成正则去掉特殊符号
symbols = "".join(symbol_list) # 将列表中的所有字符连接成一个字符串
search_term = re.sub('[' + symbols + ']', '', search_term) # 去掉特殊符号
title = re.sub('[' + symbols + ']', '', title) # 去掉特殊符号
# 2. 去掉介词(关键词去掉就行)
st_list = [f" {st} " for st in search_term.split(" ") if st not in english_prepositions] # 去掉介词
# 3. 复数一起匹配
for st in st_list:
# if st in symbol_list:
# st = st.replace(symbol, "")
if st not in title:
if Word(st) not in title:
return 0
return 1
# 旧版
# if str(search_term).lower() in str(title).lower():
# return 1
# else:
# return 0
def read_data(self):
print("self.year, self.month:", self.year, self.month)
print("1 读取st+asin两个维度: dim_st_asin_info表和ods_rank_flow表")
print("1.1 读取dim_st_asin_info表")
if self.date_type == 'month_old':
# self.get_year_week_tuple()
if int(self.month) <= 9 and int(self.year) <= 2022:
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='month' and date_info ='{self.date_info}'"
else:
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple}"
else:
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple}"
if date_type in ['month', 'month_week'] and ((self.site_name == 'us' and date_info >= '2023-10') or (self.site_name in ['uk', 'de'] and self.date_info >= '2024-05')):
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='month' and date_info ='{self.date_info}'"
# else:
# if (int(self.year) == 2022 and int(self.month) < 10) or int(self.year) <= 2021:
# sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
# else:
# sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='day' and date_info in {self.date_info_tuple}"
print("sql:", sql)
self.df_st_asin = self.spark.sql(sqlQuery=sql).cache()
self.df_st_asin.show(10, truncate=False)
# self.df_st_asin.filter("search_term='abiie high chair'").show(100, truncate=False)
# quit()
# self.df_st_asin = self.df_st_asin.drop_duplicates(["search_term", "asin", "data_type", "date_info"]).cache()
# self.df_st_asin_duplicated = self.df_st_asin.drop_duplicates(['search_term', 'asin']).cache()
# print("self.df_st_asin:", self.df_st_asin.count())
# print("self.df_st_asin_duplicated:", self.df_st_asin_duplicated.count())
# self.df_st_asin.show(10, truncate=False)
# self.df_asin = self.df_st_asin.select("asin").drop_duplicates(["asin"])
# self.df_st = self.df_st_asin.select("search_term").drop_duplicates(["search_term"])
print("1.2 读取ods_rank_flow表")
sql = f"select rank as page_rank, flow from ods_rank_flow " \
f"where site_name='{self.site_name}'"
self.df_st_asin_flow = self.spark.sql(sql).cache()
# self.df_st_asin_flow.persist(StorageLevel.MEMORY_ONLY)
self.df_st_asin_flow.show(10, truncate=False)
print("2 读取st维度: dim_st_detail表和ods_brand_analytics表")
print("self.year, self.month:", self.year, self.month)
print("2.1 读取dim_st_detail和ods_brand_analytics表")
sql = f"select search_term, st_rank, st_search_sum from dim_st_detail where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info ='{self.date_info}';"
print("sql:", sql)
self.df_st = self.spark.sql(sqlQuery=sql)
self.df_st.persist(StorageLevel.MEMORY_ONLY)
self.df_st.show(10, truncate=False)
# 统计词频
print("2.2 读取ods_brand_analytics表")
# sql = f"select search_term, date_info from ods_brand_analytics where site_name='{self.site_name}' and date_type='day' and date_info in {self.date_info_tuple}"
sql = f"select search_term, date_info from ods_brand_analytics where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple}"
print("sql:", sql)
self.df_brand_analytics = self.spark.sql(sqlQuery=sql)
self.df_brand_analytics.persist(StorageLevel.MEMORY_ONLY)
self.df_brand_analytics.show(10, truncate=False)
print("3 读取asin维度: dim_asin_bs_info+dim_asin_detail表")
print("3.1 读取dim_asin_bs_info表")
sql = f"select asin, asin_bs_cate_1_rank, asin_bs_cate_1_id " \
f"from dim_asin_bs_info where site_name='{self.site_name}' and date_type='{self.date_type.replace('_old', '')}' and date_info='{self.date_info}';"
print("sql:", sql)
self.df_asin_bs = self.spark.sql(sql).cache()
self.df_asin_bs.show(10)
sql = f"select asin, asin_title, asin_price, parent_asin " \
f"from dim_asin_detail where site_name='{self.site_name}' and date_type='{self.date_type.replace('_old', '')}' and date_info='{self.date_info}';"
print("sql:", sql)
self.df_asin_detail = self.spark.sql(sql).cache()
self.df_asin_detail.show(10)
print("4 读取bsr维度: ods_one_category_report表")
print("4.1 读取ods_one_category_report表")
if int(self.year) == 2022 and int(self.month) < 3:
sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, ceil(orders*{self.orders_transform_rate}) as asin_bsr_orders from ods_one_category_report " \
f"where site_name='{self.site_name}' and date_type='month' and date_info='2022-12';"
else:
month = f"0{str(self.month)}" if len(str(self.month)) == 1 else str(self.month)
sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, ceil(orders*{self.orders_transform_rate}) as asin_bsr_orders from ods_one_category_report " \
f"where site_name='{self.site_name}' and date_type='month' and date_info='{self.year}-{month}';"
print("sql:", sql)
self.df_bs_report = self.spark.sql(sqlQuery=sql)
self.df_bs_report.persist(StorageLevel.MEMORY_ONLY)
self.df_bs_report.show(10, truncate=False)
print("5 读取asin维度-体积信息: dim_asin_stable_info表")
sql = f"select asin, asin_length * asin_width * asin_height as asin_volume, asin_weight from dim_asin_stable_info where site_name='{self.site_name}'"
print("sql:", sql)
self.df_asin_stable = self.spark.sql(sqlQuery=sql).cache()
self.df_asin_stable.show(10, truncate=False)
print("6 读取asin维度-月销数据: dim_asin_amorders_info表")
sql = f"select asin, asin_amazon_orders from dim_asin_amorders_info where site_name='{self.site_name}' and date_type='{self.date_type.replace('_old', '')}' and date_info='{self.date_info}'"
print("sql:", sql)
self.df_asin_amazon_orders = self.spark.sql(sqlQuery=sql).cache()
self.df_asin_amazon_orders.show(10, truncate=False)
print("7 读取asin维度-内部asin: ods_self_asin")
sql = f"select asin, 1 as is_self_asin from ods_self_asin where site_name='{self.site_name}' group by asin"
print("sql:", sql)
self.df_asin_self = self.spark.sql(sqlQuery=sql)
self.df_asin_self = F.broadcast(self.df_asin_self)
self.df_asin_self.show(10, truncate=False)
def save_data(self):
self.reset_partitions(partitions_num=50)
self.save_data_common(
df_save=self.df_save_st_asin,
db_save=self.db_save_st_asin,
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
self.reset_partitions(partitions_num=5)
self.save_data_common(
df_save=self.df_save_st,
db_save=self.db_save_st,
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
self.reset_partitions(partitions_num=10)
self.save_data_common(
df_save=self.df_save_asin,
db_save=self.db_save_asin,
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
def handle_data(self):
self.handle_join()
self.df_save_asin = self.handle_st_asin_counts(cal_type="asin", df_templates=self.df_asin_templates, page=3)
self.df_save_st = self.handle_st_asin_counts(cal_type="st", df_templates=self.df_st_templates)
# self.handle_st_zr_page1_title_rate()
self.handle_st_zr_sp_page123_title_rate(data_type='zr', page_type='page1')
self.handle_st_zr_sp_page123_title_rate(data_type='zr', page_type='page123')
self.handle_st_zr_sp_page123_title_rate(data_type='sp', page_type='page123')
self.handle_st_asin_orders() # 预估销量和bsr销量
self.handle_asin_ao_and_zr_flow_proportion()
self.handle_st_ao_and_zr_flow_proportion()
self.handle_st_num()
self.handle_st_weight_price_volume()
# self.df_save_st.filter("search_term='abiie high chair'").show(10, truncate=False)
# self.df_save_st_asin.filter("search_term='abiie high chair'").show(100, truncate=False)
# self.df_save_st_asin.show(10, truncate=False)
# self.df_save_st.show(10, truncate=False)
del self.df_st_asin_duplicated
del self.df_st_asin
# self.df_save_asin.show(10, truncate=False)
# quit()
def handle_st_attributes_avg(self, df_st_asin, attributes_type, st_type):
# 根据基准值,计算平均值
df_st_asin = df_st_asin.select("search_term", f"{attributes_type}").filter(f'{attributes_type} > 0')
# 过滤大于基准值的几率
df_st_asin = df_st_asin.filter(F.col(f"{attributes_type}") <= F.col(st_type))
df_st_avg = df_st_asin.groupby(['search_term']).agg(
F.round(F.avg(f"{attributes_type}"), 4).alias(f'{st_type.replace("_std", "_avg")}')
)
return df_st_avg
def handle_st_attributes_std(self, df, attributes_type='asin_volume'):
# 计算基准值
# 定义窗口函数
window = Window.partitionBy(['search_term']).orderBy(F.desc(f"{attributes_type}"))
# 计算百分比排名并筛选 <= 0.25 的记录
df = df.select("search_term", f"{attributes_type}").filter(f'{attributes_type} > 0') \
.withColumn(f"{attributes_type}_percent_rank", F.percent_rank().over(window)) \
.filter(f'{attributes_type}_percent_rank <= 0.25') \
# 使用 row_number() 方法获取每个 search_term 的最大百分比排名记录
window = Window.partitionBy(['search_term']).orderBy(F.desc(f"{attributes_type}_percent_rank"))
df = df.withColumn(f"{attributes_type}_row_number", F.row_number().over(window)) \
.filter(f'{attributes_type}_row_number = 1')
# 显示结果
df = df.drop(f"{attributes_type}_percent_rank", f"{attributes_type}_row_number")
df = df.withColumnRenamed(f"{attributes_type}", f"{attributes_type.replace('asin', 'st')}_25_percent")
df.show(10, truncate=False)
return df
def handle_st_weight_price_volume(self):
# self.df_st_asin_duplicated = self.df_st_asin_duplicated.drop_duplicates(['search_term', 'asin']).cache()
df_st_asin = self.df_st_asin_duplicated.select('search_term', 'asin').drop_duplicates(['search_term', 'asin']).cache()
df_asin_label = self.df_asin_detail.select("asin", "asin_price", "asin_weight", "asin_volume").cache()
df_st_asin = df_st_asin.join(
df_asin_label, on='asin', how='inner'
)
# df_st_asin.filter("search_term='airpods'").show(100, truncate=False)
#
# quit()
# 取四分位值
df_st_volume = self.handle_st_attributes_std(df=df_st_asin, attributes_type='asin_volume')
df_st_price = self.handle_st_attributes_std(df=df_st_asin, attributes_type='asin_price')
df_st_weight = self.handle_st_attributes_std(df=df_st_asin, attributes_type='asin_weight')
# 取最小值
df_st_min = df_st_asin.groupby(['search_term']).agg(
F.round(F.min("asin_volume"), 4).alias('st_volume_min'),
F.round(F.min("asin_price"), 4).alias('st_price_min'),
F.round(F.min("asin_weight"), 4).alias('st_weight_min')
)
df_st_min = df_st_min.join(
df_st_volume, on='search_term', how='left'
).join(
df_st_price, on='search_term', how='left'
).join(
df_st_weight, on='search_term', how='left'
)
# 基准值
df_st_std = df_st_min.withColumn(
"st_volume_std",
F.round(1.5 * (df_st_min.st_volume_25_percent - df_st_min.st_volume_min) + df_st_min.st_volume_min, 4)
).withColumn(
"st_price_std",
F.round(1.5 * (df_st_min.st_price_25_percent - df_st_min.st_price_min) + df_st_min.st_price_min, 4)
).withColumn(
"st_weight_std",
F.round(1.5 * (df_st_min.st_weight_25_percent - df_st_min.st_weight_min) + df_st_min.st_weight_min, 4)
)
# df_st_min.show(10, truncate=False)
# 四分位平均值
df_st_asin = df_st_asin.join(
df_st_std, on="search_term", how="left"
)
df_st_volume_avg = self.handle_st_attributes_avg(df_st_asin=df_st_asin, attributes_type='asin_volume', st_type="st_volume_std")
df_st_price_avg = self.handle_st_attributes_avg(df_st_asin=df_st_asin, attributes_type='asin_price', st_type="st_price_std")
df_st_weight_avg = self.handle_st_attributes_avg(df_st_asin=df_st_asin, attributes_type='asin_weight', st_type="st_weight_std")
df_st_avg = df_st_std.join(
df_st_volume_avg, on='search_term', how='left'
).join(
df_st_price_avg, on='search_term', how='left'
).join(
df_st_weight_avg, on='search_term', how='left'
)
# df_st_avg.show(10, truncate=False)
# df_st_avg.filter("search_term='airpods'").show(10, truncate=False)
self.df_save_st = self.df_save_st.join(
df_st_avg, on='search_term', how='left'
)
def handle_join(self):
# st+asin
self.df_st_asin = self.df_st_asin.join(
self.df_st_asin_flow, on=['page_rank'], how='left'
)
# st -- dim_st_detail已经有
# asin
self.df_asin_bs = self.df_asin_bs.join(
self.df_bs_report, on=['asin_bs_cate_1_rank', 'asin_bs_cate_1_id'], how='left'
)
self.df_asin_detail = self.df_asin_detail.join(
self.df_asin_bs, on='asin', how='left'
).join(
self.df_asin_stable, on='asin', how='left'
)
# 合并
self.df_st_asin = self.df_st_asin.join(
self.df_st, on=['search_term'], how='left'
).join(
self.df_asin_detail, on=['asin'], how='left'
)
window = Window.partitionBy(['search_term', 'asin', 'data_type']).orderBy('page')
self.df_st_asin = self.df_st_asin.withColumn("rk", F.row_number().over(window=window))
self.df_st_asin_duplicated = self.df_st_asin.filter("rk=1").drop("rk").cache()
# self.df_st_asin.show(10, truncate=False)
# self.df_st_asin = self.df_st_asin.drop_duplicates(['search_term', 'asin', 'data_type'])
# self.df_st_asin = self.df_st_asin.cache()
# self.df_st_asin_duplicated = self.df_st_asin.drop_duplicates(['search_term', 'asin', 'data_type']).cache()
# self.df_st_asin.persist(StorageLevel.MEMORY_ONLY)
def handle_st_asin_counts(self, cal_type="asin", df_templates=None, page=3):
print(f"计算{cal_type}_counts")
cal_type_complete = "search_term" if cal_type == "st" else cal_type
self.df_st_asin_duplicated = self.df_st_asin_duplicated.filter(f"page <= {page}").withColumn(
f"{cal_type}_data_type",
F.concat(F.lit(f"{cal_type}_"), self.df_st_asin_duplicated.data_type, F.lit(f"_counts"))
)
df = self.df_st_asin_duplicated.groupby([f'{cal_type_complete}']). \
pivot(f"{cal_type}_data_type").count()
df = df_templates.unionByName(df, allowMissingColumns=True) # 防止爬虫数据没有导致程序运行出错
df = df.fillna(0)
# df.show(10, truncate=False)
df = df.withColumn(
f"{cal_type}_sb_counts",
df[f"{cal_type}_sb1_counts"] + df[f"{cal_type}_sb2_counts"] + df[f"{cal_type}_sb3_counts"]
)
df = df.withColumn(
f"{cal_type}_adv_counts",
df[f"{cal_type}_sb_counts"] + df[f"{cal_type}_sp_counts"]
)
if cal_type == "asin":
df_st_asin_duplicated = self.df_st_asin_duplicated.drop_duplicates(['search_term', 'asin'])
df_st_asin_agg = df_st_asin_duplicated.groupby(['asin']).agg(
F.count('search_term').alias("asin_st_counts")
)
df = df.join(
df_st_asin_agg, on=['asin'], how='left'
)
elif cal_type == "st":
df_st_asin_agg = self.df_st_asin_duplicated.select("search_term", "asin").join(
self.df_asin_self, on='asin', how='left'
).withColumn(
"is_self_asin",
F.when(F.col("is_self_asin").isNotNull(), F.col("is_self_asin")).otherwise(F.lit(0))
).groupby(['search_term']).agg(
F.sum('is_self_asin').alias("st_self_asin_counts"),
F.count('asin').alias("st_total_asin_counts")
).withColumn(
'st_self_asin_proportion',
F.round(F.col('st_self_asin_counts') / F.col('st_total_asin_counts'), 4)
)
df = df.join(
df_st_asin_agg, on=['search_term'], how='left'
)
df = df.withColumn(f"site_name", F.lit(self.site_name))
df = df.withColumn(f"date_type", F.lit(self.date_type))
df = df.withColumn(f"date_info", F.lit(self.date_info))
# df.show(10, truncate=False)
return df
def handle_st_zr_sp_page123_title_rate(self, data_type='zr', page_type="page1"):
params = ' and page=1' if page_type == 'page1' else ""
df = self.df_st_asin.filter(f"data_type='{data_type}' {params}")
df = df.select("search_term", "asin", "asin_title").drop_duplicates(["search_term", "asin"])
df = df.withColumn(
"st_asin_in_title_flag",
self.u_is_title_appear(df.search_term, df.asin_title)
)
# 测试--保留需要的数据
# s_str = """transformers
# barbie
# ring doorbell
# iphone 14 pro max case
# nintendo switch
# prime day deals today 2023
# the boys
# lube
# marvelous mrs maisel
# hydrogen peroxide"""
# s_tuple = tuple(s_str.split("\n"))
# df_csv = df.filter(f"search_term in {s_tuple}").toPandas()
# df_csv.to_csv(rf"/root/{data_type}_{page_type}.csv", index=False)
df = df.groupby(['search_term']).agg(
{
"search_term": "count",
"st_asin_in_title_flag": "sum",
}
)
df = df.withColumnRenamed(
"sum(st_asin_in_title_flag)", f"st_{data_type}_{page_type}_title_appear_counts"
).withColumnRenamed(
"count(search_term)", f"st_{data_type}_{page_type}_title_counts"
)
df = df.withColumn(
f"st_{data_type}_{page_type}_title_appear_rate",
# df.st_zr_page1_title_appear_counts / df.st_zr_page1_title_counts
F.round(F.col(f"st_{data_type}_{page_type}_title_appear_counts") / F.col(f"st_{data_type}_{page_type}_title_counts"), 4)
)
self.df_save_st = self.df_save_st.join(
df, on=['search_term'], how='left'
)
def handle_st_zr_page1_title_rate(self):
print("计算关键词的zr类型page=1的去重asin的标题密度")
df_zr_page1 = self.df_st_asin.filter(
"data_type='zr' and page=1"
)
df_zr_page1 = df_zr_page1.select("search_term", "asin", "asin_title").drop_duplicates(["search_term", "asin"])
df_zr_page1 = df_zr_page1.withColumn(
"st_asin_in_title_flag",
self.u_is_title_appear(df_zr_page1.search_term, df_zr_page1.asin_title)
)
# df_zr_page1.show(10, truncate=False)
df_zr_page1 = df_zr_page1.groupby(['search_term']).agg(
{
"search_term": "count",
"st_asin_in_title_flag": "sum",
}
)
df_zr_page1 = df_zr_page1.withColumnRenamed(
"sum(st_asin_in_title_flag)", "st_zr_page1_title_appear_counts"
).withColumnRenamed(
"count(search_term)", "st_zr_page1_title_counts"
)
df_zr_page1 = df_zr_page1.withColumn(
"st_zr_page1_title_appear_rate", df_zr_page1.st_zr_page1_title_appear_counts / df_zr_page1.st_zr_page1_title_counts
)
self.df_save_st = self.df_save_st.join(
df_zr_page1, on=['search_term'], how='left'
)
# df_zr_page1.show(10, truncate=False)
# quit()
del df_zr_page1
def handle_st_asin_orders(self):
# 预估销量+bsr销量
print("1. 预估销量:zr, sp的销量")
# 1.1 st+asin
self.df_st_asin = self.df_st_asin.withColumn(
"st_asin_orders",
F.ceil(self.df_st_asin.flow * self.df_st_asin.st_search_sum * self.orders_transform_rate)
)
self.df_save_st_asin = self.df_st_asin.withColumn(
"st_asin_orders_data_type", F.concat(F.lit("st_asin_"), self.df_st_asin.data_type, F.lit("_orders"))
)
self.df_save_st_asin = self.df_save_st_asin.groupby(["search_term", "asin"]). \
pivot("st_asin_orders_data_type").agg(F.mean(f"st_asin_orders"))
self.df_save_st_asin = self.df_save_st_asin.select(
"search_term", "asin", "st_asin_zr_orders", "st_asin_sp_orders"
)
# self.df_save_st_asin = self.df_save_st_asin.cache()
self.df_save_st_asin.persist(StorageLevel.MEMORY_ONLY)
self.df_save_st_asin = self.df_save_st_asin.withColumn(f"site_name", F.lit(self.site_name))
self.df_save_st_asin = self.df_save_st_asin.withColumn(f"date_type", F.lit(self.date_type))
self.df_save_st_asin = self.df_save_st_asin.withColumn(f"date_info", F.lit(self.date_info))
# self.df_save_st_asin.show(10, truncate=False)
# 1.2 st维度的zr和sp预估销量
df_st_orders = self.df_save_st_asin.groupby(['search_term']).agg(
F.sum('st_asin_zr_orders').alias("st_zr_orders"),
F.sum('st_asin_sp_orders').alias("st_sp_orders"),
# F.sum('st_asin_zr_orders').alias("st_zr_orders"),
# F.sum('st_asin_sp_orders').alias("st_zr_orders"),
)
# df_st_orders = df_st_orders.withColumnRenamed(
# "sum(st_asin_zr_orders)", "st_zr_orders"
# ).withColumnRenamed(
# "sum(st_asin_sp_orders)", "st_sp_orders"
# )
self.df_save_st = self.df_save_st.join(
df_st_orders, on=['search_term'], how='left'
)
# 1.3 asin维度的zr和sp预估销量
df_asin_orders = self.df_save_st_asin.groupby(['asin']).agg(
F.mean('st_asin_zr_orders').alias("asin_zr_orders"),
F.mean('st_asin_sp_orders').alias("asin_sp_orders"),
F.sum('st_asin_zr_orders').alias("asin_zr_orders_sum"),
F.sum('st_asin_sp_orders').alias("asin_sp_orders_sum"),
)
# df_asin_orders = df_asin_orders.withColumnRenamed(
# "avg(st_asin_zr_orders)", "asin_zr_orders"
# ).withColumnRenamed(
# "avg(st_asin_sp_orders)", "asin_sp_orders"
# ).withColumnRenamed(
# "sum(st_asin_zr_orders)", "asin_zr_orders_sum"
# ).withColumnRenamed(
# "sum(st_asin_sp_orders)", "asin_sp_orders_sum"
# )
self.df_save_asin = self.df_save_asin.join(
df_asin_orders, on=['asin'], how='left'
)
# 向上取整
self.df_save_asin = self.df_save_asin.withColumn(
"asin_zr_orders", F.ceil(self.df_save_asin.asin_zr_orders)
).withColumn(
"asin_sp_orders", F.ceil(self.df_save_asin.asin_sp_orders)
).withColumn(
"asin_zr_orders_sum", F.ceil(self.df_save_asin.asin_zr_orders_sum)
).withColumn(
"asin_sp_orders_sum", F.ceil(self.df_save_asin.asin_sp_orders_sum)
)
print("2. bsr销量")
# 2.1 st_bsr_orders
df_st_bsr_orders = self.df_st_asin.select("search_term", "asin", "asin_bsr_orders").drop_duplicates(["search_term", "asin"])
df_st_bsr_orders = df_st_bsr_orders.groupby(['search_term']).agg({"asin_bsr_orders": "sum"})
df_st_bsr_orders = df_st_bsr_orders.withColumnRenamed(
"sum(asin_bsr_orders)", "st_bsr_orders"
)
# 2.2 asin_bsr_orders
df_asin_bsr_orders = self.df_st_asin.select("asin", "asin_bsr_orders").drop_duplicates(['asin'])
# df_st_bsr_orders.show(10, truncate=False)
# df_asin_bsr_orders.show(10, truncate=False)
self.df_save_st = self.df_save_st.join(
df_st_bsr_orders, on='search_term', how='left'
)
self.df_save_asin = self.df_save_asin.join(
df_asin_bsr_orders, on='asin', how='left'
).join(
self.df_asin_amazon_orders, on='asin', how='left'
)
def handle_asin_ao_and_zr_flow_proportion(self):
print("计算asin维度的ao+zr流量占比")
# 1.计算asin的ao值
self.df_save_asin = self.df_save_asin.withColumn(
"asin_ao_val", F.round(self.df_save_asin.asin_adv_counts / self.df_save_asin.asin_zr_counts, 3)
)
# 2.计算asin的ao竞争比例
window = Window.orderBy(self.df_save_asin.asin_ao_val.asc_nulls_last())
self.df_save_asin = self.df_save_asin.withColumn(
"asin_ao_val_rate",
F.round(F.percent_rank().over(window=window), 4)
)
# 3.计算asin的自然流量占比
self.df_save_asin = self.df_save_asin.withColumn(
"asin_zr_flow_proportion",
F.when(F.col("asin_st_counts").isNotNull(), F.round(F.col("asin_zr_counts") / F.col("asin_st_counts"), 3))
)
self.df_save_asin = self.df_save_asin.join(
self.df_asin_detail.select("asin", "parent_asin"), on='asin', how='left'
)
# 4.计算asin的母体ao值和母体zr流量占比
df_asin_variation = self.df_save_asin.filter("parent_asin is not null").select("parent_asin",
"asin_zr_counts",
"asin_st_counts",
"asin_adv_counts")
df_asin_variation_agg = df_asin_variation.groupby(['parent_asin']).agg(
F.sum("asin_zr_counts").alias("sum_asin_zr_counts"),
F.sum("asin_st_counts").alias("sum_asin_st_counts"),
F.sum("asin_adv_counts").alias("sum_asin_adv_counts")
).withColumn(
"asin_flow_proportion_matrix",
F.when(
F.col("sum_asin_st_counts").isNotNull(),
F.round(F.col("sum_asin_zr_counts") / F.col("sum_asin_st_counts"), 3)
)
).withColumn(
"asin_ao_val_matrix",
F.when(
F.col("sum_asin_zr_counts").isNotNull(),
F.round(F.col("sum_asin_adv_counts") / F.col("sum_asin_zr_counts"), 3)
)
).drop("sum_asin_zr_counts", "sum_asin_st_counts", "sum_asin_adv_counts")
self.df_save_asin = self.df_save_asin.join(
df_asin_variation_agg, on=['parent_asin'], how='left'
)
# 5.若母体自然流量占比为null,则用asin的自然流量占比替代,ao同理
self.df_save_asin = self.df_save_asin.withColumn(
"asin_flow_proportion_matrix",
F.coalesce(F.col("asin_flow_proportion_matrix"), F.col("asin_zr_flow_proportion"))
).withColumn(
"asin_ao_val_matrix",
F.coalesce(F.col("asin_ao_val_matrix"), F.col("asin_ao_val"))
)
self.df_save_asin.show(10, truncate=False)
self.df_save_asin = self.df_save_asin.drop("parent_asin")
def handle_st_ao_and_zr_flow_proportion(self):
print("计算st维度的ao+zr流量占比")
# 1.得到asin的ao值和zr流量占比
df_asin_ao_and_zr_flow_proportion = self.df_save_asin.select("asin", "asin_ao_val", "asin_zr_flow_proportion", "asin_ao_val_matrix", "asin_flow_proportion_matrix")
df_st_ao_and_zr_flow_proportion = self.df_st_asin_duplicated.filter("data_type='zr'").select("search_term", "asin", "page").join(
df_asin_ao_and_zr_flow_proportion, on=['asin'], how='left'
)
# 2.新增asin的ao值升序排序,计算排名4到20的均值
window = Window.partitionBy(['search_term']).orderBy(df_st_ao_and_zr_flow_proportion.asin_ao_val.asc_nulls_last())
df_st_ao_4_20 = df_st_ao_and_zr_flow_proportion.withColumn(
"asin_ao_val_rank",
F.row_number().over(window=window)
).filter(
"asin_ao_val_rank between 4 and 20"
).select(
"search_term", "asin_ao_val"
)
df_st_ao_4_20 = df_st_ao_4_20\
.groupby(["search_term"])\
.agg(F.round(F.mean(df_st_ao_4_20.asin_ao_val), 3).alias("st_4_20_ao_avg"))
# 3.计算st的ao值和zr流量占比--首页zr位asin的平均值
df_st_ao = df_st_ao_and_zr_flow_proportion\
.filter("page=1 and asin_ao_val is not null")\
.groupby(["search_term"])\
.agg(F.round(F.mean("asin_ao_val"), 3).alias("st_ao_val"))
df_st_zr_flow_proportion = df_st_ao_and_zr_flow_proportion\
.filter("page=1 and asin_zr_flow_proportion is not null")\
.groupby(["search_term"])\
.agg(F.round(F.mean("asin_zr_flow_proportion"), 3).alias("st_zr_flow_proportion"))
self.df_save_st = self.df_save_st.join(
df_st_ao, on=['search_term'], how='left'
).join(
df_st_zr_flow_proportion, on=['search_term'], how='left'
).join(
df_st_ao_4_20, on=['search_term'], how='left'
)
# 4.计算st的ao竞争比例
window = Window.orderBy(self.df_save_st.st_ao_val.asc())
self.df_save_st = self.df_save_st.withColumn(
"st_ao_val_rate",
F.round(F.percent_rank().over(window=window), 4)
)
# 5.计算st的母体ao值和母体zr流量占比--首页zr位asin的母体平均值
df_st_ao_val_matrix = df_st_ao_and_zr_flow_proportion\
.filter("page=1 and asin_ao_val_matrix is not null")\
.groupby(["search_term"])\
.agg(F.round(F.mean("asin_ao_val_matrix"), 3).alias("st_ao_val_matrix"))
df_st_flow_proportion_matrix = df_st_ao_and_zr_flow_proportion\
.filter("page=1 and asin_flow_proportion_matrix is not null")\
.groupby(["search_term"])\
.agg(F.round(F.mean("asin_flow_proportion_matrix"), 3).alias("st_flow_proportion_matrix"))
self.df_save_st = self.df_save_st.join(
df_st_ao_val_matrix, on=['search_term'], how='left'
).join(
df_st_flow_proportion_matrix, on=['search_term'], how='left'
)
self.df_save_st.show(10, truncate=False)
def handle_st_num(self):
df_num = self.df_brand_analytics.drop_duplicates(['search_term', 'date_info'])
df_num = df_num.groupby(['search_term']).count()
df_num = df_num.withColumnRenamed("count", "st_num")
# self.df_save_st = self.df_save_st.withColumn("st_num", F.lit(1))
self.df_save_st = self.df_save_st.join(
df_num, on=['search_term'], how='left'
)
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:day/week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-月-日/年-周/年-月/年-季, 比如: 2022-1
handle_obj = DwdStMeasure(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()