1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import sys
sys.path.append(os.path.dirname(sys.path[0]))
import functools
from utils.db_util import DbTypes
from utils.common_util import CommonUtil
from utils.spark_util import SparkUtil
from utils.redis_utils import RedisUtils
from utils.DorisHelper import DorisHelper
from pyspark.sql.window import Window
from pyspark.sql import functions as F, DataFrame
# 待同步的六大站点
site_names = ['us', 'uk', 'it', 'de', 'es', 'fr']
def save_to_redis_list(iterator, redis_key, ttl: -1, batch: int):
redis_cli = RedisUtils.get_redis_client_by_type(db_type='microservice')
cnt = 0
pipeline = redis_cli.pipeline()
for json_row in iterator:
pipeline.lpush(redis_key, json_row)
cnt += 1
if cnt > 0 and cnt % batch == 0:
pipeline.execute()
if cnt % batch != 0:
pipeline.execute()
pipeline.close()
if ttl > 0:
redis_cli.expire(redis_key, ttl)
redis_cli.close()
pass
def save_to_kafka(all_df: DataFrame):
# df_kafka = all_df.repartition(10)
kafka_target = {
"kafka.bootstrap.servers": "218.17.154.146:27092,218.17.154.146:27093,218.17.154.146:27094",
"kafka.security.protocol": "SASL_PLAINTEXT",
"kafka.sasl.mechanism": "PLAIN",
"kafka.sasl.jaas.config": "org.apache.kafka.common.security.plain.PlainLoginModule required username='producer' password='R8@xY3pL!qz';",
"topic": "self_asin_detail",
}
all_df.selectExpr("CAST(concat(site,asin) AS STRING) AS key", "to_json(struct(*)) AS value") \
.write \
.format("kafka") \
.options(**kafka_target) \
.save()
def save_to_doris(df_all: DataFrame):
df_all = df_all.selectExpr("""
case when site = 'us' then 'Amazon.com'
when site = 'uk' then 'Amazon.co.uk'
when site = 'de' then 'Amazon.de'
when site = 'fr' then 'Amazon.fr'
when site = 'it' then 'Amazon.it'
when site = 'es' then 'Amazon.es'
when site = 'ca' then 'Amazon.ca'
when site = 'jp' then 'Amazon.jp'
when site = 'mx' then 'Amazon.com.mx'
when site = 'nl' then 'Amazon.nl'
when site = 'be' then 'Amazon.com.be'
when site = 'tr' then 'Amazon.com.tr'
when site = 'se' then 'Amazon.se'
when site = 'pl' then 'Amazon.pl'
when site = 'ae' then 'Amazon.ae'
when site = 'au' then 'Amazon.com.au'
else site end as site
""",
"asin",
"account_name",
"rating",
"total_comments",
"volume",
"weight",
"category",
"`rank`",
"video_url",
"add_url",
"material",
"img_type",
"qa_num",
"brand",
"node_id",
"one_star",
"two_star",
"three_star",
"four_star",
"five_star",
"low_star",
"asin_type",
"is_coupon",
"other_seller_name",
"buy_sales",
"updated_at",
"img_num"
)
write_fields = ",".join(df_all.schema.fieldNames())
connection_info = DorisHelper.get_connection_info("adv")
options = {
"doris.fenodes": f"{connection_info['ip']}:{connection_info['http_port']}",
"user": connection_info['user'],
"password": connection_info['pwd'],
# "doris.table.identifier": "advertising_manager_test.test_doris",
"doris.table.identifier": "advertising_manager.sync_amazon_item_day",
# 此处字段顺序要固定
"doris.write.fields": write_fields,
# 部分列更新
"doris.sink.properties.partial_columns": "true",
"doris.sink.properties.format": "json"
}
df_all.write.format("doris") \
.options(**options) \
.mode("append") \
.save()
def export():
spark = SparkUtil.get_spark_session("self_asin_redis:export")
redis_key = f"self_asin_detail:2024-11-25"
for site_name in site_names:
query = f"""
select asin,
coalesce(site, '{site_name}') as site,
coalesce(rating, 0) as rating,
total_comments,
volume,
round(weight,4) as weight,
category,
`rank`,
video_url,
add_url,
material,
img_type,
qa_num,
brand,
node_id,
one_star,
two_star,
three_star,
four_star,
five_star,
low_star,
asin_type,
is_coupon,
account_name,
other_seller_name,
buy_sales,
img_num,
date_format(updated_at, '%Y-%m-%d %H:%m:%S') updated_at
from {site_name}_self_asin_detail
where updated_at >= '2024-11-22'
and updated_at <= '2024-11-26'
"""
asin_df = SparkUtil.read_jdbc(spark, DbTypes.mysql.name, site_name, query=query)
# 此处需要根据时间开窗取最新的那个
asin_df = asin_df.withColumn("row_number",
F.row_number().over(
window=Window.partitionBy(['site', 'asin']).orderBy(F.col("updated_at").desc()))) \
.where("row_number == 1") \
.drop("row_number")
# 填充默认值
asin_df = na_fill(asin_df).cache()
asin_df.toJSON().foreachPartition(functools.partial(save_to_redis_list, batch=5000, redis_key=redis_key, ttl=3600 * 24))
print(f"{site_name}:redis:success")
print("success all")
pass
def na_fill(asin_df):
return asin_df.na.fill({
"rating": 0,
"total_comments": 0,
"volume": "",
"weight": 0,
"category": "",
"rank": 0,
"video_url": "",
"add_url": "",
"material": "",
"img_type": 0,
"qa_num": 0,
"brand": "",
"node_id": "",
"one_star": 0,
"two_star": 0,
"three_star": 0,
"four_star": 0,
"five_star": 0,
"low_star": 0,
"asin_type": 0,
"is_coupon": 0,
"account_name": "",
"other_seller_name": "",
"buy_sales": "",
"img_num": 0
})
pass
if __name__ == '__main__':
export()