dwd_st_asin_measure.py 37.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
import os
import re
import sys

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from pyspark.storagelevel import StorageLevel
from utils.templates import Templates
# from ..utils.templates import Templates
# from AmazonSpider.pyspark_job.utils.templates_test import Templates
from pyspark.sql.types import StringType, IntegerType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from textblob import Word


class DwdStMeasure(Templates):

    def __init__(self, site_name='us', date_type="month", date_info='2022-01'):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.db_save_st_asin = f'dwd_st_asin_measure'
        self.db_save_st = f'dwd_st_measure'
        self.db_save_asin = f'dwd_asin_measure'
        self.spark = self.create_spark_object(
            app_name=f"{self.db_save_st_asin}, {self.db_save_st}, {self.db_save_asin}: {self.site_name}, {self.date_type}, {self.date_info}")
        # self.df_date = self.get_year_week_tuple()  # pandas的df对象
        self.get_date_info_tuple()
        self.get_year_week_tuple()
        self.get_year_month_days_dict(year=int(self.year))
        self.orders_transform_rate = self.get_orders_transform_rate()  # 获取月销-->日销,周销
        self.df_st_asin = self.spark.sql(f"select 1+1;")
        self.df_st_asin_flow = self.spark.sql(f"select 1+1;")
        self.df_st = self.spark.sql(f"select 1+1;")
        self.df_brand_analytics = self.spark.sql(f"select 1+1;")
        self.df_st_rate = self.spark.sql(f"select 1+1;")
        self.df_st_quantity = self.spark.sql(f"select 1+1;")
        self.df_asin_bs = self.spark.sql(f"select 1+1;")
        self.df_asin_detail = self.spark.sql(f"select 1+1;")
        self.df_bs_report = self.spark.sql(f"select 1+1;")
        self.df_st_asin_duplicated = self.spark.sql(f"select 1+1;")
        self.df_save_st_asin = self.spark.sql(f"select 1+1;")
        self.df_save_asin = self.spark.sql(f"select 1+1;")
        self.df_save_st = self.spark.sql(f"select 1+1;")
        self.df_asin_stable = self.spark.sql(f"select 1+1;")
        self.df_asin_price_weight = self.spark.sql(f"select 1+1;")
        self.df_asin_amazon_orders = self.spark.sql(f"select 1+1;")
        self.df_asin_self = self.spark.sql(f"select 1+1;")
        self.df_st_templates = self.spark.sql("select st_zr_counts, st_sp_counts, st_sb1_counts,st_sb2_counts,st_sb3_counts,st_ac_counts,st_bs_counts,st_er_counts,st_tr_counts from dwd_st_measure limit 0")
        self.df_asin_templates = self.spark.sql("select asin_zr_counts, asin_sp_counts, asin_sb1_counts,asin_sb2_counts,asin_sb3_counts,asin_ac_counts,asin_bs_counts,asin_er_counts,asin_tr_counts from dwd_asin_measure limit 0")
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        self.u_is_title_appear = self.spark.udf.register("u_is_title_appear", self.udf_is_title_appear, IntegerType())

    def get_orders_transform_rate(self):
        month_days = self.year_month_days_dict[int(self.month)]
        if self.date_type in ['day', 'week']:
            if self.date_type == 'day':
                return 1 / month_days
            if self.date_type == 'week':
                return 7 / month_days
        else:
            return 1

    @staticmethod
    def udf_is_title_appear(search_term, title):
        english_prepositions = ["aboard", "about", "above", "across", "after", "against", "along", "amid", "among",
                                "around", "as", "at", "before", "behind", "below", "beneath", "beside", "between",
                                "beyond", "but", "by", "concerning", "considering", "despite", "down", "during",
                                "except", "for", "from", "in", "inside", "into", "like", "near", "of", "off", "on",
                                "onto", "out", "outside", "over", "past", "regarding", "round", "since", "through",
                                "to", "toward", "under", "underneath", "until", "unto", "up", "upon", "with", "within",
                                "without"]

        symbol_list = [',', '。', '?', '!', ':', '?', '!', '-', '%', '|', ';', '·', '…', '~', '&', '@', '#', '、', '…', '~', '&', '@', '#', '“', '”', '‘', '’', '〝', '〞', '"', "'", '"', ''', '´', ''', '(', ')', '【', '】', '《', '》', '<', '>', '﹝', '﹞', '<', '>', '«', '»', '‹', '›', '〔', '〕', '〈', '〉', '{', '}', '[', ']', '「', '」', '{', '}', '〖', '〗', '『', '』', '︵', '︷', '︹', '︿', '︽', '﹁', '﹃', '︻', '︗', '/', '\\', '︶', '︸', '︺', '﹀', '︾', '﹂', '﹄', '︼', '︘', '/', '|', '\', '_', '_', '﹏', '﹍', '﹎', '``', '¦', '¡', '^', '\xad', '¨', 'ˊ', '¯', ' ̄', '﹋', '﹉', '﹊', 'ˋ', '︴', '¿', 'ˇ']

        # 小写
        search_term = str(search_term).lower().replace(",", " ").replace(":", " ").replace(";", " ")  # 新增逗号匹配
        title = f" {str(title).lower().replace(',', ' ').replace(';', ' ').replace(':', ' ')} "
        # 1. 去掉特殊符号
        # search_term = re.sub(r'[,:()]', '', search_term)  # 去掉特殊符号
        # title = re.sub(r'[,:()]', '', title)  # 去掉特殊符号
        # for symbol in symbol_list:
        #     if symbol in title:
        #         title = title.replace(symbol, "")
        #     if symbol in search_term:
        #         search_term = search_term.replace(symbol, "")

        # 改成正则去掉特殊符号
        symbols = "".join(symbol_list)  # 将列表中的所有字符连接成一个字符串
        search_term = re.sub('[' + symbols + ']', '', search_term)  # 去掉特殊符号
        title = re.sub('[' + symbols + ']', '', title)  # 去掉特殊符号

        # 2. 去掉介词(关键词去掉就行)
        st_list = [f" {st} " for st in search_term.split(" ") if st not in english_prepositions]  # 去掉介词

        # 3. 复数一起匹配
        for st in st_list:
            # if st in symbol_list:
            #     st = st.replace(symbol, "")
            if st not in title:
                if Word(st) not in title:
                    return 0
        return 1

        # 旧版
        # if str(search_term).lower() in str(title).lower():
        #     return 1
        # else:
        #     return 0

    def read_data(self):
        print("self.year, self.month:", self.year, self.month)

        print("1 读取st+asin两个维度: dim_st_asin_info表和ods_rank_flow表")
        print("1.1 读取dim_st_asin_info表")
        if self.date_type == 'month_old':
            # self.get_year_week_tuple()
            if int(self.month) <= 9 and int(self.year) <= 2022:
                sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='month' and date_info ='{self.date_info}'"
            else:
                sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple}"
        else:
            sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple}"

        if date_type in ['month', 'month_week'] and ((self.site_name == 'us' and date_info >= '2023-10') or (self.site_name in ['uk', 'de'] and self.date_info >= '2024-05')):
            sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='month' and date_info ='{self.date_info}'"

        # else:
        #     if (int(self.year) == 2022 and int(self.month) < 10) or int(self.year) <= 2021:
        #         sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
        #     else:
        #         sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='day' and date_info in {self.date_info_tuple}"
        print("sql:", sql)
        self.df_st_asin = self.spark.sql(sqlQuery=sql).cache()
        self.df_st_asin.show(10, truncate=False)
        # self.df_st_asin.filter("search_term='abiie high chair'").show(100, truncate=False)
        # quit()
        # self.df_st_asin = self.df_st_asin.drop_duplicates(["search_term", "asin", "data_type", "date_info"]).cache()
        # self.df_st_asin_duplicated = self.df_st_asin.drop_duplicates(['search_term', 'asin']).cache()
        # print("self.df_st_asin:", self.df_st_asin.count())
        # print("self.df_st_asin_duplicated:", self.df_st_asin_duplicated.count())
        # self.df_st_asin.show(10, truncate=False)
        # self.df_asin = self.df_st_asin.select("asin").drop_duplicates(["asin"])
        # self.df_st = self.df_st_asin.select("search_term").drop_duplicates(["search_term"])
        print("1.2 读取ods_rank_flow表")
        sql = f"select rank as page_rank, flow from ods_rank_flow " \
              f"where site_name='{self.site_name}'"
        self.df_st_asin_flow = self.spark.sql(sql).cache()
        # self.df_st_asin_flow.persist(StorageLevel.MEMORY_ONLY)
        self.df_st_asin_flow.show(10, truncate=False)
        print("2 读取st维度: dim_st_detail表和ods_brand_analytics表")
        print("self.year, self.month:", self.year, self.month)
        print("2.1 读取dim_st_detail和ods_brand_analytics表")
        sql = f"select search_term, st_rank, st_search_sum from dim_st_detail where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info ='{self.date_info}';"
        print("sql:", sql)
        self.df_st = self.spark.sql(sqlQuery=sql)
        self.df_st.persist(StorageLevel.MEMORY_ONLY)
        self.df_st.show(10, truncate=False)
        # 统计词频
        print("2.2 读取ods_brand_analytics表")
        # sql = f"select search_term, date_info from ods_brand_analytics where site_name='{self.site_name}' and date_type='day' and date_info in {self.date_info_tuple}"
        sql = f"select search_term, date_info from ods_brand_analytics where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple}"
        print("sql:", sql)
        self.df_brand_analytics = self.spark.sql(sqlQuery=sql)
        self.df_brand_analytics.persist(StorageLevel.MEMORY_ONLY)
        self.df_brand_analytics.show(10, truncate=False)
        print("3 读取asin维度: dim_asin_bs_info+dim_asin_detail表")
        print("3.1 读取dim_asin_bs_info表")

        sql = f"select asin, asin_bs_cate_1_rank, asin_bs_cate_1_id " \
              f"from dim_asin_bs_info where site_name='{self.site_name}' and date_type='{self.date_type.replace('_old', '')}' and date_info='{self.date_info}';"
        print("sql:", sql)
        self.df_asin_bs = self.spark.sql(sql).cache()
        self.df_asin_bs.show(10)

        sql = f"select asin, asin_title, asin_price, parent_asin " \
              f"from dim_asin_detail where site_name='{self.site_name}' and date_type='{self.date_type.replace('_old', '')}' and date_info='{self.date_info}';"
        print("sql:", sql)
        self.df_asin_detail = self.spark.sql(sql).cache()

        self.df_asin_detail.show(10)
        print("4 读取bsr维度: ods_one_category_report表")
        print("4.1 读取ods_one_category_report表")

        if int(self.year) == 2022 and int(self.month) < 3:
            sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, ceil(orders*{self.orders_transform_rate}) as asin_bsr_orders from ods_one_category_report " \
                  f"where site_name='{self.site_name}' and date_type='month' and date_info='2022-12';"
        else:
            month = f"0{str(self.month)}" if len(str(self.month)) == 1 else str(self.month)
            sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, ceil(orders*{self.orders_transform_rate}) as asin_bsr_orders from ods_one_category_report " \
                  f"where site_name='{self.site_name}' and date_type='month' and date_info='{self.year}-{month}';"
        print("sql:", sql)
        self.df_bs_report = self.spark.sql(sqlQuery=sql)
        self.df_bs_report.persist(StorageLevel.MEMORY_ONLY)
        self.df_bs_report.show(10, truncate=False)
        print("5 读取asin维度-体积信息: dim_asin_stable_info表")
        sql = f"select asin, asin_length * asin_width * asin_height as asin_volume, asin_weight from dim_asin_stable_info where site_name='{self.site_name}'"
        print("sql:", sql)
        self.df_asin_stable = self.spark.sql(sqlQuery=sql).cache()
        self.df_asin_stable.show(10, truncate=False)
        print("6 读取asin维度-月销数据: dim_asin_amorders_info表")
        sql = f"select asin, asin_amazon_orders from dim_asin_amorders_info where site_name='{self.site_name}' and date_type='{self.date_type.replace('_old', '')}' and date_info='{self.date_info}'"
        print("sql:", sql)
        self.df_asin_amazon_orders = self.spark.sql(sqlQuery=sql).cache()
        self.df_asin_amazon_orders.show(10, truncate=False)
        print("7 读取asin维度-内部asin: ods_self_asin")
        sql = f"select asin, 1 as is_self_asin from ods_self_asin where site_name='{self.site_name}' group by asin"
        print("sql:", sql)
        self.df_asin_self = self.spark.sql(sqlQuery=sql)
        self.df_asin_self = F.broadcast(self.df_asin_self)
        self.df_asin_self.show(10, truncate=False)

    def save_data(self):
        self.reset_partitions(partitions_num=50)
        self.save_data_common(
            df_save=self.df_save_st_asin,
            db_save=self.db_save_st_asin,
            partitions_num=self.partitions_num,
            partitions_by=self.partitions_by
        )
        self.reset_partitions(partitions_num=5)
        self.save_data_common(
            df_save=self.df_save_st,
            db_save=self.db_save_st,
            partitions_num=self.partitions_num,
            partitions_by=self.partitions_by
        )
        self.reset_partitions(partitions_num=10)
        self.save_data_common(
            df_save=self.df_save_asin,
            db_save=self.db_save_asin,
            partitions_num=self.partitions_num,
            partitions_by=self.partitions_by
        )

    def handle_data(self):
        self.handle_join()
        self.df_save_asin = self.handle_st_asin_counts(cal_type="asin", df_templates=self.df_asin_templates, page=3)
        self.df_save_st = self.handle_st_asin_counts(cal_type="st", df_templates=self.df_st_templates)
        # self.handle_st_zr_page1_title_rate()
        self.handle_st_zr_sp_page123_title_rate(data_type='zr', page_type='page1')
        self.handle_st_zr_sp_page123_title_rate(data_type='zr', page_type='page123')
        self.handle_st_zr_sp_page123_title_rate(data_type='sp', page_type='page123')
        self.handle_st_asin_orders()  # 预估销量和bsr销量
        self.handle_asin_ao_and_zr_flow_proportion()
        self.handle_st_ao_and_zr_flow_proportion()
        self.handle_st_num()
        self.handle_st_weight_price_volume()
        # self.df_save_st.filter("search_term='abiie high chair'").show(10, truncate=False)
        # self.df_save_st_asin.filter("search_term='abiie high chair'").show(100, truncate=False)
        # self.df_save_st_asin.show(10, truncate=False)
        # self.df_save_st.show(10, truncate=False)
        del self.df_st_asin_duplicated
        del self.df_st_asin
        # self.df_save_asin.show(10, truncate=False)
        # quit()

    def handle_st_attributes_avg(self, df_st_asin, attributes_type, st_type):
        # 根据基准值,计算平均值
        df_st_asin = df_st_asin.select("search_term", f"{attributes_type}").filter(f'{attributes_type} > 0')
        # 过滤大于基准值的几率
        df_st_asin = df_st_asin.filter(F.col(f"{attributes_type}") <= F.col(st_type))

        df_st_avg = df_st_asin.groupby(['search_term']).agg(
            F.round(F.avg(f"{attributes_type}"), 4).alias(f'{st_type.replace("_std", "_avg")}')
        )
        return df_st_avg

    def handle_st_attributes_std(self, df, attributes_type='asin_volume'):
        # 计算基准值
        # 定义窗口函数
        window = Window.partitionBy(['search_term']).orderBy(F.desc(f"{attributes_type}"))

        # 计算百分比排名并筛选 <= 0.25 的记录
        df = df.select("search_term", f"{attributes_type}").filter(f'{attributes_type} > 0') \
            .withColumn(f"{attributes_type}_percent_rank", F.percent_rank().over(window)) \
            .filter(f'{attributes_type}_percent_rank <= 0.25') \

        # 使用 row_number() 方法获取每个 search_term 的最大百分比排名记录
        window = Window.partitionBy(['search_term']).orderBy(F.desc(f"{attributes_type}_percent_rank"))
        df = df.withColumn(f"{attributes_type}_row_number", F.row_number().over(window)) \
            .filter(f'{attributes_type}_row_number = 1')

        # 显示结果
        df = df.drop(f"{attributes_type}_percent_rank", f"{attributes_type}_row_number")
        df = df.withColumnRenamed(f"{attributes_type}", f"{attributes_type.replace('asin', 'st')}_25_percent")
        df.show(10, truncate=False)
        return df

    def handle_st_weight_price_volume(self):
        # self.df_st_asin_duplicated = self.df_st_asin_duplicated.drop_duplicates(['search_term', 'asin']).cache()
        df_st_asin = self.df_st_asin_duplicated.select('search_term', 'asin').drop_duplicates(['search_term', 'asin']).cache()
        df_asin_label = self.df_asin_detail.select("asin", "asin_price", "asin_weight", "asin_volume").cache()

        df_st_asin = df_st_asin.join(
            df_asin_label, on='asin', how='inner'
        )
        # df_st_asin.filter("search_term='airpods'").show(100, truncate=False)
        #
        # quit()
        # 取四分位值
        df_st_volume = self.handle_st_attributes_std(df=df_st_asin, attributes_type='asin_volume')
        df_st_price = self.handle_st_attributes_std(df=df_st_asin, attributes_type='asin_price')
        df_st_weight = self.handle_st_attributes_std(df=df_st_asin, attributes_type='asin_weight')
        # 取最小值
        df_st_min = df_st_asin.groupby(['search_term']).agg(
            F.round(F.min("asin_volume"), 4).alias('st_volume_min'),
            F.round(F.min("asin_price"), 4).alias('st_price_min'),
            F.round(F.min("asin_weight"), 4).alias('st_weight_min')
        )
        df_st_min = df_st_min.join(
            df_st_volume, on='search_term', how='left'
        ).join(
            df_st_price, on='search_term', how='left'
        ).join(
            df_st_weight, on='search_term', how='left'
        )
        # 基准值
        df_st_std = df_st_min.withColumn(
            "st_volume_std",
            F.round(1.5 * (df_st_min.st_volume_25_percent - df_st_min.st_volume_min) + df_st_min.st_volume_min, 4)
        ).withColumn(
            "st_price_std",
            F.round(1.5 * (df_st_min.st_price_25_percent - df_st_min.st_price_min) + df_st_min.st_price_min, 4)
        ).withColumn(
            "st_weight_std",
            F.round(1.5 * (df_st_min.st_weight_25_percent - df_st_min.st_weight_min) + df_st_min.st_weight_min, 4)
        )
        # df_st_min.show(10, truncate=False)
        # 四分位平均值
        df_st_asin = df_st_asin.join(
            df_st_std, on="search_term", how="left"
        )
        df_st_volume_avg = self.handle_st_attributes_avg(df_st_asin=df_st_asin, attributes_type='asin_volume', st_type="st_volume_std")
        df_st_price_avg = self.handle_st_attributes_avg(df_st_asin=df_st_asin, attributes_type='asin_price', st_type="st_price_std")
        df_st_weight_avg = self.handle_st_attributes_avg(df_st_asin=df_st_asin, attributes_type='asin_weight', st_type="st_weight_std")

        df_st_avg = df_st_std.join(
            df_st_volume_avg, on='search_term', how='left'
        ).join(
            df_st_price_avg, on='search_term', how='left'
        ).join(
            df_st_weight_avg, on='search_term', how='left'
        )
        # df_st_avg.show(10, truncate=False)
        # df_st_avg.filter("search_term='airpods'").show(10, truncate=False)

        self.df_save_st = self.df_save_st.join(
            df_st_avg, on='search_term', how='left'
        )

    def handle_join(self):
        # st+asin
        self.df_st_asin = self.df_st_asin.join(
            self.df_st_asin_flow, on=['page_rank'], how='left'
        )
        # st -- dim_st_detail已经有
        # asin
        self.df_asin_bs = self.df_asin_bs.join(
            self.df_bs_report, on=['asin_bs_cate_1_rank', 'asin_bs_cate_1_id'], how='left'
        )
        self.df_asin_detail = self.df_asin_detail.join(
            self.df_asin_bs, on='asin', how='left'
        ).join(
            self.df_asin_stable, on='asin', how='left'
        )
        # 合并
        self.df_st_asin = self.df_st_asin.join(
            self.df_st, on=['search_term'], how='left'
        ).join(
            self.df_asin_detail, on=['asin'], how='left'
        )

        window = Window.partitionBy(['search_term', 'asin', 'data_type']).orderBy('page')
        self.df_st_asin = self.df_st_asin.withColumn("rk", F.row_number().over(window=window))
        self.df_st_asin_duplicated = self.df_st_asin.filter("rk=1").drop("rk").cache()

        # self.df_st_asin.show(10, truncate=False)
        # self.df_st_asin = self.df_st_asin.drop_duplicates(['search_term', 'asin', 'data_type'])
        # self.df_st_asin = self.df_st_asin.cache()
        # self.df_st_asin_duplicated = self.df_st_asin.drop_duplicates(['search_term', 'asin', 'data_type']).cache()
        # self.df_st_asin.persist(StorageLevel.MEMORY_ONLY)

    def handle_st_asin_counts(self, cal_type="asin", df_templates=None, page=3):
        print(f"计算{cal_type}_counts")
        cal_type_complete = "search_term" if cal_type == "st" else cal_type
        self.df_st_asin_duplicated = self.df_st_asin_duplicated.filter(f"page <= {page}").withColumn(
            f"{cal_type}_data_type",
            F.concat(F.lit(f"{cal_type}_"), self.df_st_asin_duplicated.data_type, F.lit(f"_counts"))
        )
        df = self.df_st_asin_duplicated.groupby([f'{cal_type_complete}']). \
            pivot(f"{cal_type}_data_type").count()

        df = df_templates.unionByName(df, allowMissingColumns=True)  # 防止爬虫数据没有导致程序运行出错
        df = df.fillna(0)
        # df.show(10, truncate=False)
        df = df.withColumn(
            f"{cal_type}_sb_counts",
            df[f"{cal_type}_sb1_counts"] + df[f"{cal_type}_sb2_counts"] + df[f"{cal_type}_sb3_counts"]
        )
        df = df.withColumn(
            f"{cal_type}_adv_counts",
            df[f"{cal_type}_sb_counts"] + df[f"{cal_type}_sp_counts"]
        )
        if cal_type == "asin":
            df_st_asin_duplicated = self.df_st_asin_duplicated.drop_duplicates(['search_term', 'asin'])
            df_st_asin_agg = df_st_asin_duplicated.groupby(['asin']).agg(
                F.count('search_term').alias("asin_st_counts")
            )
            df = df.join(
                df_st_asin_agg, on=['asin'], how='left'
            )
        elif cal_type == "st":
            df_st_asin_agg = self.df_st_asin_duplicated.select("search_term", "asin").join(
                self.df_asin_self, on='asin', how='left'
            ).withColumn(
                "is_self_asin",
                F.when(F.col("is_self_asin").isNotNull(), F.col("is_self_asin")).otherwise(F.lit(0))
            ).groupby(['search_term']).agg(
                F.sum('is_self_asin').alias("st_self_asin_counts"),
                F.count('asin').alias("st_total_asin_counts")
            ).withColumn(
                'st_self_asin_proportion',
                F.round(F.col('st_self_asin_counts') / F.col('st_total_asin_counts'), 4)
            )
            df = df.join(
                df_st_asin_agg, on=['search_term'], how='left'
            )
        df = df.withColumn(f"site_name", F.lit(self.site_name))
        df = df.withColumn(f"date_type", F.lit(self.date_type))
        df = df.withColumn(f"date_info", F.lit(self.date_info))
        # df.show(10, truncate=False)
        return df

    def handle_st_zr_sp_page123_title_rate(self, data_type='zr', page_type="page1"):
        params = ' and page=1' if page_type == 'page1' else ""
        df = self.df_st_asin.filter(f"data_type='{data_type}' {params}")
        df = df.select("search_term", "asin", "asin_title").drop_duplicates(["search_term", "asin"])
        df = df.withColumn(
            "st_asin_in_title_flag",
            self.u_is_title_appear(df.search_term, df.asin_title)
        )
        # 测试--保留需要的数据
#         s_str = """transformers
# barbie
# ring doorbell
# iphone 14 pro max case
# nintendo switch
# prime day deals today 2023
# the boys
# lube
# marvelous mrs maisel
# hydrogen peroxide"""
#         s_tuple = tuple(s_str.split("\n"))
#         df_csv = df.filter(f"search_term in {s_tuple}").toPandas()
#         df_csv.to_csv(rf"/root/{data_type}_{page_type}.csv", index=False)
        df = df.groupby(['search_term']).agg(
            {
                "search_term": "count",
                "st_asin_in_title_flag": "sum",
            }
        )
        df = df.withColumnRenamed(
            "sum(st_asin_in_title_flag)", f"st_{data_type}_{page_type}_title_appear_counts"
        ).withColumnRenamed(
            "count(search_term)", f"st_{data_type}_{page_type}_title_counts"
        )
        df = df.withColumn(
            f"st_{data_type}_{page_type}_title_appear_rate",
            # df.st_zr_page1_title_appear_counts / df.st_zr_page1_title_counts
            F.round(F.col(f"st_{data_type}_{page_type}_title_appear_counts") / F.col(f"st_{data_type}_{page_type}_title_counts"), 4)
        )
        self.df_save_st = self.df_save_st.join(
            df, on=['search_term'], how='left'
        )

    def handle_st_zr_page1_title_rate(self):
        print("计算关键词的zr类型page=1的去重asin的标题密度")
        df_zr_page1 = self.df_st_asin.filter(
            "data_type='zr' and page=1"
        )
        df_zr_page1 = df_zr_page1.select("search_term", "asin", "asin_title").drop_duplicates(["search_term", "asin"])
        df_zr_page1 = df_zr_page1.withColumn(
            "st_asin_in_title_flag",
            self.u_is_title_appear(df_zr_page1.search_term, df_zr_page1.asin_title)
        )
        # df_zr_page1.show(10, truncate=False)
        df_zr_page1 = df_zr_page1.groupby(['search_term']).agg(
            {
                "search_term": "count",
                "st_asin_in_title_flag": "sum",
            }
        )
        df_zr_page1 = df_zr_page1.withColumnRenamed(
            "sum(st_asin_in_title_flag)", "st_zr_page1_title_appear_counts"
        ).withColumnRenamed(
            "count(search_term)", "st_zr_page1_title_counts"
        )
        df_zr_page1 = df_zr_page1.withColumn(
            "st_zr_page1_title_appear_rate", df_zr_page1.st_zr_page1_title_appear_counts / df_zr_page1.st_zr_page1_title_counts
        )
        self.df_save_st = self.df_save_st.join(
            df_zr_page1, on=['search_term'], how='left'
        )
        # df_zr_page1.show(10, truncate=False)
        # quit()
        del df_zr_page1

    def handle_st_asin_orders(self):
        # 预估销量+bsr销量
        print("1. 预估销量:zr, sp的销量")
        # 1.1 st+asin
        self.df_st_asin = self.df_st_asin.withColumn(
            "st_asin_orders",
            F.ceil(self.df_st_asin.flow * self.df_st_asin.st_search_sum * self.orders_transform_rate)
        )
        self.df_save_st_asin = self.df_st_asin.withColumn(
            "st_asin_orders_data_type", F.concat(F.lit("st_asin_"), self.df_st_asin.data_type, F.lit("_orders"))
        )
        self.df_save_st_asin = self.df_save_st_asin.groupby(["search_term", "asin"]). \
            pivot("st_asin_orders_data_type").agg(F.mean(f"st_asin_orders"))
        self.df_save_st_asin = self.df_save_st_asin.select(
            "search_term", "asin", "st_asin_zr_orders", "st_asin_sp_orders"
        )
        # self.df_save_st_asin = self.df_save_st_asin.cache()
        self.df_save_st_asin.persist(StorageLevel.MEMORY_ONLY)
        self.df_save_st_asin = self.df_save_st_asin.withColumn(f"site_name", F.lit(self.site_name))
        self.df_save_st_asin = self.df_save_st_asin.withColumn(f"date_type", F.lit(self.date_type))
        self.df_save_st_asin = self.df_save_st_asin.withColumn(f"date_info", F.lit(self.date_info))
        # self.df_save_st_asin.show(10, truncate=False)
        # 1.2 st维度的zr和sp预估销量
        df_st_orders = self.df_save_st_asin.groupby(['search_term']).agg(
            F.sum('st_asin_zr_orders').alias("st_zr_orders"),
            F.sum('st_asin_sp_orders').alias("st_sp_orders"),
            # F.sum('st_asin_zr_orders').alias("st_zr_orders"),
            # F.sum('st_asin_sp_orders').alias("st_zr_orders"),
        )
        # df_st_orders = df_st_orders.withColumnRenamed(
        #     "sum(st_asin_zr_orders)", "st_zr_orders"
        # ).withColumnRenamed(
        #     "sum(st_asin_sp_orders)", "st_sp_orders"
        # )
        self.df_save_st = self.df_save_st.join(
            df_st_orders, on=['search_term'], how='left'
        )
        # 1.3 asin维度的zr和sp预估销量
        df_asin_orders = self.df_save_st_asin.groupby(['asin']).agg(
            F.mean('st_asin_zr_orders').alias("asin_zr_orders"),
            F.mean('st_asin_sp_orders').alias("asin_sp_orders"),
            F.sum('st_asin_zr_orders').alias("asin_zr_orders_sum"),
            F.sum('st_asin_sp_orders').alias("asin_sp_orders_sum"),
        )

        # df_asin_orders = df_asin_orders.withColumnRenamed(
        #     "avg(st_asin_zr_orders)", "asin_zr_orders"
        # ).withColumnRenamed(
        #     "avg(st_asin_sp_orders)", "asin_sp_orders"
        # ).withColumnRenamed(
        #     "sum(st_asin_zr_orders)", "asin_zr_orders_sum"
        # ).withColumnRenamed(
        #     "sum(st_asin_sp_orders)", "asin_sp_orders_sum"
        # )
        self.df_save_asin = self.df_save_asin.join(
            df_asin_orders, on=['asin'], how='left'
        )
        # 向上取整
        self.df_save_asin = self.df_save_asin.withColumn(
            "asin_zr_orders", F.ceil(self.df_save_asin.asin_zr_orders)
        ).withColumn(
            "asin_sp_orders", F.ceil(self.df_save_asin.asin_sp_orders)
        ).withColumn(
            "asin_zr_orders_sum", F.ceil(self.df_save_asin.asin_zr_orders_sum)
        ).withColumn(
            "asin_sp_orders_sum", F.ceil(self.df_save_asin.asin_sp_orders_sum)
        )

        print("2. bsr销量")
        # 2.1 st_bsr_orders
        df_st_bsr_orders = self.df_st_asin.select("search_term", "asin", "asin_bsr_orders").drop_duplicates(["search_term", "asin"])
        df_st_bsr_orders = df_st_bsr_orders.groupby(['search_term']).agg({"asin_bsr_orders": "sum"})
        df_st_bsr_orders = df_st_bsr_orders.withColumnRenamed(
            "sum(asin_bsr_orders)", "st_bsr_orders"
        )
        # 2.2 asin_bsr_orders
        df_asin_bsr_orders = self.df_st_asin.select("asin", "asin_bsr_orders").drop_duplicates(['asin'])
        # df_st_bsr_orders.show(10, truncate=False)
        # df_asin_bsr_orders.show(10, truncate=False)
        self.df_save_st = self.df_save_st.join(
            df_st_bsr_orders, on='search_term', how='left'
        )
        self.df_save_asin = self.df_save_asin.join(
            df_asin_bsr_orders, on='asin', how='left'
        ).join(
            self.df_asin_amazon_orders, on='asin', how='left'
        )

    def handle_asin_ao_and_zr_flow_proportion(self):
        print("计算asin维度的ao+zr流量占比")
        # 1.计算asin的ao值
        self.df_save_asin = self.df_save_asin.withColumn(
            "asin_ao_val", F.round(self.df_save_asin.asin_adv_counts / self.df_save_asin.asin_zr_counts, 3)
        )
        # 2.计算asin的ao竞争比例
        window = Window.orderBy(self.df_save_asin.asin_ao_val.asc_nulls_last())
        self.df_save_asin = self.df_save_asin.withColumn(
            "asin_ao_val_rate",
            F.round(F.percent_rank().over(window=window), 4)
        )
        # 3.计算asin的自然流量占比
        self.df_save_asin = self.df_save_asin.withColumn(
            "asin_zr_flow_proportion",
            F.when(F.col("asin_st_counts").isNotNull(), F.round(F.col("asin_zr_counts") / F.col("asin_st_counts"), 3))
        )
        self.df_save_asin = self.df_save_asin.join(
            self.df_asin_detail.select("asin", "parent_asin"), on='asin', how='left'
        )
        # 4.计算asin的母体ao值和母体zr流量占比
        df_asin_variation = self.df_save_asin.filter("parent_asin is not null").select("parent_asin",
                                                                                         "asin_zr_counts",
                                                                                         "asin_st_counts",
                                                                                         "asin_adv_counts")
        df_asin_variation_agg = df_asin_variation.groupby(['parent_asin']).agg(
            F.sum("asin_zr_counts").alias("sum_asin_zr_counts"),
            F.sum("asin_st_counts").alias("sum_asin_st_counts"),
            F.sum("asin_adv_counts").alias("sum_asin_adv_counts")
        ).withColumn(
            "asin_flow_proportion_matrix",
            F.when(
                F.col("sum_asin_st_counts").isNotNull(),
                F.round(F.col("sum_asin_zr_counts") / F.col("sum_asin_st_counts"), 3)
            )
        ).withColumn(
            "asin_ao_val_matrix",
            F.when(
                F.col("sum_asin_zr_counts").isNotNull(),
                F.round(F.col("sum_asin_adv_counts") / F.col("sum_asin_zr_counts"), 3)
            )
        ).drop("sum_asin_zr_counts", "sum_asin_st_counts", "sum_asin_adv_counts")
        self.df_save_asin = self.df_save_asin.join(
            df_asin_variation_agg, on=['parent_asin'], how='left'
        )
        # 5.若母体自然流量占比为null,则用asin的自然流量占比替代,ao同理
        self.df_save_asin = self.df_save_asin.withColumn(
            "asin_flow_proportion_matrix",
            F.coalesce(F.col("asin_flow_proportion_matrix"), F.col("asin_zr_flow_proportion"))
        ).withColumn(
            "asin_ao_val_matrix",
            F.coalesce(F.col("asin_ao_val_matrix"), F.col("asin_ao_val"))
        )
        self.df_save_asin.show(10, truncate=False)
        self.df_save_asin = self.df_save_asin.drop("parent_asin")

    def handle_st_ao_and_zr_flow_proportion(self):
        print("计算st维度的ao+zr流量占比")
        # 1.得到asin的ao值和zr流量占比
        df_asin_ao_and_zr_flow_proportion = self.df_save_asin.select("asin", "asin_ao_val", "asin_zr_flow_proportion", "asin_ao_val_matrix", "asin_flow_proportion_matrix")
        df_st_ao_and_zr_flow_proportion = self.df_st_asin_duplicated.filter("data_type='zr'").select("search_term", "asin", "page").join(
            df_asin_ao_and_zr_flow_proportion, on=['asin'], how='left'
        )
        # 2.新增asin的ao值升序排序,计算排名4到20的均值
        window = Window.partitionBy(['search_term']).orderBy(df_st_ao_and_zr_flow_proportion.asin_ao_val.asc_nulls_last())
        df_st_ao_4_20 = df_st_ao_and_zr_flow_proportion.withColumn(
            "asin_ao_val_rank",
            F.row_number().over(window=window)
        ).filter(
            "asin_ao_val_rank between 4 and 20"
        ).select(
            "search_term", "asin_ao_val"
        )
        df_st_ao_4_20 = df_st_ao_4_20\
            .groupby(["search_term"])\
            .agg(F.round(F.mean(df_st_ao_4_20.asin_ao_val), 3).alias("st_4_20_ao_avg"))
        # 3.计算st的ao值和zr流量占比--首页zr位asin的平均值
        df_st_ao = df_st_ao_and_zr_flow_proportion\
            .filter("page=1 and asin_ao_val is not null")\
            .groupby(["search_term"])\
            .agg(F.round(F.mean("asin_ao_val"), 3).alias("st_ao_val"))
        df_st_zr_flow_proportion = df_st_ao_and_zr_flow_proportion\
            .filter("page=1 and asin_zr_flow_proportion is not null")\
            .groupby(["search_term"])\
            .agg(F.round(F.mean("asin_zr_flow_proportion"), 3).alias("st_zr_flow_proportion"))
        self.df_save_st = self.df_save_st.join(
            df_st_ao, on=['search_term'], how='left'
        ).join(
            df_st_zr_flow_proportion, on=['search_term'], how='left'
        ).join(
            df_st_ao_4_20, on=['search_term'], how='left'
        )
        # 4.计算st的ao竞争比例
        window = Window.orderBy(self.df_save_st.st_ao_val.asc())
        self.df_save_st = self.df_save_st.withColumn(
            "st_ao_val_rate",
            F.round(F.percent_rank().over(window=window), 4)
        )
        # 5.计算st的母体ao值和母体zr流量占比--首页zr位asin的母体平均值
        df_st_ao_val_matrix = df_st_ao_and_zr_flow_proportion\
            .filter("page=1 and asin_ao_val_matrix is not null")\
            .groupby(["search_term"])\
            .agg(F.round(F.mean("asin_ao_val_matrix"), 3).alias("st_ao_val_matrix"))
        df_st_flow_proportion_matrix = df_st_ao_and_zr_flow_proportion\
            .filter("page=1 and asin_flow_proportion_matrix is not null")\
            .groupby(["search_term"])\
            .agg(F.round(F.mean("asin_flow_proportion_matrix"), 3).alias("st_flow_proportion_matrix"))
        self.df_save_st = self.df_save_st.join(
            df_st_ao_val_matrix, on=['search_term'], how='left'
        ).join(
            df_st_flow_proportion_matrix, on=['search_term'], how='left'
        )
        self.df_save_st.show(10, truncate=False)

    def handle_st_num(self):
        df_num = self.df_brand_analytics.drop_duplicates(['search_term', 'date_info'])
        df_num = df_num.groupby(['search_term']).count()
        df_num = df_num.withColumnRenamed("count", "st_num")
        # self.df_save_st = self.df_save_st.withColumn("st_num", F.lit(1))
        self.df_save_st = self.df_save_st.join(
            df_num, on=['search_term'], how='left'
        )


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:day/week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-月-日/年-周/年-月/年-季, 比如: 2022-1
    handle_obj = DwdStMeasure(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()