1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
"""
ABA搜索词统计报表
"""
"""
author: 汪瑞
description: 基于dwd层等表,计算出search_term维度的报表信息
table_read_name: dim_cal_asin_history_detail系列表,dwd_st_measure系列表,dws_top100_asin_info系列表,ods_st_key系列表, dwd_asin_measure系列表, dwd_st_asin_measure系列表
table_save_name: dwt_aba_st_analytics_report
table_save_level: dwt
version: 1.0
created_date: 2022-11-17
updated_date: 2022-11-17
"""
import os
import sys
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, IntegerType, MapType
from datetime import datetime, timedelta
from yswg_utils.common_udf import udf_get_package_quantity
import math
class DwtAbaStAnalyticsReport(Templates):
def __init__(self, site_name="us", date_type="day", date_info="2022-11-02"):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save = f"dwt_aba_st_analytics_report"
self.spark = self.create_spark_object(app_name=f"{self.db_save} {self.site_name}, {self.date_info}")
self.df_save = self.spark.sql(f"select 1+1;")
self.df_asin_history_detail = self.spark.sql(f"select 1+1;")
self.df_st_asin_measure = self.spark.sql(f"select 1+1;")
self.df_st_asin_detail = self.spark.sql(f"select 1+1;")
self.df_st_key = self.spark.sql(f"select 1+1;")
self.df_top100_asin = self.spark.sql(f"select 1+1;")
self.df_st_measure = self.spark.sql(f"select 1+1;")
self.df_asin_measure = self.spark.sql(f"select 1+1;")
self.df_asin_count = self.spark.sql(f"select 1+1;")
self.df_st_buy_box = self.spark.sql(f"select 1+1;")
self.df_st_color = self.spark.sql(f"select 1+1;")
self.df_st_seller = self.spark.sql(f"select 1+1;")
self.df_st_top20 = self.spark.sql(f"select 1+1;")
self.df_st_attribute = self.spark.sql(f"select 1+1;")
self.df_st_img_type_group = self.spark.sql(f"select 1+1;")
self.df_st_launch_time_group = self.spark.sql(f"select 1+1;")
self.df_st_price_group = self.spark.sql(f"select 1+1;")
self.df_st_ao_group = self.spark.sql(f"select 1+1;")
self.df_st_comments_group = self.spark.sql("select 1+1;")
self.df_st_rating_group = self.spark.sql("select 1+1;")
self.df_st_detail = self.spark.sql("select 1+1;")
self.df_seller_asin = self.spark.sql("select 1+1;")
self.df_st_size = self.spark.sql("select 1+1;")
self.df_st_package_num = self.spark.sql("select 1+1;")
self.partitions_by = ['site_name', 'date_type', 'date_info']
self.reset_partitions(65)
self.u_get_buy_box_num = self.spark.udf.register("u_get_buy_box_num", self.udf_get_buy_box_num, StringType())
self.u_get_buy_box = self.spark.udf.register("u_get_buy_box", self.udf_get_buy_box_type, StringType())
self.u_get_img_type = self.spark.udf.register("u_get_img_type", self.udf_get_img_type, StringType())
self.u_get_seller_num = self.spark.udf.register('u_get_seller_num', self.udf_get_seller_num, StringType())
self.u_get_seller_bsr_orders = self.spark.udf.register('u_get_seller_bsr_orders', self.udf_get_seller_bsr_orders, StringType())
self.u_judge_color = self.spark.udf.register('u_judge_color', self.udf_judge_color, IntegerType())
self.u_judge_size = self.spark.udf.register('u_judge_size', self.udf_judge_multi_size, StringType())
self.u_get_package_num = F.udf(udf_get_package_quantity, IntegerType())
self.u_get_package_num_trend = self.spark.udf.register('u_get_package_num_trend', self.udf_reverse_package_num_array, StringType())
self.u_get_package_num_trend_market_share = self.spark.udf.register('u_get_package_num_trend_market_share', self.udf_package_num_counts, StringType())
self.u_get_package_num_corresponding_asin = self.spark.udf.register('u_get_package_num_corresponding_asin', self.udf_package_num_corresponding_asin_list, StringType())
self.u_get_price_interval = self.spark.udf.register('u_get_price_interval', self.udf_price_interval_info, MapType(StringType(), StringType(), False))
@staticmethod
def udf_get_img_type(img_type):
all_img_type = str(img_type).split(",")
if ('2' in all_img_type) & ('3' in all_img_type):
return 'aadd_video_num'
elif ('2' not in all_img_type) & ('3' in all_img_type):
return 'aadd_no_video_num'
elif ('2' not in all_img_type) & ('3' not in all_img_type):
return 'no_aadd_no_video_num'
elif ('2' in all_img_type) & ('3' not in all_img_type):
return 'no_aadd_video_num'
@staticmethod
def udf_get_buy_box_type(buy_box):
if "1" == str(buy_box):
return 'Amazon'
elif "2" == str(buy_box):
return 'FBA'
elif "3" == str(buy_box):
return 'FBM'
else:
return 'other'
@staticmethod
def udf_get_seller_num(seller_type, all_seller):
all_seller_type = str(seller_type).split(",")
seller_num = ''
for i in range(len(all_seller_type)):
splits = all_seller.count(all_seller_type[i])
if (i < len(all_seller_type) - 1):
seller_num = seller_num + str(splits) + ','
else:
seller_num = seller_num + str(splits)
return seller_num
@staticmethod
def udf_get_seller_bsr_orders(seller_type, all_seller, all_seller_bsr_orders):
all_seller_type = str(seller_type).split(",")
all_seller_list = str(all_seller).split(",")
all_seller_bsr_orders = str(all_seller_bsr_orders).split(",")
seller_bsr_orders = ""
for seller in all_seller_type:
one_seller_bsr_orders = 0
for (i, j) in zip(all_seller_list, all_seller_bsr_orders):
if seller == i:
one_seller_bsr_orders = int(one_seller_bsr_orders) + int(j)
if (seller != all_seller_type[-1]):
seller_bsr_orders = seller_bsr_orders + str(one_seller_bsr_orders) + ','
else:
seller_bsr_orders = seller_bsr_orders + str(one_seller_bsr_orders)
return seller_bsr_orders
@staticmethod
def udf_get_buy_box_num(buy_box_type, buy_box_list):
all_buy_box_type = str(buy_box_type).split(",")
buy_box_num = ''
for i in range(len(all_buy_box_type)):
splits = buy_box_list.count(all_buy_box_type[i])
if (i < len(all_buy_box_type) - 1):
buy_box_num = buy_box_num + str(splits) + ','
else:
buy_box_num = buy_box_num + str(splits)
return buy_box_num
@staticmethod
def udf_judge_color(color):
color_len = len(str(color))
if str(color).lower() not in ['none', 'null'] and color_len > 1:
return 1
else:
return 0
@staticmethod
def udf_judge_multi_size(size, style):
size = str(size).lower()
style = str(style).lower()
# 变体表中即有size又有style时,取size进行计数。如果无size,则判断是否有style进行计数
if size not in ['none', 'null']:
return size
elif style not in ['none', 'null']:
return style
@staticmethod
def udf_reverse_package_num_array(package_num_list):
if str(package_num_list) != '':
package_num_trend = str(package_num_list).strip("[").strip("]").replace("\'", '').replace(' ', '')
return package_num_trend
@staticmethod
def udf_package_num_counts(package_num_list):
if str(package_num_list) != '':
package_num_list = str(package_num_list).strip("[").strip("]").replace(' ', '')
package_num_trend_market_share = ''
package_num_arr = str(package_num_list).split(",")
package_num_int_list = list(map(int, package_num_arr))
total_package_num = sum(package_num_int_list)
for i in range(len(package_num_int_list)):
if (i < len(package_num_int_list) - 1):
package_num_trend_market_share = package_num_trend_market_share + str(
round(package_num_int_list[i] / total_package_num, 3)) + ','
else:
package_num_trend_market_share = package_num_trend_market_share + str(
round(package_num_int_list[i] / total_package_num, 3))
return package_num_trend_market_share
@staticmethod
def udf_package_num_corresponding_asin_list(asin_list):
if str(asin_list) != '':
package_num_corresponding_asin = str(asin_list).strip("[").strip("]").replace("\'", '').replace(' ', '')
return package_num_corresponding_asin
@staticmethod
def udf_price_interval_info(st_price_avg, asin_price):
def get_price_interval(interval_num, interval_span, interval_boundary=0):
price_interval_list = []
for i in range(interval_num):
lower_bound = interval_boundary + interval_span * i
upper_bound = interval_boundary + interval_span * (i + 1)
price_interval_list.append(f"{lower_bound}-{upper_bound}")
price_interval = ','.join(price_interval_list)
return price_interval
if st_price_avg > 0 and asin_price > 0:
price_range = [
(0, 25, 5, 10),
(25, 30, 10, 6),
(30, 40, 10, 8),
(40, 50, 10, 10),
(50, 60, 10, 12),
(60, 70, 10, 14),
(70, 80, 10, 16),
(80, 90, 10, 18),
(90, 100, 10, 20),
(100, 105, 15, 14),
(105, 120, 15, 16),
(120, 135, 15, 18),
(135, 150, 15, 20),
(150, 160, 20, 16),
(160, 180, 20, 18),
(180, 200, 20, 20),
(200, 0, 20, 20)
]
for price_lower, price_upper, interval_span, interval_num_item in price_range:
if price_lower <= st_price_avg < price_upper:
interval_num = interval_num_item
elif price_lower > price_upper:
interval_num = interval_num_item
else:
continue
interval_boundary = max(int(math.ceil(float(st_price_avg) / 10.0) * 10) - 200, 0)
price_interval = get_price_interval(interval_num, interval_span, interval_boundary)
price_type = min(max(int((asin_price - interval_boundary) // interval_span) + 1, 1), interval_num)
return {
'price_interval': price_interval,
'price_type': str(price_type),
'interval_num': str(interval_num)
}
def hadle_cols(self, col_list1, col_list2, col_list3, df):
for col1, col2, col3 in zip(col_list1, col_list2, col_list3):
df = df.withColumn(
col1, F.round(df[col2] / df[col3], 4)
)
return df
def check_cols(self, actual_col_list, schema_col_list, df):
for schema_col in schema_col_list:
if schema_col not in actual_col_list:
df = df.withColumn(
schema_col, F.lit(None).astype('int')
)
return df
def read_data(self):
print("1.1 读取dwd_st_asin_measure系列表")
sql = f"""
select search_term, asin from dwd_st_asin_measure
where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}';
"""
print("sql:", sql)
self.df_st_asin_measure = self.spark.sql(sql).repartition(80, 'asin').cache()
print("1.2 读取dim_asin_detail系列表")
sql = f"""
select
asin,
asin_title,
asin_price as price,
asin_rating as rating,
asin_is_new,
asin_img_type,
asin_is_aadd,
asin_launch_time,
asin_total_comments,
asin_buy_box_seller_type,
lower(asin_color) as asin_color,
asin_brand_name,
lower(asin_size) as asin_size,
lower(asin_style) as asin_style
from dim_asin_detail
where site_name='{self.site_name}'
and date_type='{self.date_type}'
and date_info='{self.date_info}';
"""
print("sql:", sql)
self.df_asin_history_detail = self.spark.sql(sql).repartition(80, 'asin').cache()
self.df_asin_history_detail = self.df_asin_history_detail.na.fill({
"asin_img_type": "3",
"asin_size": "none",
"asin_style": "none"
})
print("1.3 读取dwd_st_measure系列表")
sql = f"""
select search_term, st_zr_orders as orders, st_price_std, st_price_avg from dwd_st_measure
where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}';
"""
print("sql:", sql)
self.df_st_measure = self.spark.sql(sql).repartition(80, 'search_term').cache()
self.df_st_measure = self.df_st_measure.na.fill({
"orders": 0
})
print("1.4 读取ods_st_key系列表")
sql = f"""
select cast(st_key as int) as search_term_id, search_term from ods_st_key where site_name='{self.site_name}';
"""
print("sql:", sql)
self.df_st_key = self.spark.sql(sql).repartition(80, 'search_term').cache()
print("1.5 读取dws_top100_asin_info系列表")
sql = f"""
select search_term_id, top100_asin, top100_orders, top100_market_share, top100_is_new
from dws_top100_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}'
and date_info='{self.date_info}';
"""
print("sql:", sql)
self.df_top100_asin = self.spark.sql(sql).repartition(80, 'search_term_id').cache()
print("1.6 读取dwd_asin_measure系列表")
sql = f"""
select asin, cast(asin_bsr_orders as int) as asin_bsr_orders, asin_ao_val from dwd_asin_measure
where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}';
"""
print("sql:", sql)
self.df_asin_measure = self.spark.sql(sql).repartition(80, 'asin').cache()
self.df_asin_measure = self.df_asin_measure.na.fill({"asin_bsr_orders": 0})
print("1.7 读取dim_seller_asin_history_info系列表")
sql = f"""
select asin,
case when upper(fd_country_name) = 'US' then 'US'
when upper(fd_country_name) = 'CN' then 'CN'
when upper(fd_country_name) = 'HK' then 'HK'
when upper(fd_country_name) = 'FR' then 'FR'
when upper(fd_country_name) = 'DE' then 'DE'
else 'OTHER' end as seller_name
from dim_fd_asin_info where site_name = '{self.site_name}';
"""
print("sql:", sql)
self.df_seller_asin = self.spark.sql(sql).repartition(80, 'asin').cache()
self.df_seller_asin = self.df_seller_asin.drop_duplicates(['asin'])
print("1.8 读取dim_st_detail系列表")
sql = f"""
select search_term from dim_st_detail
where site_name='{self.site_name}'
and date_type='{self.date_type}'
and date_info='{self.date_info}';
"""
print("sql:", sql)
self.df_st_detail = self.spark.sql(sql).repartition(80, 'search_term').cache()
def get_st_asin_detail(self):
# 获取asin详情
self.df_st_asin_detail = self.df_st_asin_measure.join(
self.df_asin_history_detail, on=['asin'], how='left'
).join(
self.df_asin_measure, on=['asin'], how='left'
).repartition(80, 'search_term')
self.df_st_asin_detail = self.df_st_asin_detail.withColumn(
'aadd_asin_bsr_orders',
F.when(
F.col("asin_is_aadd") == 1,
F.lit(self.df_st_asin_detail.asin_bsr_orders)
).otherwise(F.lit(0))
).withColumn(
'new_asin_bsr_orders_detail',
F.when(
F.col("asin_is_new") == 1,
F.lit(self.df_st_asin_detail.asin_bsr_orders)
).otherwise(F.lit(0))
)
def get_st_attribute(self):
# 通过asin_detail获取新品、bsr销量、A+产品bsr销量等信息
self.df_st_attribute = self.df_st_asin_detail.groupby(["search_term"]).agg(
F.sum("asin_is_new").alias('new_asin_num'),
F.sum("asin_bsr_orders").alias('bsr_orders'),
F.sum("aadd_asin_bsr_orders").alias('aadd_bsr_orders'),
F.sum("new_asin_bsr_orders_detail").alias("new_asin_bsr_orders")
)
def get_img_type(self):
# 获取图片类型信息
self.df_st_asin_detail = self.df_st_asin_detail.withColumn(
'img_type',
self.u_get_img_type(self.df_st_asin_detail.asin_img_type)
)
self.df_st_img_type_group = self.df_st_asin_detail.groupby(["search_term"]).pivot(f"img_type").agg(
F.count(f"search_term")
)
img_type_group_list = self.df_st_img_type_group.columns
img_type_schema_list = ['aadd_video_num', 'aadd_no_video_num', 'no_aadd_no_video_num', 'no_aadd_video_num']
self.df_st_img_type_group = self.check_cols(
actual_col_list=img_type_group_list,
schema_col_list=img_type_schema_list,
df=self.df_st_img_type_group
)
def get_asin_count(self):
# 获取asin总数信息
self.df_asin_count = self.df_st_asin_detail.groupby(["search_term"]).agg(
F.count(f"asin").alias('total_asin_num')
)
def get_price_range(self):
df_st_asin_price_info = self.df_st_asin_detail.select("search_term", "price").filter("price > 0")
df_st_price_agg = self.df_st_measure.select("search_term", "st_price_std", "st_price_avg")
self.df_st_measure = self.df_st_measure.drop("st_price_std", "st_price_avg")
df_st_asin_price_agg = df_st_asin_price_info.join(
df_st_price_agg, on=['search_term'], how='left'
)
df_st_asin_price_agg = df_st_asin_price_agg.filter("price <= st_price_std")
asin_pirce_info_map = self.u_get_price_interval(
df_st_asin_price_agg.st_price_avg,
df_st_asin_price_agg.price
)
df_st_asin_price_agg = df_st_asin_price_agg.withColumn(
"price_interval",
asin_pirce_info_map["price_interval"]
).withColumn(
"price_type",
asin_pirce_info_map["price_type"]
).withColumn(
"interval_num",
asin_pirce_info_map['interval_num']
)
df_st_price_interval = df_st_asin_price_agg.groupby('search_term').agg(
F.first('price_interval').alias('price_interval'),
F.first('interval_num').alias('interval_num')
)
self.df_st_price_group = df_st_asin_price_agg.groupby(['search_term']).pivot("price_type").agg(
F.count(F.col("search_term"))
)
self.df_st_price_group = self.df_st_price_group.join(
df_st_price_interval, on=['search_term'], how='left'
)
price_type_list = [f"{i}" for i in range(1, 21)]
price_group_list = self.df_st_price_group.columns
self.df_st_price_group = self.check_cols(
actual_col_list=price_group_list,
schema_col_list=price_type_list,
df=self.df_st_price_group
)
self.df_st_price_group = self.df_st_price_group.select(
"search_term", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
"14", "15", "16", "17", "18", "19", "20", "price_interval", "interval_num"
).na.fill({
"1": 0, "2": 0, "3": 0, "4": 0, "5": 0, "6": 0, "7": 0, "8": 0, "9": 0, "10": 0, "11": 0, "12": 0, "13": 0,
"14": 0, "15": 0, "16": 0, "17": 0, "18": 0, "19": 0, "20": 0
})
self.df_st_price_group = self.df_st_price_group.join(
self.df_asin_count, on=['search_term'], how='left'
)
column_conditions = {
20: list(range(1, 21)),
18: list(range(1, 19)),
16: list(range(1, 17)),
14: list(range(1, 15)),
12: list(range(1, 13)),
10: list(range(1, 11)),
8: list(range(1, 9)),
6: list(range(1, 7))
}
asin_count_case_expr = "CASE " + " ".join([
f"WHEN interval_num = '{interval}' THEN CONCAT_WS(',', {', '.join([f'`{col}`' for col in columns])})"
for interval, columns in column_conditions.items()
]) + " ELSE NULL END"
self.df_st_price_group = self.df_st_price_group.withColumn(
"price_interval_asin_count",
F.expr(asin_count_case_expr)
)
asin_market_share_case_expr = "CASE " + " ".join([
f"WHEN interval_num = '{interval}' THEN CONCAT_WS(',', {', '.join([f'ROUND(`{col}`/`total_asin_num`,4)' for col in columns])})"
for interval, columns in column_conditions.items()
]) + " ELSE NULL END"
self.df_st_price_group = self.df_st_price_group.withColumn(
"price_interval_asin_market_share",
F.expr(asin_market_share_case_expr)
)
self.df_st_price_group = self.df_st_price_group.select(
'search_term', 'price_interval', 'price_interval_asin_count', 'price_interval_asin_market_share'
)
def get_ao_range(self):
# 获取ao值信息
df_st_asin_detail_ao = self.df_st_asin_detail.withColumn(
'ao_type',
F.when(
(F.col("asin_ao_val") >= 0) & (F.col("asin_ao_val") < 0.05), "ao_range_val1"
).when(
(F.col("asin_ao_val") >= 0.05) & (F.col("asin_ao_val") < 0.1), "ao_range_val2"
).when(
(F.col("asin_ao_val") >= 0.1) & (F.col("asin_ao_val") < 0.2), "ao_range_val3"
).when(
(F.col("asin_ao_val") >= 0.2) & (F.col("asin_ao_val") < 0.3), "ao_range_val4"
).when(
(F.col("asin_ao_val") >= 0.3) & (F.col("asin_ao_val") < 0.4), "ao_range_val5"
).when(
(F.col("asin_ao_val") >= 0.4) & (F.col("asin_ao_val") < 0.5), "ao_range_val6"
).when(
(F.col("asin_ao_val") >= 0.5) & (F.col("asin_ao_val") < 0.6), "ao_range_val7"
).when(
(F.col("asin_ao_val") >= 0.6) & (F.col("asin_ao_val") < 0.7), "ao_range_val8"
).when(
(F.col("asin_ao_val") >= 0.7) & (F.col("asin_ao_val") < 0.8), "ao_range_val9"
).when(
(F.col("asin_ao_val") >= 0.8) & (F.col("asin_ao_val") < 0.9), "ao_range_val10"
).when(
(F.col("asin_ao_val") >= 0.9) & (F.col("asin_ao_val") < 1), "ao_range_val11"
).when(
F.col("asin_ao_val") >= 1, "ao_range_val12"
)
)
self.df_st_ao_group = df_st_asin_detail_ao.groupby(["search_term"]).pivot(f"ao_type").agg(
F.count(f"search_term")
)
ao_range_val_list = [f"ao_range_val{i}" for i in range(1, 13)]
ao_group_list = self.df_st_ao_group.columns
self.df_st_ao_group = self.check_cols(
actual_col_list=ao_group_list,
schema_col_list=ao_range_val_list,
df=self.df_st_ao_group
)
self.df_st_ao_group = self.df_st_ao_group.select(
"search_term", "ao_range_val1", "ao_range_val2", "ao_range_val3", "ao_range_val4", "ao_range_val5",
"ao_range_val6", "ao_range_val7", "ao_range_val8", "ao_range_val9", "ao_range_val10", "ao_range_val11",
"ao_range_val12"
)
self.df_st_ao_group = self.df_st_ao_group.join(
self.df_asin_count, on=['search_term'], how='left'
)
ao_range_market_share_list = [f"ao_range_market_share{i}" for i in range(1, 13)]
total_asin_num_list = [f"total_asin_num" for i in range(1, 13)]
self.df_st_ao_group = self.hadle_cols(
col_list1=ao_range_market_share_list,
col_list2=ao_range_val_list,
col_list3=total_asin_num_list,
df=self.df_st_ao_group
)
# self.df_st_ao_group = self.df_st_ao_group.drop("total_asin_num")
def get_st_buy_box(self):
# 获取配送方式信息
df_st_asin_buy_box_detail = self.df_st_asin_detail.withColumn(
"buy_box_seller_type",
self.u_get_buy_box(self.df_st_asin_detail.asin_buy_box_seller_type)
)
df_st_asin_buy_box_detail_agg = df_st_asin_buy_box_detail.groupby(['search_term']).agg(
F.concat_ws(",", F.collect_set(df_st_asin_buy_box_detail.buy_box_seller_type)).alias("buy_box_name"),
F.concat_ws(",", F.collect_list(df_st_asin_buy_box_detail.buy_box_seller_type)).alias("buy_box_list")
)
self.df_st_buy_box = self.df_st_measure.join(
df_st_asin_buy_box_detail_agg, on=['search_term'], how='left'
)
self.df_st_buy_box = self.df_st_buy_box.withColumn(
"buy_box_num",
self.u_get_buy_box_num(self.df_st_buy_box.buy_box_name, self.df_st_buy_box.buy_box_list)
)
self.df_st_buy_box = self.df_st_buy_box.drop("buy_box_list", "orders")
def get_st_color(self):
df_st_asin_color_detail = self.df_st_asin_detail.withColumn(
"asin_is_color_flag",
self.u_judge_color(F.col("asin_color"))
)
df_st_asin_color_detail = df_st_asin_color_detail.filter("asin_is_color_flag = 1")
df_st_color_agg = df_st_asin_color_detail.groupby(['search_term', 'asin_color']).agg(
F.sum("asin_bsr_orders").alias("color_bsr_orders"),
F.count("asin_color").alias("color_quantity")
)
df_st_color_agg = df_st_color_agg.join(
self.df_st_attribute, on=['search_term'], how='left'
)
df_st_color_agg = df_st_color_agg.withColumn(
"color_bsr_orders_percent",
F.round(F.col("color_bsr_orders") / F.col("bsr_orders"), 3)
)
df_st_color_agg = df_st_color_agg.select(
"search_term", "asin_color", "color_quantity", "color_bsr_orders_percent"
)
self.df_st_color = df_st_color_agg.groupby(['search_term']).agg(
F.concat_ws("&&&&", F.collect_list(df_st_color_agg.asin_color)).alias("color_name"),
F.concat_ws(",", F.collect_list(df_st_color_agg.color_quantity)).alias("color_num"),
F.concat_ws(",", F.collect_list(df_st_color_agg.color_bsr_orders_percent)).alias("color_bsr_orders_percent"),
)
def get_launch_time_range(self):
# 获取上架时间信息
time = datetime.now().date()
one_month_time = time + timedelta(days=-30)
three_months_time = time + timedelta(days=-90)
six_months_time = time + timedelta(days=-180)
twelve_months_time = time + timedelta(days=-360)
fifteen_months_time = time + timedelta(days=-450)
twenty_four_months_time = time + timedelta(days=-720)
thirty_six_months_time = time + timedelta(days=-1080)
df_st_asin_detail_launch_time = self.df_st_asin_detail.withColumn(
'launch_time_type',
F.when(
F.col("asin_launch_time") >= one_month_time, "launch_time_num1"
).when(
(F.col("asin_launch_time") >= three_months_time) & (F.col("asin_launch_time") < one_month_time), "launch_time_num2"
).when(
(F.col("asin_launch_time") >= six_months_time) & (F.col("asin_launch_time") < three_months_time), "launch_time_num3"
).when(
(F.col("asin_launch_time") >= twelve_months_time) & (F.col("asin_launch_time") < six_months_time), "launch_time_num4"
).when(
(F.col("asin_launch_time") >= fifteen_months_time) & (F.col("asin_launch_time") < twelve_months_time), "launch_time_num5"
).when(
(F.col("asin_launch_time") >= twenty_four_months_time) & (F.col("asin_launch_time") < fifteen_months_time), "launch_time_num6"
).when(
(F.col("asin_launch_time") >= thirty_six_months_time) & (F.col("asin_launch_time") < twenty_four_months_time), "launch_time_num7"
).when(
(F.col("asin_launch_time") < thirty_six_months_time), "launch_time_num8"
)
)
self.df_st_launch_time_group = df_st_asin_detail_launch_time.groupby(["search_term"]).pivot(f"launch_time_type").agg(
F.count(f"search_term")
)
launch_time_num_list = [f"launch_time_num{i}" for i in range(1, 9)]
launch_time_group = self.df_st_launch_time_group.columns
self.df_st_launch_time_group = self.check_cols(
actual_col_list=launch_time_group,
schema_col_list=launch_time_num_list,
df=self.df_st_launch_time_group
)
self.df_st_launch_time_group = self.df_st_launch_time_group.select(
"search_term", "launch_time_num1", "launch_time_num2", "launch_time_num3", "launch_time_num4",
"launch_time_num5", "launch_time_num6", "launch_time_num7", "launch_time_num8"
)
self.df_st_launch_time_group = self.df_st_launch_time_group.join(
self.df_asin_count, on=["search_term"], how='left'
)
launch_time_market_share_list = [f"launch_time_market_share{i}" for i in range(1, 9)]
total_asin_num_list = [f"total_asin_num" for i in range(1, 9)]
self.df_st_launch_time_group = self.hadle_cols(
col_list1=launch_time_market_share_list,
col_list2=launch_time_num_list,
col_list3=total_asin_num_list,
df=self.df_st_launch_time_group
)
self.df_st_launch_time_group = self.df_st_launch_time_group.drop("total_asin_num")
def get_comments_num_range(self):
# 获取评论数信息
df_st_asin_detail_comments = self.df_st_asin_detail.withColumn(
"comments_type",
F.when(
(F.col("asin_total_comments") >= 0) & (F.col("asin_total_comments") < 50), "comments_num1"
).when(
(F.col("asin_total_comments") >= 50) & (F.col("asin_total_comments") < 100), "comments_num2"
).when(
(F.col("asin_total_comments") >= 100) & (F.col("asin_total_comments") < 150), "comments_num3"
).when(
(F.col("asin_total_comments") >= 150) & (F.col("asin_total_comments") < 200), "comments_num4"
).when(
(F.col("asin_total_comments") >= 200) & (F.col("asin_total_comments") < 300), "comments_num5"
).when(
(F.col("asin_total_comments") >= 300) & (F.col("asin_total_comments") < 400), "comments_num6"
).when(
(F.col("asin_total_comments") >= 400) & (F.col("asin_total_comments") < 500), "comments_num7"
).when(
(F.col("asin_total_comments") >= 500) & (F.col("asin_total_comments") < 600), "comments_num8"
).when(
(F.col("asin_total_comments") >= 600) & (F.col("asin_total_comments") < 700), "comments_num9"
).when(
(F.col("asin_total_comments") >= 700) & (F.col("asin_total_comments") < 800), "comments_num10"
).when(
(F.col("asin_total_comments") >= 800) & (F.col("asin_total_comments") < 900), "comments_num11"
).when(
(F.col("asin_total_comments") >= 900) & (F.col("asin_total_comments") < 1000), "comments_num12"
).when(
F.col("asin_total_comments") >= 1000, "comments_num13"
)
)
self.df_st_comments_group = df_st_asin_detail_comments.groupby(["search_term"]).pivot(f"comments_type").agg(
F.count(f"search_term")
)
comments_num_list = [f"comments_num{i}" for i in range(1, 14)]
comments_group_list = self.df_st_comments_group.columns
self.df_st_comments_group = self.check_cols(
actual_col_list=comments_group_list,
schema_col_list=comments_num_list,
df=self.df_st_comments_group
)
self.df_st_comments_group = self.df_st_comments_group.select(
"search_term", "comments_num1", "comments_num2", "comments_num3", "comments_num4", "comments_num5",
"comments_num6", "comments_num7", "comments_num8", "comments_num9", "comments_num10", "comments_num11",
"comments_num12", "comments_num13"
)
self.df_st_comments_group = self.df_st_comments_group.join(
self.df_asin_count, on=["search_term"], how='left'
)
comments_num_market_share_list = [f"comments_num_market_share{i}" for i in range(1, 14)]
total_asin_num_list = [f"total_asin_num" for i in range(1, 14)]
self.df_st_comments_group = self.hadle_cols(
col_list1=comments_num_market_share_list,
col_list2=comments_num_list,
col_list3=total_asin_num_list,
df=self.df_st_comments_group
)
self.df_st_comments_group = self.df_st_comments_group.drop("total_asin_num")
def get_rating_group(self):
df_st_asin_detail_rating = self.df_st_asin_detail.withColumn(
"rating_type",
F.when(
(F.col("rating") >= 0) & (F.col("rating") < 1), "rating_section1"
).when(
(F.col("rating") >= 1) & (F.col("rating") < 2), "rating_section2"
).when(
(F.col("rating") >= 2) & (F.col("rating") < 3), "rating_section3"
).when(
(F.col("rating") >= 3) & (F.col("rating") < 4), "rating_section4"
).when(
(F.col("rating") >= 4) & (F.col("rating") < 4.3), "rating_section5"
).when(
(F.col("rating") >= 4.3) & (F.col("rating") < 4.5), "rating_section6"
).when(
F.col("rating") >= 4.5, "rating_section7"
)
)
self.df_st_rating_group = df_st_asin_detail_rating.groupby(["search_term"]).pivot(f"rating_type").agg(
F.count(f"search_term")
)
rating_section_list = [f"rating_section{i}" for i in range(1, 8)]
rating_group_list = self.df_st_rating_group.columns
self.df_st_rating_group = self.check_cols(
actual_col_list=rating_group_list,
schema_col_list=rating_section_list,
df=self.df_st_rating_group
)
self.df_st_rating_group = self.df_st_rating_group.select(
"search_term", "rating_section1", "rating_section2", "rating_section3", "rating_section4",
"rating_section5", "rating_section6", "rating_section7"
).na.fill({
"rating_section1": 0, "rating_section2": 0, "rating_section3": 0, "rating_section4": 0,
"rating_section5": 0, "rating_section6": 0, "rating_section7": 0
})
self.df_st_rating_group = self.df_st_rating_group.join(
self.df_asin_count, on=["search_term"], how='left'
)
total_asin_num_list = [f"total_asin_num" for i in range(1, 14)]
rating_market_share_section_list = [f"rating_market_share_section{i}" for i in range(1, 8)]
self.df_st_rating_group = self.hadle_cols(
col_list1=rating_market_share_section_list,
col_list2=rating_section_list,
col_list3=total_asin_num_list,
df=self.df_st_rating_group
)
self.df_st_rating_group = self.df_st_rating_group.na.fill({
"rating_market_share_section1": 0.0, "rating_market_share_section2": 0.0,
"rating_market_share_section3": 0.0, "rating_market_share_section4": 0.0,
"rating_market_share_section5": 0.0, "rating_market_share_section6": 0.0,
"rating_market_share_section7": 0.0
})
self.df_st_rating_group = self.df_st_rating_group.withColumn(
"rating_section",
F.concat_ws(",",
F.col("rating_section1"),
F.col("rating_section2"),
F.col("rating_section3"),
F.col("rating_section4"),
F.col("rating_section5"),
F.col("rating_section6"),
F.col("rating_section7")
)
)
self.df_st_rating_group = self.df_st_rating_group.withColumn(
"rating_market_share_section",
F.concat_ws(",",
F.col("rating_market_share_section1"),
F.col("rating_market_share_section2"),
F.col("rating_market_share_section3"),
F.col("rating_market_share_section4"),
F.col("rating_market_share_section5"),
F.col("rating_market_share_section6"),
F.col("rating_market_share_section7")
)
)
self.df_st_rating_group = self.df_st_rating_group.drop(
"total_asin_num", "rating_section1", "rating_section2", "rating_section3", "rating_section4",
"rating_section5", "rating_section6", "rating_section7", "rating_market_share_section1",
"rating_market_share_section2", "rating_market_share_section3", "rating_market_share_section4",
"rating_market_share_section5", "rating_market_share_section6", "rating_market_share_section7"
)
def get_st_asin_seller(self):
# 获取卖家相关信息
df_seller_asin_detail = self.df_st_asin_measure.join(
self.df_seller_asin, on=['asin'], how='left'
).join(
self.df_asin_measure, on=['asin'], how='left'
)
df_seller_asin_detail = df_seller_asin_detail.na.fill({
"seller_name": 'OTHER'
})
df_seller_asin_agg = df_seller_asin_detail.groupBy(['search_term']).agg(
F.concat_ws(",", F.collect_list("seller_name")).alias("seller_name_list"),
F.concat_ws(",", F.collect_list("asin_bsr_orders")).alias("seller_bsr_orders_list"),
F.concat_ws(",", F.collect_set("seller_name")).alias("seller_name_type")
)
self.df_st_seller = self.df_st_measure.join(
df_seller_asin_agg, on=['search_term'], how='left'
)
self.df_st_seller = self.df_st_seller.withColumn(
"seller_num",
self.u_get_seller_num(self.df_st_seller.seller_name_type, self.df_st_seller.seller_name_list)
).withColumn(
"seller_bsr_orders",
self.u_get_seller_bsr_orders(self.df_st_seller.seller_name_type, self.df_st_seller.seller_name_list, self.df_st_seller.seller_bsr_orders_list)
)
self.df_st_seller = self.df_st_seller.drop("st_zr_orders", "orders")
self.df_st_seller = self.df_st_seller.withColumnRenamed("seller_name_type", "seller_name")
def get_top20_asin(self):
# 获取特定asin下某品牌的总商品数,新品数,bsr销量
df_st_brand_asin_agg = self.df_st_asin_detail.groupBy(["search_term", "asin_brand_name"]).agg(
F.count("asin").alias("brand_total_asin"),
F.sum("asin_is_new").alias("brand_new_asin"),
F.sum("asin_bsr_orders").alias("brand_bsr_orders")
)
df_st_brand_asin_agg = df_st_brand_asin_agg.na.fill({
"brand_new_asin": 0, "brand_bsr_orders": 0.0, "asin_brand_name": "None"
})
df_st_brand_asin_agg = df_st_brand_asin_agg.filter("asin_brand_name not in ('null', 'None', 'none', 'NULL')")
brand_bsr_orders_window = Window.partitionBy(["search_term"]).orderBy(
df_st_brand_asin_agg.brand_bsr_orders.desc_nulls_last()
)
df_st_top20_asin_detail_agg = df_st_brand_asin_agg.withColumn(
"brand_bsr_orders_rank",
F.row_number().over(window=brand_bsr_orders_window)
)
df_st_top20_asin_detail_agg = df_st_top20_asin_detail_agg.filter("brand_bsr_orders_rank<=20")
df_st_top20_agg = df_st_top20_asin_detail_agg.select("search_term", "asin_brand_name")
df_st_top20_brand = df_st_top20_agg.groupBy(["search_term"]).agg(
F.concat_ws("&&&&", F.collect_list(df_st_top20_agg.asin_brand_name)).alias("top20_brand")
)
df_st_top20_brand_asin_agg = df_st_top20_asin_detail_agg.join(
self.df_st_attribute, on=["search_term"], how='left'
)
df_st_top20_brand_asin_agg = df_st_top20_brand_asin_agg.withColumn(
"brand_new_num_proportion",
df_st_top20_brand_asin_agg.brand_new_asin / df_st_top20_brand_asin_agg.brand_total_asin
).withColumn(
"brand_market_share",
F.when(
F.col("bsr_orders") == 0, F.lit(0)
).otherwise(
df_st_top20_brand_asin_agg.brand_bsr_orders / df_st_top20_brand_asin_agg.bsr_orders
)
)
df_st_top20_brand_agg = df_st_top20_brand_asin_agg.groupBy(["search_term"]).agg(
F.concat_ws(",", F.collect_list(df_st_top20_brand_asin_agg.brand_new_num_proportion)).alias("top20_brand_new_num_proportion"),
F.concat_ws(",", F.collect_list(df_st_top20_brand_asin_agg.brand_bsr_orders)).alias("top20_brand_bsr_oders"),
F.concat_ws(",", F.collect_list(df_st_top20_brand_asin_agg.brand_market_share)).alias("top20_brand_market_share")
)
self.df_st_top20 = self.df_st_measure.join(
df_st_top20_brand_agg, on=["search_term"], how='left'
).join(
df_st_top20_brand, on=['search_term'], how='left'
)
# 弃用字段
self.df_st_top20 = self.df_st_top20.withColumn(
"top20_asin", F.lit(None)
).withColumn(
"top20_orders", F.lit(None)
)
self.df_st_top20 = self.df_st_top20.select(
"search_term", "top20_asin", "top20_orders", "top20_brand", "top20_brand_new_num_proportion",
"top20_brand_bsr_oders", "top20_brand_market_share"
)
def get_st_size(self):
df_st_asin_size = self.df_st_asin_detail.withColumn(
"asin_size_flag",
self.u_judge_size(F.col("asin_size"), F.col("asin_style"))
)
df_st_asin_size = df_st_asin_size.filter("asin_size_flag not in ('none','null')")
df_st_size_agg = df_st_asin_size.groupby(['search_term', 'asin_size_flag']).agg(
F.sum("asin_bsr_orders").alias("size_bsr_orders"),
F.count("asin_size_flag").alias("size_quantity")
)
df_st_size_agg = df_st_size_agg.join(
self.df_st_attribute, on=['search_term'], how='left'
)
df_st_size_agg = df_st_size_agg.withColumn(
"size_bsr_orders_percent",
F.round(F.col("size_bsr_orders") / F.col("bsr_orders"), 3)
)
df_st_size_agg = df_st_size_agg.select(
"search_term", "asin_size_flag", "size_quantity", "size_bsr_orders_percent"
)
self.df_st_size = df_st_size_agg.groupby(['search_term']).agg(
F.concat_ws("&&&&", F.collect_list(df_st_size_agg.asin_size_flag)).alias("size_name"),
F.concat_ws(",", F.collect_list(df_st_size_agg.size_quantity)).alias("size_num"),
F.concat_ws(",", F.collect_list(df_st_size_agg.size_bsr_orders_percent)).alias("size_bsr_orders_percent")
)
def get_asin_package_num(self):
self.df_st_asin_detail = self.df_st_asin_detail.withColumn(
"package_num",
self.u_get_package_num(self.df_st_asin_detail.asin_title)
)
self.df_st_asin_detail = self.df_st_asin_detail.drop("asin_title")
self.df_st_asin_detail = self.df_st_asin_detail.na.fill({
"package_num": 1
})
self.df_st_package_num = self.df_st_asin_detail.groupby(["search_term"]).agg(
F.sort_array(F.collect_list(F.struct(F.col("package_num"), F.col("asin"))), False).alias("value")
)
self.df_st_package_num = self.df_st_package_num.select(
"search_term",
F.expr("transform(value, x -> x.asin)").alias("asin_list"),
F.expr("transform(value, x -> x.package_num)").alias("package_num_list")
)
# self.df_st_package_num.show(10, truncate=False)
self.df_st_package_num = self.df_st_package_num.withColumn(
"package_num_trend",
self.u_get_package_num_trend(self.df_st_package_num.package_num_list)
).withColumn(
"package_num_trend_market_share",
self.u_get_package_num_trend_market_share(self.df_st_package_num.package_num_list)
).withColumn(
"package_num_corresponding_asin",
self.u_get_package_num_corresponding_asin(self.df_st_package_num.asin_list)
)
self.df_st_package_num = self.df_st_package_num.drop("package_num_array", "asin_list")
def handle_data_group(self):
self.df_st_measure = self.df_st_measure.join(
self.df_st_key, on=['search_term'], how='inner'
).join(
self.df_st_detail, on=['search_term'], how='inner'
)
self.df_save = self.df_st_measure.join(
self.df_st_price_group, on=['search_term'], how='left'
).join(
self.df_st_ao_group, on=['search_term'], how='left'
).join(
self.df_st_attribute, on=['search_term'], how='left'
).join(
self.df_st_img_type_group, on=['search_term'], how='left'
).join(
self.df_top100_asin, on=['search_term_id'], how='left'
).join(
self.df_st_launch_time_group, on=['search_term'], how='left'
).join(
self.df_st_comments_group, on=['search_term'], how='left'
).join(
self.df_st_buy_box, on=['search_term'], how='left'
).join(
self.df_st_seller, on=['search_term'], how='left'
).join(
self.df_st_color, on=['search_term'], how='left'
).join(
self.df_st_top20, on=['search_term'], how='left'
).join(
self.df_st_rating_group, on=['search_term'], how='left'
).join(
self.df_st_size, on=['search_term'], how='left'
).join(
self.df_st_package_num, on=['search_term'], how='left'
)
for i in range(1, 19):
self.df_save = self.df_save.withColumn(f"price_range_num{i}_deprecated", F.lit(-1))
self.df_save = self.df_save.withColumn(f"price_range_market_share{i}_deprecated", F.lit(-1.0))
self.df_save = self.df_save.select(
"search_term_id", "search_term",
"price_range_num1_deprecated", "price_range_num2_deprecated", "price_range_num3_deprecated",
"price_range_num4_deprecated", "price_range_num5_deprecated", "price_range_num6_deprecated",
"price_range_num7_deprecated", "price_range_num8_deprecated", "price_range_num9_deprecated",
"price_range_num10_deprecated", "price_range_num11_deprecated", "price_range_num12_deprecated",
"price_range_num13_deprecated", "price_range_num14_deprecated", "price_range_num15_deprecated",
"price_range_num16_deprecated", "price_range_num17_deprecated", "price_range_num18_deprecated",
"price_range_market_share1_deprecated", "price_range_market_share2_deprecated",
"price_range_market_share3_deprecated", "price_range_market_share4_deprecated",
"price_range_market_share5_deprecated", "price_range_market_share6_deprecated",
"price_range_market_share7_deprecated", "price_range_market_share8_deprecated",
"price_range_market_share9_deprecated", "price_range_market_share10_deprecated",
"price_range_market_share11_deprecated", "price_range_market_share12_deprecated",
"price_range_market_share13_deprecated", "price_range_market_share14_deprecated",
"price_range_market_share15_deprecated", "price_range_market_share16_deprecated",
"price_range_market_share17_deprecated", "price_range_market_share18_deprecated",
"ao_range_val1", "ao_range_val2", "ao_range_val3", "ao_range_val4", "ao_range_val5", "ao_range_val6",
"ao_range_val7", "ao_range_val8", "ao_range_val9", "ao_range_val10", "ao_range_val11", "ao_range_val12",
"ao_range_market_share1", "ao_range_market_share2", "ao_range_market_share3", "ao_range_market_share4",
"ao_range_market_share5", "ao_range_market_share6", "ao_range_market_share7", "ao_range_market_share8",
"ao_range_market_share9", "ao_range_market_share10", "ao_range_market_share11", "ao_range_market_share12",
"total_asin_num", "new_asin_num", "orders", "bsr_orders",
"aadd_bsr_orders", "aadd_video_num", "aadd_no_video_num", "no_aadd_no_video_num", "no_aadd_video_num",
"top100_asin", "top100_orders", "top100_market_share", "top100_is_new",
"launch_time_num1", "launch_time_num2", "launch_time_num3", "launch_time_num4",
"launch_time_num5", "launch_time_num6", "launch_time_num7", "launch_time_num8",
"launch_time_market_share1", "launch_time_market_share2",
"launch_time_market_share3", "launch_time_market_share4",
"launch_time_market_share5", "launch_time_market_share6",
"launch_time_market_share7", "launch_time_market_share8",
"top20_asin", "top20_orders", "top20_brand", "top20_brand_new_num_proportion",
"top20_brand_bsr_oders", "top20_brand_market_share",
"comments_num1", "comments_num2", "comments_num3", "comments_num4",
"comments_num5", "comments_num6", "comments_num7", "comments_num8",
"comments_num9", "comments_num10", "comments_num11", "comments_num12",
"comments_num13",
"comments_num_market_share1", "comments_num_market_share2",
"comments_num_market_share3", "comments_num_market_share4",
"comments_num_market_share5", "comments_num_market_share6",
"comments_num_market_share7", "comments_num_market_share8",
"comments_num_market_share9", "comments_num_market_share10",
"comments_num_market_share11", "comments_num_market_share12",
"comments_num_market_share13",
"buy_box_name", "buy_box_num",
"seller_name", "seller_num", "seller_bsr_orders",
"color_name", "color_num",
"new_asin_bsr_orders",
"rating_section", "rating_market_share_section",
"size_name", "size_num",
"package_num_trend", "package_num_trend_market_share", "package_num_corresponding_asin",
"price_interval", "price_interval_asin_count", "price_interval_asin_market_share",
"color_bsr_orders_percent",
"size_bsr_orders_percent"
)
self.df_save = self.df_save.withColumn(
"created_time",
F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')
).withColumn(
"updated_time",
F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')
)
self.df_save = self.df_save.na.fill({
"ao_range_val1": 0, "ao_range_val2": 0, "ao_range_val3": 0, "ao_range_val4": 0, "ao_range_val5": 0,
"ao_range_val6": 0, "ao_range_val7": 0, "ao_range_val8": 0, "ao_range_val9": 0,
"ao_range_val10": 0, "ao_range_val11": 0, "ao_range_val12": 0,
"ao_range_market_share1": 0.0, "ao_range_market_share2": 0.0, "ao_range_market_share3": 0.0,
"ao_range_market_share4": 0.0, "ao_range_market_share5": 0.0, "ao_range_market_share6": 0.0,
"ao_range_market_share7": 0.0, "ao_range_market_share8": 0.0, "ao_range_market_share9": 0.0,
"ao_range_market_share10": 0.0, "ao_range_market_share11": 0.0, "ao_range_market_share12": 0.0,
"total_asin_num": 0, "new_asin_num": 0, "orders": 0, "bsr_orders": 0, "aadd_video_num": 0,
"aadd_no_video_num": 0, "no_aadd_no_video_num": 0, "no_aadd_video_num": 0,
"launch_time_num1": 0, "launch_time_num2": 0, "launch_time_num3": 0, "launch_time_num4": 0,
"launch_time_num5": 0, "launch_time_num6": 0, "launch_time_num7": 0, "launch_time_num8": 0,
"launch_time_market_share1": 0.0, "launch_time_market_share2": 0.0,
"launch_time_market_share3": 0.0, "launch_time_market_share4": 0.0,
"launch_time_market_share5": 0.0, "launch_time_market_share6": 0.0,
"launch_time_market_share7": 0.0, "launch_time_market_share8": 0.0,
"comments_num1": 0, "comments_num2": 0, "comments_num3": 0, "comments_num4": 0, "comments_num5": 0,
"comments_num6": 0, "comments_num7": 0, "comments_num8": 0, "comments_num9": 0,
"comments_num10": 0, "comments_num11": 0, "comments_num12": 0, "comments_num13": 0,
"comments_num_market_share1": 0.0, "comments_num_market_share2": 0.0,
"comments_num_market_share3": 0.0, "comments_num_market_share4": 0.0,
"comments_num_market_share5": 0.0, "comments_num_market_share6": 0.0,
"comments_num_market_share7": 0.0,
"comments_num_market_share8": 0.0, "comments_num_market_share9": 0.0,
"comments_num_market_share10": 0.0, "comments_num_market_share11": 0.0,
"comments_num_market_share12": 0.0, "comments_num_market_share13": 0.0
})
# 预留字段补全
self.df_save = self.df_save.withColumn(
"re_string_field1", F.lit("null")
).withColumn(
"re_string_field2", F.lit("null")
).withColumn(
"re_string_field3", F.lit("null")
).withColumn(
"re_int_field1", F.lit(0)
).withColumn(
"re_int_field2", F.lit(0)
).withColumn(
"re_int_field3", F.lit(0)
).withColumn(
"site_name", F.lit(self.site_name)
).withColumn(
"date_type", F.lit(self.date_type)
).withColumn(
"date_info", F.lit(self.date_info)
)
def handle_data(self):
self.get_st_asin_detail()
self.get_st_attribute()
self.get_img_type()
self.get_asin_count()
self.get_price_range()
self.get_ao_range()
self.get_st_buy_box()
self.get_st_color()
self.get_launch_time_range()
self.get_comments_num_range()
self.get_rating_group()
self.get_st_asin_seller()
self.get_top20_asin()
self.get_st_size()
self.get_asin_package_num()
self.handle_data_group()
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季, 比如: 2022-1
handle_obj = DwtAbaStAnalyticsReport(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()