dwt_aba_st_analytics_report.py 54.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
"""
ABA搜索词统计报表
"""
"""
author: 汪瑞
description: 基于dwd层等表,计算出search_term维度的报表信息
table_read_name: dim_cal_asin_history_detail系列表,dwd_st_measure系列表,dws_top100_asin_info系列表,ods_st_key系列表, dwd_asin_measure系列表, dwd_st_asin_measure系列表
table_save_name: dwt_aba_st_analytics_report
table_save_level: dwt
version: 1.0
created_date: 2022-11-17
updated_date: 2022-11-17
"""

import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, IntegerType, MapType
from datetime import datetime, timedelta
from yswg_utils.common_udf import udf_get_package_quantity
import math


class DwtAbaStAnalyticsReport(Templates):

    def __init__(self, site_name="us", date_type="day", date_info="2022-11-02"):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.db_save = f"dwt_aba_st_analytics_report"
        self.spark = self.create_spark_object(app_name=f"{self.db_save} {self.site_name}, {self.date_info}")
        self.df_save = self.spark.sql(f"select 1+1;")
        self.df_asin_history_detail = self.spark.sql(f"select 1+1;")
        self.df_st_asin_measure = self.spark.sql(f"select 1+1;")
        self.df_st_asin_detail = self.spark.sql(f"select 1+1;")
        self.df_st_key = self.spark.sql(f"select 1+1;")
        self.df_top100_asin = self.spark.sql(f"select 1+1;")
        self.df_st_measure = self.spark.sql(f"select 1+1;")
        self.df_asin_measure = self.spark.sql(f"select 1+1;")
        self.df_asin_count = self.spark.sql(f"select 1+1;")
        self.df_st_buy_box = self.spark.sql(f"select 1+1;")
        self.df_st_color = self.spark.sql(f"select 1+1;")
        self.df_st_seller = self.spark.sql(f"select 1+1;")
        self.df_st_top20 = self.spark.sql(f"select 1+1;")
        self.df_st_attribute = self.spark.sql(f"select 1+1;")
        self.df_st_img_type_group = self.spark.sql(f"select 1+1;")
        self.df_st_launch_time_group = self.spark.sql(f"select 1+1;")
        self.df_st_price_group = self.spark.sql(f"select 1+1;")
        self.df_st_ao_group = self.spark.sql(f"select 1+1;")
        self.df_st_comments_group = self.spark.sql("select 1+1;")
        self.df_st_rating_group = self.spark.sql("select 1+1;")
        self.df_st_detail = self.spark.sql("select 1+1;")
        self.df_seller_asin = self.spark.sql("select 1+1;")
        self.df_st_size = self.spark.sql("select 1+1;")
        self.df_st_package_num = self.spark.sql("select 1+1;")
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        self.reset_partitions(65)

        self.u_get_buy_box_num = self.spark.udf.register("u_get_buy_box_num", self.udf_get_buy_box_num, StringType())
        self.u_get_buy_box = self.spark.udf.register("u_get_buy_box", self.udf_get_buy_box_type, StringType())
        self.u_get_img_type = self.spark.udf.register("u_get_img_type", self.udf_get_img_type, StringType())
        self.u_get_seller_num = self.spark.udf.register('u_get_seller_num', self.udf_get_seller_num, StringType())
        self.u_get_seller_bsr_orders = self.spark.udf.register('u_get_seller_bsr_orders', self.udf_get_seller_bsr_orders, StringType())
        self.u_judge_color = self.spark.udf.register('u_judge_color', self.udf_judge_color, IntegerType())
        self.u_judge_size = self.spark.udf.register('u_judge_size', self.udf_judge_multi_size, StringType())
        self.u_get_package_num = F.udf(udf_get_package_quantity, IntegerType())
        self.u_get_package_num_trend = self.spark.udf.register('u_get_package_num_trend', self.udf_reverse_package_num_array, StringType())
        self.u_get_package_num_trend_market_share = self.spark.udf.register('u_get_package_num_trend_market_share', self.udf_package_num_counts, StringType())
        self.u_get_package_num_corresponding_asin = self.spark.udf.register('u_get_package_num_corresponding_asin', self.udf_package_num_corresponding_asin_list, StringType())
        self.u_get_price_interval = self.spark.udf.register('u_get_price_interval', self.udf_price_interval_info, MapType(StringType(), StringType(), False))


    @staticmethod
    def udf_get_img_type(img_type):
        all_img_type = str(img_type).split(",")
        if ('2' in all_img_type) & ('3' in all_img_type):
            return 'aadd_video_num'
        elif ('2' not in all_img_type) & ('3' in all_img_type):
            return 'aadd_no_video_num'
        elif ('2' not in all_img_type) & ('3' not in all_img_type):
            return 'no_aadd_no_video_num'
        elif ('2' in all_img_type) & ('3' not in all_img_type):
            return 'no_aadd_video_num'

    @staticmethod
    def udf_get_buy_box_type(buy_box):
        if "1" == str(buy_box):
            return 'Amazon'
        elif "2" == str(buy_box):
            return 'FBA'
        elif "3" == str(buy_box):
            return 'FBM'
        else:
            return 'other'

    @staticmethod
    def udf_get_seller_num(seller_type, all_seller):
        all_seller_type = str(seller_type).split(",")
        seller_num = ''
        for i in range(len(all_seller_type)):
            splits = all_seller.count(all_seller_type[i])
            if (i < len(all_seller_type) - 1):
                seller_num = seller_num + str(splits) + ','
            else:
                seller_num = seller_num + str(splits)
        return seller_num

    @staticmethod
    def udf_get_seller_bsr_orders(seller_type, all_seller, all_seller_bsr_orders):
        all_seller_type = str(seller_type).split(",")
        all_seller_list = str(all_seller).split(",")
        all_seller_bsr_orders = str(all_seller_bsr_orders).split(",")
        seller_bsr_orders = ""
        for seller in all_seller_type:
            one_seller_bsr_orders = 0
            for (i, j) in zip(all_seller_list, all_seller_bsr_orders):
                if seller == i:
                    one_seller_bsr_orders = int(one_seller_bsr_orders) + int(j)
            if (seller != all_seller_type[-1]):
                seller_bsr_orders = seller_bsr_orders + str(one_seller_bsr_orders) + ','
            else:
                seller_bsr_orders = seller_bsr_orders + str(one_seller_bsr_orders)
        return seller_bsr_orders

    @staticmethod
    def udf_get_buy_box_num(buy_box_type, buy_box_list):
        all_buy_box_type = str(buy_box_type).split(",")
        buy_box_num = ''
        for i in range(len(all_buy_box_type)):
            splits = buy_box_list.count(all_buy_box_type[i])
            if (i < len(all_buy_box_type) - 1):
                buy_box_num = buy_box_num + str(splits) + ','
            else:
                buy_box_num = buy_box_num + str(splits)
        return buy_box_num

    @staticmethod
    def udf_judge_color(color):
        color_len = len(str(color))
        if str(color).lower() not in ['none', 'null'] and color_len > 1:
            return 1
        else:
            return 0

    @staticmethod
    def udf_judge_multi_size(size, style):
        size = str(size).lower()
        style = str(style).lower()
        # 变体表中即有size又有style时,取size进行计数。如果无size,则判断是否有style进行计数
        if size not in ['none', 'null']:
            return size
        elif style not in ['none', 'null']:
            return style

    @staticmethod
    def udf_reverse_package_num_array(package_num_list):
        if str(package_num_list) != '':
            package_num_trend = str(package_num_list).strip("[").strip("]").replace("\'", '').replace(' ', '')
            return package_num_trend

    @staticmethod
    def udf_package_num_counts(package_num_list):
        if str(package_num_list) != '':
            package_num_list = str(package_num_list).strip("[").strip("]").replace(' ', '')
            package_num_trend_market_share = ''
            package_num_arr = str(package_num_list).split(",")
            package_num_int_list = list(map(int, package_num_arr))
            total_package_num = sum(package_num_int_list)
            for i in range(len(package_num_int_list)):
                if (i < len(package_num_int_list) - 1):
                    package_num_trend_market_share = package_num_trend_market_share + str(
                        round(package_num_int_list[i] / total_package_num, 3)) + ','
                else:
                    package_num_trend_market_share = package_num_trend_market_share + str(
                        round(package_num_int_list[i] / total_package_num, 3))
            return package_num_trend_market_share

    @staticmethod
    def udf_package_num_corresponding_asin_list(asin_list):
        if str(asin_list) != '':
            package_num_corresponding_asin = str(asin_list).strip("[").strip("]").replace("\'", '').replace(' ', '')
            return package_num_corresponding_asin

    @staticmethod
    def udf_price_interval_info(st_price_avg, asin_price):
        def get_price_interval(interval_num, interval_span, interval_boundary=0):
            price_interval_list = []
            for i in range(interval_num):
                lower_bound = interval_boundary + interval_span * i
                upper_bound = interval_boundary + interval_span * (i + 1)
                price_interval_list.append(f"{lower_bound}-{upper_bound}")
            price_interval = ','.join(price_interval_list)
            return price_interval

        if st_price_avg > 0 and asin_price > 0:
            price_range = [
                (0, 25, 5, 10),
                (25, 30, 10, 6),
                (30, 40, 10, 8),
                (40, 50, 10, 10),
                (50, 60, 10, 12),
                (60, 70, 10, 14),
                (70, 80, 10, 16),
                (80, 90, 10, 18),
                (90, 100, 10, 20),
                (100, 105, 15, 14),
                (105, 120, 15, 16),
                (120, 135, 15, 18),
                (135, 150, 15, 20),
                (150, 160, 20, 16),
                (160, 180, 20, 18),
                (180, 200, 20, 20),
                (200, 0, 20, 20)
            ]
            for price_lower, price_upper, interval_span, interval_num_item in price_range:
                if price_lower <= st_price_avg < price_upper:
                    interval_num = interval_num_item
                elif price_lower > price_upper:
                    interval_num = interval_num_item
                else:
                    continue
                interval_boundary = max(int(math.ceil(float(st_price_avg) / 10.0) * 10) - 200, 0)
                price_interval = get_price_interval(interval_num, interval_span, interval_boundary)
                price_type = min(max(int((asin_price - interval_boundary) // interval_span) + 1, 1), interval_num)
                return {
                    'price_interval': price_interval,
                    'price_type': str(price_type),
                    'interval_num': str(interval_num)
                }

    def hadle_cols(self, col_list1, col_list2, col_list3, df):
        for col1, col2, col3 in zip(col_list1, col_list2, col_list3):
            df = df.withColumn(
                col1, F.round(df[col2] / df[col3], 4)
            )
        return df

    def check_cols(self, actual_col_list, schema_col_list, df):
        for schema_col in schema_col_list:
            if schema_col not in actual_col_list:
                df = df.withColumn(
                    schema_col, F.lit(None).astype('int')
                )
        return df

    def read_data(self):
        print("1.1 读取dwd_st_asin_measure系列表")
        sql = f"""
            select search_term, asin from dwd_st_asin_measure 
            where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}';
        """
        print("sql:", sql)
        self.df_st_asin_measure = self.spark.sql(sql).repartition(80, 'asin').cache()

        print("1.2 读取dim_asin_detail系列表")
        sql = f"""
            select 
                asin,
                asin_title,
                asin_price as price,
                asin_rating as rating,
                asin_is_new,
                asin_img_type,
                asin_is_aadd,
                asin_launch_time,
                asin_total_comments,
                asin_buy_box_seller_type,
                lower(asin_color) as asin_color,
                asin_brand_name,
                lower(asin_size) as asin_size,
                lower(asin_style) as asin_style
            from dim_asin_detail
            where site_name='{self.site_name}' 
            and date_type='{self.date_type}' 
            and date_info='{self.date_info}';
        """
        print("sql:", sql)
        self.df_asin_history_detail = self.spark.sql(sql).repartition(80, 'asin').cache()
        self.df_asin_history_detail = self.df_asin_history_detail.na.fill({
            "asin_img_type": "3",
             "asin_size": "none",
             "asin_style": "none"
        })

        print("1.3 读取dwd_st_measure系列表")
        sql = f"""
            select search_term, st_zr_orders as orders, st_price_std, st_price_avg from dwd_st_measure
            where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}';
        """
        print("sql:", sql)
        self.df_st_measure = self.spark.sql(sql).repartition(80, 'search_term').cache()
        self.df_st_measure = self.df_st_measure.na.fill({
            "orders": 0
        })

        print("1.4 读取ods_st_key系列表")
        sql = f"""
            select cast(st_key as int) as search_term_id, search_term from ods_st_key where site_name='{self.site_name}';
        """
        print("sql:", sql)
        self.df_st_key = self.spark.sql(sql).repartition(80, 'search_term').cache()

        print("1.5 读取dws_top100_asin_info系列表")
        sql = f"""
            select search_term_id, top100_asin, top100_orders, top100_market_share, top100_is_new
            from dws_top100_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' 
            and date_info='{self.date_info}';
        """
        print("sql:", sql)
        self.df_top100_asin = self.spark.sql(sql).repartition(80, 'search_term_id').cache()

        print("1.6 读取dwd_asin_measure系列表")
        sql = f"""
            select asin, cast(asin_bsr_orders as int) as asin_bsr_orders, asin_ao_val from dwd_asin_measure
            where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}';
        """
        print("sql:", sql)
        self.df_asin_measure = self.spark.sql(sql).repartition(80, 'asin').cache()
        self.df_asin_measure = self.df_asin_measure.na.fill({"asin_bsr_orders": 0})

        print("1.7 读取dim_seller_asin_history_info系列表")
        sql = f"""
            select asin, 
            case when upper(fd_country_name) = 'US' then 'US' 
            when upper(fd_country_name) = 'CN' then 'CN' 
            when upper(fd_country_name) = 'HK' then 'HK' 
            when upper(fd_country_name) = 'FR' then 'FR' 
            when upper(fd_country_name) = 'DE' then 'DE' 
            else 'OTHER' end as seller_name
            from dim_fd_asin_info where site_name = '{self.site_name}';
        """
        print("sql:", sql)
        self.df_seller_asin = self.spark.sql(sql).repartition(80, 'asin').cache()
        self.df_seller_asin = self.df_seller_asin.drop_duplicates(['asin'])

        print("1.8 读取dim_st_detail系列表")
        sql = f"""
            select search_term from dim_st_detail 
            where site_name='{self.site_name}' 
            and date_type='{self.date_type}' 
            and date_info='{self.date_info}';
        """
        print("sql:", sql)
        self.df_st_detail = self.spark.sql(sql).repartition(80, 'search_term').cache()

    def get_st_asin_detail(self):
        # 获取asin详情
        self.df_st_asin_detail = self.df_st_asin_measure.join(
            self.df_asin_history_detail, on=['asin'], how='left'
        ).join(
            self.df_asin_measure, on=['asin'], how='left'
        ).repartition(80, 'search_term')
        self.df_st_asin_detail = self.df_st_asin_detail.withColumn(
            'aadd_asin_bsr_orders',
            F.when(
                F.col("asin_is_aadd") == 1,
                F.lit(self.df_st_asin_detail.asin_bsr_orders)
            ).otherwise(F.lit(0))
        ).withColumn(
            'new_asin_bsr_orders_detail',
            F.when(
                F.col("asin_is_new") == 1,
                F.lit(self.df_st_asin_detail.asin_bsr_orders)
            ).otherwise(F.lit(0))
        )

    def get_st_attribute(self):
        # 通过asin_detail获取新品、bsr销量、A+产品bsr销量等信息
        self.df_st_attribute = self.df_st_asin_detail.groupby(["search_term"]).agg(
            F.sum("asin_is_new").alias('new_asin_num'),
            F.sum("asin_bsr_orders").alias('bsr_orders'),
            F.sum("aadd_asin_bsr_orders").alias('aadd_bsr_orders'),
            F.sum("new_asin_bsr_orders_detail").alias("new_asin_bsr_orders")
        )

    def get_img_type(self):
        # 获取图片类型信息
        self.df_st_asin_detail = self.df_st_asin_detail.withColumn(
            'img_type',
            self.u_get_img_type(self.df_st_asin_detail.asin_img_type)
        )
        self.df_st_img_type_group = self.df_st_asin_detail.groupby(["search_term"]).pivot(f"img_type").agg(
            F.count(f"search_term")
        )
        img_type_group_list = self.df_st_img_type_group.columns
        img_type_schema_list = ['aadd_video_num', 'aadd_no_video_num', 'no_aadd_no_video_num', 'no_aadd_video_num']
        self.df_st_img_type_group = self.check_cols(
            actual_col_list=img_type_group_list,
            schema_col_list=img_type_schema_list,
            df=self.df_st_img_type_group
        )

    def get_asin_count(self):
        # 获取asin总数信息
        self.df_asin_count = self.df_st_asin_detail.groupby(["search_term"]).agg(
            F.count(f"asin").alias('total_asin_num')
        )

    def get_price_range(self):
        df_st_asin_price_info = self.df_st_asin_detail.select("search_term", "price").filter("price > 0")
        df_st_price_agg = self.df_st_measure.select("search_term", "st_price_std", "st_price_avg")
        self.df_st_measure = self.df_st_measure.drop("st_price_std", "st_price_avg")
        df_st_asin_price_agg = df_st_asin_price_info.join(
            df_st_price_agg, on=['search_term'], how='left'
        )
        df_st_asin_price_agg = df_st_asin_price_agg.filter("price <= st_price_std")
        asin_pirce_info_map = self.u_get_price_interval(
            df_st_asin_price_agg.st_price_avg,
            df_st_asin_price_agg.price
        )
        df_st_asin_price_agg = df_st_asin_price_agg.withColumn(
            "price_interval",
            asin_pirce_info_map["price_interval"]
        ).withColumn(
            "price_type",
            asin_pirce_info_map["price_type"]
        ).withColumn(
            "interval_num",
            asin_pirce_info_map['interval_num']
        )
        df_st_price_interval = df_st_asin_price_agg.groupby('search_term').agg(
            F.first('price_interval').alias('price_interval'),
            F.first('interval_num').alias('interval_num')
        )
        self.df_st_price_group = df_st_asin_price_agg.groupby(['search_term']).pivot("price_type").agg(
            F.count(F.col("search_term"))
        )
        self.df_st_price_group = self.df_st_price_group.join(
            df_st_price_interval, on=['search_term'], how='left'
        )
        price_type_list = [f"{i}" for i in range(1, 21)]
        price_group_list = self.df_st_price_group.columns
        self.df_st_price_group = self.check_cols(
            actual_col_list=price_group_list,
            schema_col_list=price_type_list,
            df=self.df_st_price_group
        )
        self.df_st_price_group = self.df_st_price_group.select(
            "search_term", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
            "14", "15", "16", "17", "18", "19", "20", "price_interval", "interval_num"
        ).na.fill({
            "1": 0, "2": 0, "3": 0, "4": 0, "5": 0, "6": 0, "7": 0, "8": 0, "9": 0, "10": 0, "11": 0, "12": 0, "13": 0,
            "14": 0, "15": 0, "16": 0, "17": 0, "18": 0, "19": 0, "20": 0
        })
        self.df_st_price_group = self.df_st_price_group.join(
            self.df_asin_count, on=['search_term'], how='left'
        )

        column_conditions = {
            20: list(range(1, 21)),
            18: list(range(1, 19)),
            16: list(range(1, 17)),
            14: list(range(1, 15)),
            12: list(range(1, 13)),
            10: list(range(1, 11)),
            8: list(range(1, 9)),
            6: list(range(1, 7))
        }
        asin_count_case_expr = "CASE " + " ".join([
            f"WHEN interval_num = '{interval}' THEN CONCAT_WS(',', {', '.join([f'`{col}`' for col in columns])})"
            for interval, columns in column_conditions.items()
        ]) + " ELSE NULL END"
        self.df_st_price_group = self.df_st_price_group.withColumn(
            "price_interval_asin_count",
            F.expr(asin_count_case_expr)
        )
        asin_market_share_case_expr = "CASE " + " ".join([
            f"WHEN interval_num = '{interval}' THEN CONCAT_WS(',', {', '.join([f'ROUND(`{col}`/`total_asin_num`,4)' for col in columns])})"
            for interval, columns in column_conditions.items()
        ]) + " ELSE NULL END"
        self.df_st_price_group = self.df_st_price_group.withColumn(
            "price_interval_asin_market_share",
            F.expr(asin_market_share_case_expr)
        )
        self.df_st_price_group = self.df_st_price_group.select(
            'search_term', 'price_interval', 'price_interval_asin_count', 'price_interval_asin_market_share'
        )

    def get_ao_range(self):
        # 获取ao值信息
        df_st_asin_detail_ao = self.df_st_asin_detail.withColumn(
            'ao_type',
            F.when(
                (F.col("asin_ao_val") >= 0) & (F.col("asin_ao_val") < 0.05), "ao_range_val1"
            ).when(
                (F.col("asin_ao_val") >= 0.05) & (F.col("asin_ao_val") < 0.1), "ao_range_val2"
            ).when(
                (F.col("asin_ao_val") >= 0.1) & (F.col("asin_ao_val") < 0.2), "ao_range_val3"
            ).when(
                (F.col("asin_ao_val") >= 0.2) & (F.col("asin_ao_val") < 0.3), "ao_range_val4"
            ).when(
                (F.col("asin_ao_val") >= 0.3) & (F.col("asin_ao_val") < 0.4), "ao_range_val5"
            ).when(
                (F.col("asin_ao_val") >= 0.4) & (F.col("asin_ao_val") < 0.5), "ao_range_val6"
            ).when(
                (F.col("asin_ao_val") >= 0.5) & (F.col("asin_ao_val") < 0.6), "ao_range_val7"
            ).when(
                (F.col("asin_ao_val") >= 0.6) & (F.col("asin_ao_val") < 0.7), "ao_range_val8"
            ).when(
                (F.col("asin_ao_val") >= 0.7) & (F.col("asin_ao_val") < 0.8), "ao_range_val9"
            ).when(
                (F.col("asin_ao_val") >= 0.8) & (F.col("asin_ao_val") < 0.9), "ao_range_val10"
            ).when(
                (F.col("asin_ao_val") >= 0.9) & (F.col("asin_ao_val") < 1), "ao_range_val11"
            ).when(
                F.col("asin_ao_val") >= 1, "ao_range_val12"
            )
        )
        self.df_st_ao_group = df_st_asin_detail_ao.groupby(["search_term"]).pivot(f"ao_type").agg(
            F.count(f"search_term")
        )
        ao_range_val_list = [f"ao_range_val{i}" for i in range(1, 13)]
        ao_group_list = self.df_st_ao_group.columns
        self.df_st_ao_group = self.check_cols(
            actual_col_list=ao_group_list,
            schema_col_list=ao_range_val_list,
            df=self.df_st_ao_group
        )
        self.df_st_ao_group = self.df_st_ao_group.select(
            "search_term", "ao_range_val1", "ao_range_val2", "ao_range_val3", "ao_range_val4", "ao_range_val5",
            "ao_range_val6", "ao_range_val7", "ao_range_val8", "ao_range_val9", "ao_range_val10", "ao_range_val11",
            "ao_range_val12"
        )
        self.df_st_ao_group = self.df_st_ao_group.join(
            self.df_asin_count, on=['search_term'], how='left'
        )
        ao_range_market_share_list = [f"ao_range_market_share{i}" for i in range(1, 13)]
        total_asin_num_list = [f"total_asin_num" for i in range(1, 13)]
        self.df_st_ao_group = self.hadle_cols(
            col_list1=ao_range_market_share_list,
            col_list2=ao_range_val_list,
            col_list3=total_asin_num_list,
            df=self.df_st_ao_group
        )
        # self.df_st_ao_group = self.df_st_ao_group.drop("total_asin_num")

    def get_st_buy_box(self):
        # 获取配送方式信息
        df_st_asin_buy_box_detail = self.df_st_asin_detail.withColumn(
            "buy_box_seller_type",
            self.u_get_buy_box(self.df_st_asin_detail.asin_buy_box_seller_type)
        )
        df_st_asin_buy_box_detail_agg = df_st_asin_buy_box_detail.groupby(['search_term']).agg(
            F.concat_ws(",", F.collect_set(df_st_asin_buy_box_detail.buy_box_seller_type)).alias("buy_box_name"),
            F.concat_ws(",", F.collect_list(df_st_asin_buy_box_detail.buy_box_seller_type)).alias("buy_box_list")
        )
        self.df_st_buy_box = self.df_st_measure.join(
            df_st_asin_buy_box_detail_agg, on=['search_term'], how='left'
        )
        self.df_st_buy_box = self.df_st_buy_box.withColumn(
            "buy_box_num",
            self.u_get_buy_box_num(self.df_st_buy_box.buy_box_name, self.df_st_buy_box.buy_box_list)
        )
        self.df_st_buy_box = self.df_st_buy_box.drop("buy_box_list", "orders")

    def get_st_color(self):
        df_st_asin_color_detail = self.df_st_asin_detail.withColumn(
            "asin_is_color_flag",
            self.u_judge_color(F.col("asin_color"))
        )
        df_st_asin_color_detail = df_st_asin_color_detail.filter("asin_is_color_flag = 1")
        df_st_color_agg = df_st_asin_color_detail.groupby(['search_term', 'asin_color']).agg(
            F.sum("asin_bsr_orders").alias("color_bsr_orders"),
            F.count("asin_color").alias("color_quantity")
        )
        df_st_color_agg = df_st_color_agg.join(
            self.df_st_attribute, on=['search_term'], how='left'
        )
        df_st_color_agg = df_st_color_agg.withColumn(
            "color_bsr_orders_percent",
            F.round(F.col("color_bsr_orders") / F.col("bsr_orders"), 3)
        )
        df_st_color_agg = df_st_color_agg.select(
            "search_term", "asin_color", "color_quantity", "color_bsr_orders_percent"
        )
        self.df_st_color = df_st_color_agg.groupby(['search_term']).agg(
            F.concat_ws("&&&&", F.collect_list(df_st_color_agg.asin_color)).alias("color_name"),
            F.concat_ws(",", F.collect_list(df_st_color_agg.color_quantity)).alias("color_num"),
            F.concat_ws(",", F.collect_list(df_st_color_agg.color_bsr_orders_percent)).alias("color_bsr_orders_percent"),
        )

    def get_launch_time_range(self):
        # 获取上架时间信息
        time = datetime.now().date()
        one_month_time = time + timedelta(days=-30)
        three_months_time = time + timedelta(days=-90)
        six_months_time = time + timedelta(days=-180)
        twelve_months_time = time + timedelta(days=-360)
        fifteen_months_time = time + timedelta(days=-450)
        twenty_four_months_time = time + timedelta(days=-720)
        thirty_six_months_time = time + timedelta(days=-1080)
        df_st_asin_detail_launch_time = self.df_st_asin_detail.withColumn(
            'launch_time_type',
            F.when(
                F.col("asin_launch_time") >= one_month_time, "launch_time_num1"
            ).when(
                (F.col("asin_launch_time") >= three_months_time) & (F.col("asin_launch_time") < one_month_time), "launch_time_num2"
            ).when(
                (F.col("asin_launch_time") >= six_months_time) & (F.col("asin_launch_time") < three_months_time), "launch_time_num3"
            ).when(
                (F.col("asin_launch_time") >= twelve_months_time) & (F.col("asin_launch_time") < six_months_time), "launch_time_num4"
            ).when(
                (F.col("asin_launch_time") >= fifteen_months_time) & (F.col("asin_launch_time") < twelve_months_time), "launch_time_num5"
            ).when(
                (F.col("asin_launch_time") >= twenty_four_months_time) & (F.col("asin_launch_time") < fifteen_months_time), "launch_time_num6"
            ).when(
                (F.col("asin_launch_time") >= thirty_six_months_time) & (F.col("asin_launch_time") < twenty_four_months_time), "launch_time_num7"
            ).when(
                (F.col("asin_launch_time") < thirty_six_months_time), "launch_time_num8"
            )
        )
        self.df_st_launch_time_group = df_st_asin_detail_launch_time.groupby(["search_term"]).pivot(f"launch_time_type").agg(
            F.count(f"search_term")
        )
        launch_time_num_list = [f"launch_time_num{i}" for i in range(1, 9)]
        launch_time_group = self.df_st_launch_time_group.columns
        self.df_st_launch_time_group = self.check_cols(
            actual_col_list=launch_time_group,
            schema_col_list=launch_time_num_list,
            df=self.df_st_launch_time_group
        )
        self.df_st_launch_time_group = self.df_st_launch_time_group.select(
            "search_term", "launch_time_num1", "launch_time_num2", "launch_time_num3", "launch_time_num4",
            "launch_time_num5", "launch_time_num6", "launch_time_num7", "launch_time_num8"
        )
        self.df_st_launch_time_group = self.df_st_launch_time_group.join(
            self.df_asin_count, on=["search_term"], how='left'
        )
        launch_time_market_share_list = [f"launch_time_market_share{i}" for i in range(1, 9)]
        total_asin_num_list = [f"total_asin_num" for i in range(1, 9)]
        self.df_st_launch_time_group = self.hadle_cols(
            col_list1=launch_time_market_share_list,
            col_list2=launch_time_num_list,
            col_list3=total_asin_num_list,
            df=self.df_st_launch_time_group
        )
        self.df_st_launch_time_group = self.df_st_launch_time_group.drop("total_asin_num")

    def get_comments_num_range(self):
        # 获取评论数信息
        df_st_asin_detail_comments = self.df_st_asin_detail.withColumn(
            "comments_type",
            F.when(
                (F.col("asin_total_comments") >= 0) & (F.col("asin_total_comments") < 50), "comments_num1"
            ).when(
                (F.col("asin_total_comments") >= 50) & (F.col("asin_total_comments") < 100), "comments_num2"
            ).when(
                (F.col("asin_total_comments") >= 100) & (F.col("asin_total_comments") < 150), "comments_num3"
            ).when(
                (F.col("asin_total_comments") >= 150) & (F.col("asin_total_comments") < 200), "comments_num4"
            ).when(
                (F.col("asin_total_comments") >= 200) & (F.col("asin_total_comments") < 300), "comments_num5"
            ).when(
                (F.col("asin_total_comments") >= 300) & (F.col("asin_total_comments") < 400), "comments_num6"
            ).when(
                (F.col("asin_total_comments") >= 400) & (F.col("asin_total_comments") < 500), "comments_num7"
            ).when(
                (F.col("asin_total_comments") >= 500) & (F.col("asin_total_comments") < 600), "comments_num8"
            ).when(
                (F.col("asin_total_comments") >= 600) & (F.col("asin_total_comments") < 700), "comments_num9"
            ).when(
                (F.col("asin_total_comments") >= 700) & (F.col("asin_total_comments") < 800), "comments_num10"
            ).when(
                (F.col("asin_total_comments") >= 800) & (F.col("asin_total_comments") < 900), "comments_num11"
            ).when(
                (F.col("asin_total_comments") >= 900) & (F.col("asin_total_comments") < 1000), "comments_num12"
            ).when(
                F.col("asin_total_comments") >= 1000, "comments_num13"
            )
        )
        self.df_st_comments_group = df_st_asin_detail_comments.groupby(["search_term"]).pivot(f"comments_type").agg(
            F.count(f"search_term")
        )
        comments_num_list = [f"comments_num{i}" for i in range(1, 14)]
        comments_group_list = self.df_st_comments_group.columns
        self.df_st_comments_group = self.check_cols(
            actual_col_list=comments_group_list,
            schema_col_list=comments_num_list,
            df=self.df_st_comments_group
        )
        self.df_st_comments_group = self.df_st_comments_group.select(
            "search_term", "comments_num1", "comments_num2", "comments_num3", "comments_num4", "comments_num5",
            "comments_num6", "comments_num7", "comments_num8", "comments_num9", "comments_num10", "comments_num11",
            "comments_num12", "comments_num13"
        )
        self.df_st_comments_group = self.df_st_comments_group.join(
            self.df_asin_count, on=["search_term"], how='left'
        )
        comments_num_market_share_list = [f"comments_num_market_share{i}" for i in range(1, 14)]
        total_asin_num_list = [f"total_asin_num" for i in range(1, 14)]
        self.df_st_comments_group = self.hadle_cols(
            col_list1=comments_num_market_share_list,
            col_list2=comments_num_list,
            col_list3=total_asin_num_list,
            df=self.df_st_comments_group
        )
        self.df_st_comments_group = self.df_st_comments_group.drop("total_asin_num")

    def get_rating_group(self):
        df_st_asin_detail_rating = self.df_st_asin_detail.withColumn(
            "rating_type",
            F.when(
                (F.col("rating") >= 0) & (F.col("rating") < 1), "rating_section1"
            ).when(
                (F.col("rating") >= 1) & (F.col("rating") < 2), "rating_section2"
            ).when(
                (F.col("rating") >= 2) & (F.col("rating") < 3), "rating_section3"
            ).when(
                (F.col("rating") >= 3) & (F.col("rating") < 4), "rating_section4"
            ).when(
                (F.col("rating") >= 4) & (F.col("rating") < 4.3), "rating_section5"
            ).when(
                (F.col("rating") >= 4.3) & (F.col("rating") < 4.5), "rating_section6"
            ).when(
                F.col("rating") >= 4.5, "rating_section7"
            )
        )
        self.df_st_rating_group = df_st_asin_detail_rating.groupby(["search_term"]).pivot(f"rating_type").agg(
            F.count(f"search_term")
        )
        rating_section_list = [f"rating_section{i}" for i in range(1, 8)]
        rating_group_list = self.df_st_rating_group.columns
        self.df_st_rating_group = self.check_cols(
            actual_col_list=rating_group_list,
            schema_col_list=rating_section_list,
            df=self.df_st_rating_group
        )
        self.df_st_rating_group = self.df_st_rating_group.select(
            "search_term", "rating_section1", "rating_section2", "rating_section3", "rating_section4",
            "rating_section5", "rating_section6", "rating_section7"
        ).na.fill({
            "rating_section1": 0, "rating_section2": 0, "rating_section3": 0, "rating_section4": 0,
            "rating_section5": 0, "rating_section6": 0, "rating_section7": 0
        })
        self.df_st_rating_group = self.df_st_rating_group.join(
            self.df_asin_count, on=["search_term"], how='left'
        )
        total_asin_num_list = [f"total_asin_num" for i in range(1, 14)]
        rating_market_share_section_list = [f"rating_market_share_section{i}" for i in range(1, 8)]
        self.df_st_rating_group = self.hadle_cols(
            col_list1=rating_market_share_section_list,
            col_list2=rating_section_list,
            col_list3=total_asin_num_list,
            df=self.df_st_rating_group
        )
        self.df_st_rating_group = self.df_st_rating_group.na.fill({
            "rating_market_share_section1": 0.0, "rating_market_share_section2": 0.0,
            "rating_market_share_section3": 0.0, "rating_market_share_section4": 0.0,
            "rating_market_share_section5": 0.0, "rating_market_share_section6": 0.0,
            "rating_market_share_section7": 0.0
        })
        self.df_st_rating_group = self.df_st_rating_group.withColumn(
            "rating_section",
            F.concat_ws(",",
                F.col("rating_section1"),
                F.col("rating_section2"),
                F.col("rating_section3"),
                F.col("rating_section4"),
                F.col("rating_section5"),
                F.col("rating_section6"),
                F.col("rating_section7")
            )
        )
        self.df_st_rating_group = self.df_st_rating_group.withColumn(
            "rating_market_share_section",
            F.concat_ws(",",
                F.col("rating_market_share_section1"),
                F.col("rating_market_share_section2"),
                F.col("rating_market_share_section3"),
                F.col("rating_market_share_section4"),
                F.col("rating_market_share_section5"),
                F.col("rating_market_share_section6"),
                F.col("rating_market_share_section7")
            )
        )
        self.df_st_rating_group = self.df_st_rating_group.drop(
            "total_asin_num", "rating_section1", "rating_section2", "rating_section3", "rating_section4",
            "rating_section5", "rating_section6", "rating_section7", "rating_market_share_section1",
            "rating_market_share_section2", "rating_market_share_section3", "rating_market_share_section4",
            "rating_market_share_section5", "rating_market_share_section6", "rating_market_share_section7"
        )

    def get_st_asin_seller(self):
        # 获取卖家相关信息
        df_seller_asin_detail = self.df_st_asin_measure.join(
            self.df_seller_asin, on=['asin'], how='left'
        ).join(
            self.df_asin_measure, on=['asin'], how='left'
        )
        df_seller_asin_detail = df_seller_asin_detail.na.fill({
            "seller_name": 'OTHER'
        })
        df_seller_asin_agg = df_seller_asin_detail.groupBy(['search_term']).agg(
            F.concat_ws(",", F.collect_list("seller_name")).alias("seller_name_list"),
            F.concat_ws(",", F.collect_list("asin_bsr_orders")).alias("seller_bsr_orders_list"),
            F.concat_ws(",", F.collect_set("seller_name")).alias("seller_name_type")
        )
        self.df_st_seller = self.df_st_measure.join(
            df_seller_asin_agg, on=['search_term'], how='left'
        )
        self.df_st_seller = self.df_st_seller.withColumn(
            "seller_num",
            self.u_get_seller_num(self.df_st_seller.seller_name_type, self.df_st_seller.seller_name_list)
        ).withColumn(
            "seller_bsr_orders",
            self.u_get_seller_bsr_orders(self.df_st_seller.seller_name_type, self.df_st_seller.seller_name_list, self.df_st_seller.seller_bsr_orders_list)
        )
        self.df_st_seller = self.df_st_seller.drop("st_zr_orders", "orders")
        self.df_st_seller = self.df_st_seller.withColumnRenamed("seller_name_type", "seller_name")

    def get_top20_asin(self):
        # 获取特定asin下某品牌的总商品数,新品数,bsr销量
        df_st_brand_asin_agg = self.df_st_asin_detail.groupBy(["search_term", "asin_brand_name"]).agg(
            F.count("asin").alias("brand_total_asin"),
            F.sum("asin_is_new").alias("brand_new_asin"),
            F.sum("asin_bsr_orders").alias("brand_bsr_orders")
        )
        df_st_brand_asin_agg = df_st_brand_asin_agg.na.fill({
            "brand_new_asin": 0, "brand_bsr_orders": 0.0, "asin_brand_name": "None"
        })
        df_st_brand_asin_agg = df_st_brand_asin_agg.filter("asin_brand_name not in ('null', 'None', 'none', 'NULL')")

        brand_bsr_orders_window = Window.partitionBy(["search_term"]).orderBy(
            df_st_brand_asin_agg.brand_bsr_orders.desc_nulls_last()
        )
        df_st_top20_asin_detail_agg = df_st_brand_asin_agg.withColumn(
            "brand_bsr_orders_rank",
            F.row_number().over(window=brand_bsr_orders_window)
        )
        df_st_top20_asin_detail_agg = df_st_top20_asin_detail_agg.filter("brand_bsr_orders_rank<=20")
        df_st_top20_agg = df_st_top20_asin_detail_agg.select("search_term", "asin_brand_name")
        df_st_top20_brand = df_st_top20_agg.groupBy(["search_term"]).agg(
            F.concat_ws("&&&&", F.collect_list(df_st_top20_agg.asin_brand_name)).alias("top20_brand")
        )
        df_st_top20_brand_asin_agg = df_st_top20_asin_detail_agg.join(
            self.df_st_attribute, on=["search_term"], how='left'
        )
        df_st_top20_brand_asin_agg = df_st_top20_brand_asin_agg.withColumn(
            "brand_new_num_proportion",
            df_st_top20_brand_asin_agg.brand_new_asin / df_st_top20_brand_asin_agg.brand_total_asin
        ).withColumn(
            "brand_market_share",
            F.when(
                F.col("bsr_orders") == 0, F.lit(0)
            ).otherwise(
                df_st_top20_brand_asin_agg.brand_bsr_orders / df_st_top20_brand_asin_agg.bsr_orders
            )
        )
        df_st_top20_brand_agg = df_st_top20_brand_asin_agg.groupBy(["search_term"]).agg(
            F.concat_ws(",", F.collect_list(df_st_top20_brand_asin_agg.brand_new_num_proportion)).alias("top20_brand_new_num_proportion"),
            F.concat_ws(",", F.collect_list(df_st_top20_brand_asin_agg.brand_bsr_orders)).alias("top20_brand_bsr_oders"),
            F.concat_ws(",", F.collect_list(df_st_top20_brand_asin_agg.brand_market_share)).alias("top20_brand_market_share")
        )
        self.df_st_top20 = self.df_st_measure.join(
            df_st_top20_brand_agg, on=["search_term"], how='left'
        ).join(
            df_st_top20_brand, on=['search_term'], how='left'
        )
        # 弃用字段
        self.df_st_top20 = self.df_st_top20.withColumn(
            "top20_asin", F.lit(None)
        ).withColumn(
            "top20_orders", F.lit(None)
        )
        self.df_st_top20 = self.df_st_top20.select(
            "search_term", "top20_asin", "top20_orders", "top20_brand", "top20_brand_new_num_proportion",
            "top20_brand_bsr_oders", "top20_brand_market_share"
        )

    def get_st_size(self):
        df_st_asin_size = self.df_st_asin_detail.withColumn(
            "asin_size_flag",
            self.u_judge_size(F.col("asin_size"), F.col("asin_style"))
        )
        df_st_asin_size = df_st_asin_size.filter("asin_size_flag not in ('none','null')")
        df_st_size_agg = df_st_asin_size.groupby(['search_term', 'asin_size_flag']).agg(
            F.sum("asin_bsr_orders").alias("size_bsr_orders"),
            F.count("asin_size_flag").alias("size_quantity")
        )
        df_st_size_agg = df_st_size_agg.join(
            self.df_st_attribute, on=['search_term'], how='left'
        )
        df_st_size_agg = df_st_size_agg.withColumn(
            "size_bsr_orders_percent",
            F.round(F.col("size_bsr_orders") / F.col("bsr_orders"), 3)
        )
        df_st_size_agg = df_st_size_agg.select(
            "search_term", "asin_size_flag", "size_quantity", "size_bsr_orders_percent"
        )
        self.df_st_size = df_st_size_agg.groupby(['search_term']).agg(
            F.concat_ws("&&&&", F.collect_list(df_st_size_agg.asin_size_flag)).alias("size_name"),
            F.concat_ws(",", F.collect_list(df_st_size_agg.size_quantity)).alias("size_num"),
            F.concat_ws(",", F.collect_list(df_st_size_agg.size_bsr_orders_percent)).alias("size_bsr_orders_percent")
        )

    def get_asin_package_num(self):
        self.df_st_asin_detail = self.df_st_asin_detail.withColumn(
            "package_num",
            self.u_get_package_num(self.df_st_asin_detail.asin_title)
        )
        self.df_st_asin_detail = self.df_st_asin_detail.drop("asin_title")
        self.df_st_asin_detail = self.df_st_asin_detail.na.fill({
            "package_num": 1
        })
        self.df_st_package_num = self.df_st_asin_detail.groupby(["search_term"]).agg(
            F.sort_array(F.collect_list(F.struct(F.col("package_num"), F.col("asin"))), False).alias("value")
        )
        self.df_st_package_num = self.df_st_package_num.select(
            "search_term",
            F.expr("transform(value, x -> x.asin)").alias("asin_list"),
            F.expr("transform(value, x -> x.package_num)").alias("package_num_list")
        )
        # self.df_st_package_num.show(10, truncate=False)
        self.df_st_package_num = self.df_st_package_num.withColumn(
            "package_num_trend",
            self.u_get_package_num_trend(self.df_st_package_num.package_num_list)
        ).withColumn(
            "package_num_trend_market_share",
            self.u_get_package_num_trend_market_share(self.df_st_package_num.package_num_list)
        ).withColumn(
            "package_num_corresponding_asin",
            self.u_get_package_num_corresponding_asin(self.df_st_package_num.asin_list)
        )
        self.df_st_package_num = self.df_st_package_num.drop("package_num_array", "asin_list")

    def handle_data_group(self):
        self.df_st_measure = self.df_st_measure.join(
            self.df_st_key, on=['search_term'], how='inner'
        ).join(
            self.df_st_detail, on=['search_term'], how='inner'
        )
        self.df_save = self.df_st_measure.join(
            self.df_st_price_group, on=['search_term'], how='left'
        ).join(
            self.df_st_ao_group, on=['search_term'], how='left'
        ).join(
            self.df_st_attribute, on=['search_term'], how='left'
        ).join(
            self.df_st_img_type_group, on=['search_term'], how='left'
        ).join(
            self.df_top100_asin, on=['search_term_id'], how='left'
        ).join(
            self.df_st_launch_time_group, on=['search_term'], how='left'
        ).join(
            self.df_st_comments_group, on=['search_term'], how='left'
        ).join(
            self.df_st_buy_box, on=['search_term'], how='left'
        ).join(
            self.df_st_seller, on=['search_term'], how='left'
        ).join(
            self.df_st_color, on=['search_term'], how='left'
        ).join(
            self.df_st_top20, on=['search_term'], how='left'
        ).join(
            self.df_st_rating_group, on=['search_term'], how='left'
        ).join(
            self.df_st_size, on=['search_term'], how='left'
        ).join(
            self.df_st_package_num, on=['search_term'], how='left'
        )

        for i in range(1, 19):
            self.df_save = self.df_save.withColumn(f"price_range_num{i}_deprecated", F.lit(-1))
            self.df_save = self.df_save.withColumn(f"price_range_market_share{i}_deprecated", F.lit(-1.0))
        self.df_save = self.df_save.select(
            "search_term_id", "search_term",
            "price_range_num1_deprecated", "price_range_num2_deprecated", "price_range_num3_deprecated",
            "price_range_num4_deprecated", "price_range_num5_deprecated", "price_range_num6_deprecated",
            "price_range_num7_deprecated", "price_range_num8_deprecated", "price_range_num9_deprecated",
            "price_range_num10_deprecated", "price_range_num11_deprecated", "price_range_num12_deprecated",
            "price_range_num13_deprecated", "price_range_num14_deprecated", "price_range_num15_deprecated",
            "price_range_num16_deprecated", "price_range_num17_deprecated", "price_range_num18_deprecated",
            "price_range_market_share1_deprecated", "price_range_market_share2_deprecated",
            "price_range_market_share3_deprecated", "price_range_market_share4_deprecated",
            "price_range_market_share5_deprecated", "price_range_market_share6_deprecated",
            "price_range_market_share7_deprecated", "price_range_market_share8_deprecated",
            "price_range_market_share9_deprecated", "price_range_market_share10_deprecated",
            "price_range_market_share11_deprecated", "price_range_market_share12_deprecated",
            "price_range_market_share13_deprecated", "price_range_market_share14_deprecated",
            "price_range_market_share15_deprecated", "price_range_market_share16_deprecated",
            "price_range_market_share17_deprecated", "price_range_market_share18_deprecated",
            "ao_range_val1", "ao_range_val2", "ao_range_val3", "ao_range_val4", "ao_range_val5", "ao_range_val6",
            "ao_range_val7", "ao_range_val8", "ao_range_val9", "ao_range_val10", "ao_range_val11", "ao_range_val12",
            "ao_range_market_share1", "ao_range_market_share2", "ao_range_market_share3", "ao_range_market_share4",
            "ao_range_market_share5", "ao_range_market_share6", "ao_range_market_share7", "ao_range_market_share8",
            "ao_range_market_share9", "ao_range_market_share10", "ao_range_market_share11", "ao_range_market_share12",
            "total_asin_num", "new_asin_num", "orders", "bsr_orders",
            "aadd_bsr_orders", "aadd_video_num", "aadd_no_video_num", "no_aadd_no_video_num", "no_aadd_video_num",
            "top100_asin", "top100_orders", "top100_market_share", "top100_is_new",
            "launch_time_num1", "launch_time_num2", "launch_time_num3", "launch_time_num4",
            "launch_time_num5", "launch_time_num6", "launch_time_num7", "launch_time_num8",
            "launch_time_market_share1", "launch_time_market_share2",
            "launch_time_market_share3", "launch_time_market_share4",
            "launch_time_market_share5", "launch_time_market_share6",
            "launch_time_market_share7", "launch_time_market_share8",
            "top20_asin", "top20_orders", "top20_brand", "top20_brand_new_num_proportion",
            "top20_brand_bsr_oders", "top20_brand_market_share",
            "comments_num1", "comments_num2", "comments_num3", "comments_num4",
            "comments_num5", "comments_num6", "comments_num7", "comments_num8",
            "comments_num9", "comments_num10", "comments_num11", "comments_num12",
            "comments_num13",
            "comments_num_market_share1", "comments_num_market_share2",
            "comments_num_market_share3", "comments_num_market_share4",
            "comments_num_market_share5", "comments_num_market_share6",
            "comments_num_market_share7", "comments_num_market_share8",
            "comments_num_market_share9", "comments_num_market_share10",
            "comments_num_market_share11", "comments_num_market_share12",
            "comments_num_market_share13",
            "buy_box_name", "buy_box_num",
            "seller_name", "seller_num", "seller_bsr_orders",
            "color_name", "color_num",
            "new_asin_bsr_orders",
            "rating_section", "rating_market_share_section",
            "size_name", "size_num",
            "package_num_trend", "package_num_trend_market_share", "package_num_corresponding_asin",
            "price_interval", "price_interval_asin_count", "price_interval_asin_market_share",
            "color_bsr_orders_percent",
            "size_bsr_orders_percent"
        )

        self.df_save = self.df_save.withColumn(
            "created_time",
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')
        ).withColumn(
            "updated_time",
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')
        )
        self.df_save = self.df_save.na.fill({
            "ao_range_val1": 0, "ao_range_val2": 0, "ao_range_val3": 0, "ao_range_val4": 0, "ao_range_val5": 0,
            "ao_range_val6": 0, "ao_range_val7": 0, "ao_range_val8": 0, "ao_range_val9": 0,
            "ao_range_val10": 0, "ao_range_val11": 0, "ao_range_val12": 0,
            "ao_range_market_share1": 0.0, "ao_range_market_share2": 0.0, "ao_range_market_share3": 0.0,
            "ao_range_market_share4": 0.0, "ao_range_market_share5": 0.0, "ao_range_market_share6": 0.0,
            "ao_range_market_share7": 0.0, "ao_range_market_share8": 0.0, "ao_range_market_share9": 0.0,
            "ao_range_market_share10": 0.0, "ao_range_market_share11": 0.0, "ao_range_market_share12": 0.0,
            "total_asin_num": 0, "new_asin_num": 0, "orders": 0, "bsr_orders": 0, "aadd_video_num": 0,
            "aadd_no_video_num": 0, "no_aadd_no_video_num": 0, "no_aadd_video_num": 0,
            "launch_time_num1": 0, "launch_time_num2": 0, "launch_time_num3": 0, "launch_time_num4": 0,
            "launch_time_num5": 0, "launch_time_num6": 0, "launch_time_num7": 0, "launch_time_num8": 0,
            "launch_time_market_share1": 0.0, "launch_time_market_share2": 0.0,
            "launch_time_market_share3": 0.0, "launch_time_market_share4": 0.0,
            "launch_time_market_share5": 0.0, "launch_time_market_share6": 0.0,
            "launch_time_market_share7": 0.0, "launch_time_market_share8": 0.0,
            "comments_num1": 0, "comments_num2": 0, "comments_num3": 0, "comments_num4": 0, "comments_num5": 0,
            "comments_num6": 0, "comments_num7": 0, "comments_num8": 0, "comments_num9": 0,
            "comments_num10": 0, "comments_num11": 0, "comments_num12": 0, "comments_num13": 0,
            "comments_num_market_share1": 0.0, "comments_num_market_share2": 0.0,
            "comments_num_market_share3": 0.0, "comments_num_market_share4": 0.0,
            "comments_num_market_share5": 0.0, "comments_num_market_share6": 0.0,
            "comments_num_market_share7": 0.0,
            "comments_num_market_share8": 0.0, "comments_num_market_share9": 0.0,
            "comments_num_market_share10": 0.0, "comments_num_market_share11": 0.0,
            "comments_num_market_share12": 0.0, "comments_num_market_share13": 0.0
        })
        # 预留字段补全
        self.df_save = self.df_save.withColumn(
            "re_string_field1", F.lit("null")
        ).withColumn(
            "re_string_field2", F.lit("null")
        ).withColumn(
            "re_string_field3", F.lit("null")
        ).withColumn(
            "re_int_field1", F.lit(0)
        ).withColumn(
            "re_int_field2", F.lit(0)
        ).withColumn(
            "re_int_field3", F.lit(0)
        ).withColumn(
            "site_name", F.lit(self.site_name)
        ).withColumn(
            "date_type", F.lit(self.date_type)
        ).withColumn(
            "date_info", F.lit(self.date_info)
        )

    def handle_data(self):
        self.get_st_asin_detail()
        self.get_st_attribute()
        self.get_img_type()
        self.get_asin_count()
        self.get_price_range()
        self.get_ao_range()
        self.get_st_buy_box()
        self.get_st_color()
        self.get_launch_time_range()
        self.get_comments_num_range()
        self.get_rating_group()
        self.get_st_asin_seller()
        self.get_top20_asin()
        self.get_st_size()
        self.get_asin_package_num()
        self.handle_data_group()


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季, 比如: 2022-1
    handle_obj = DwtAbaStAnalyticsReport(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()