1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
import os
import sys
import time
import traceback
sys.path.append("/opt/module/spark-3.2.0-bin-hadoop3.2/demo/py_demo/")
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
from pyspark.sql import functions as F
from pyspark.sql.types import *
from utils.db_util import DBUtil
from utils.common_util import CommonUtil
from utils.spark_util import SparkUtil
from datetime import datetime, timedelta
from functools import reduce
from utils.es_util import EsUtils
from pyspark.sql import Window
from pyspark.storagelevel import StorageLevel
from utils.DorisHelper import DorisHelper
from yswg_utils.common_df import get_node_first_id_df, get_first_id_from_category_desc_df
from yswg_utils.common_udf import udf_parse_bs_category, parse_weight_str, udf_extract_volume_dimensions, udf_get_package_quantity_with_flag as udf_get_package_quantity, udf_parse_seller_json
class KafkaFlowAsinDetail(Templates):
def __init__(self, site_name='us', date_type="day", date_info='2022-10-01', consumer_type='latest', test_flag='normal', batch_size=100000):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.consumer_type = consumer_type # 消费实时还是消费历史
self.test_flag = test_flag # 正式环境跟测试环境
self.year = str(self.date_info).split('-')[0]
self.year_month = str(self.date_info).replace("-", "_")
self.repartition_num = 80
# kafka相关参数
self.topic_name = f"{self.site_name}_asin_detail_month_{self.year_month}"
self.batch_size = batch_size
self.schema = self.init_schema()
self.batch_size_history = 20000
self.processing_time = 900 if self.site_name == 'us' else 600
self.history_batch_id = 0
# doris相关参数
self.doris_db = "test" if self.test_flag == "test" else "selection"
self.max_bought_month_table = f"{self.site_name}_asin_max_bought_month_info"
self.parent_asin_latest_detail_table = f"{self.site_name}_parent_asin_latest_detail"
self.asin_latest_detail_table = f"{self.site_name}_asin_latest_detail"
# elasticsearch相关参数
self.client = EsUtils.get_es_client()
self.es_index_name = f"{self.topic_name}_test" if self.test_flag == 'test' else f"{self.topic_name}"
self.es_index_alias_name = f"{self.site_name}_st_detail_last_4_week_test" if self.test_flag == 'test' else f"{self.site_name}_st_detail_last_4_week"
self.es_index_body = EsUtils.get_es_body()
self.es_options = EsUtils.get_es_options(self.es_index_name)
self.db_save = 'kafka_flow_asin_detail'
self.app_name = self.get_app_name()
print(f"任务名称:{self.app_name}")
# Spark实时消费相关参数
self.spark = SparkUtil.get_stream_spark(app_name=self.app_name)
self.check_path = f"/tmp/wangrui/{self.topic_name}_{self.consumer_type}_test" if self.test_flag == 'test' else f"/tmp/wangrui/{self.topic_name}_{self.consumer_type}"
self.previous_date = self.get_previous_date(self)
self.previous_two_date = self.get_previous_two_date(self)
self.launch_time_interval_dict = self.get_launch_time_interval_dict()
print("日期字典:", self.launch_time_interval_dict)
self.initial_batch_id = self.get_initial_batch_id(self)
print("当前消费的起始批次为: ", self.initial_batch_id)
self.history_batch_id = self.initial_batch_id + 1
# BSR分类解析模板
self.pattern1_dict = {
"us": "See Top 100 in ".lower(),
"uk": "See Top 100 in ".lower(),
"de": "Siehe Top 100 in ".lower(),
"es": "Ver el Top 100 en ".lower(),
"fr": "Voir les 100 premiers en ".lower(),
"it": "Visualizza i Top 100 nella categoria ".lower(),
}
self.pattern_current_dict = {
"us": "#(\d+) ",
"uk": "(\d+) in ",
"de": "(\d+) in ",
"es": "(\d+) en ",
"fr": "(\d+) en ",
"it": "(\d+) in ",
}
# DataFrame初始化
self.df_previous_flow_asin = self.spark.sql("select 1+1;")
self.df_seller_info = self.spark.sql("select 1+1;")
self.df_self_asin_info = self.spark.sql("select 1+1;")
self.df_alarm_brand_info = self.spark.sql("select 1+1;")
self.df_asin_label_info = self.spark.sql("select 1+1;")
self.df_asin_measure = self.spark.sql("select 1+1;")
self.df_bs_report = self.spark.sql("select 1+1;")
self.df_asin_keep_date = self.spark.sql("select 1+1;")
self.df_asin_bsr_end = self.spark.sql("select 1+1;")
self.df_hide_category = self.spark.sql("select 1+1;")
self.df_asin_new_cate = self.spark.sql("select 1+ 1;")
self.df_user_package_num = self.spark.sql("select 1+1;")
self.df_asin_category = self.spark.sql("select 1+1;")
self.df_max_bought_month_info_update = self.spark.sql("select 1+1;")
# udf函数注册
package_schema = StructType([
StructField("parse_package_quantity", IntegerType(), True),
StructField("is_package_quantity_abnormal", IntegerType(), True),
])
self.u_parse_package_quantity = self.spark.udf.register('u_parse_package_quantity', udf_get_package_quantity, package_schema)
bs_category_schema = StructType([
StructField('asin_bs_cate_1_id', StringType(), True),
StructField('asin_bs_cate_current_id', StringType(), True),
StructField('asin_bs_cate_1_rank', IntegerType(), True),
StructField('asin_bs_cate_current_rank', IntegerType(), True),
])
self.u_parse_bs_category = self.spark.udf.register('u_parse_bs_category', udf_parse_bs_category, bs_category_schema)
weight_schema = StructType([
StructField('weight', FloatType(), True),
StructField('weight_type', StringType(), True)
])
self.u_parse_weight = self.spark.udf.register('u_parse_weight', parse_weight_str, weight_schema)
volume_schema = StructType([
StructField("length", FloatType(), True),
StructField("width", FloatType(), True),
StructField("height", FloatType(), True),
StructField("asin_volume_type", StringType(), True)
])
self.u_parse_volume = self.spark.udf.register('u_parse_volume', udf_extract_volume_dimensions, volume_schema)
seller_schema = StructType([
StructField("buy_box_seller_type", IntegerType(), True),
StructField("account_name", StringType(), True),
StructField("account_id", StringType(), True)
])
self.u_parse_seller_info = self.spark.udf.register('u_parse_seller_info', udf_parse_seller_json, seller_schema)
@staticmethod
def init_schema():
schema = StructType([
StructField("asin", StringType(), True),
StructField("title", StringType(), True),
StructField("img_url", StringType(), True),
StructField("rating", DoubleType(), True),
StructField("total_comments", IntegerType(), True),
StructField("price", FloatType(), True),
StructField("category", StringType(), True),
StructField("launch_time", StringType(), True),
StructField("volume", StringType(), True),
StructField("page_inventory", IntegerType(), True),
StructField("asin_vartion_list", ArrayType(ArrayType(StringType()), True), True),
StructField("title_len", IntegerType(), True),
StructField("img_num", IntegerType(), True),
StructField("img_type", StringType(), True),
StructField("activity_type", StringType(), True),
StructField("one_two_val", StringType(), True),
StructField("three_four_val", StringType(), True),
StructField("five_six_val", StringType(), True),
StructField("eight_val", StringType(), True),
StructField("node_id", StringType(), True),
StructField("five_star", IntegerType(), True),
StructField("four_star", IntegerType(), True),
StructField("three_star", IntegerType(), True),
StructField("two_star", IntegerType(), True),
StructField("one_star", IntegerType(), True),
StructField("low_star", IntegerType(), True),
StructField("together_asin", StringType(), True),
StructField("brand", StringType(), True),
StructField("ac_name", StringType(), True),
StructField("material", StringType(), True),
StructField("data_type", IntegerType(), True),
StructField("weight_str", StringType(), True),
StructField("seller_id", StringType(), True),
StructField("variat_num", IntegerType(), True),
StructField("best_sellers_rank", StringType(), True),
StructField("best_sellers_herf", StringType(), True),
StructField("account_name", StringType(), True),
StructField("parentAsin", StringType(), True),
StructField("asinUpdateTime", StringType(), True),
StructField("all_best_sellers_herf", StringType(), True),
StructField("image_view", IntegerType(), True),
StructField("product_description", StringType(), True),
StructField("describe", StringType(), True),
StructField("buy_sales", StringType(), True),
StructField("lob_asin_json", StringType(), True),
StructField("seller_json", StringType(), True),
StructField("customer_reviews_json", StringType(), True),
StructField("img_list", StringType(), True),
StructField("follow_sellers", IntegerType(), True)
])
return schema
@staticmethod
def get_previous_date(self):
self.df_date = self.spark.sql(f"select * from dim_date_20_to_30")
df = self.df_date.toPandas()
df_loc = df.loc[(df.year_month == f'{self.date_info}') & (df.day == 1)]
cur_month_id = int(list(df_loc.id)[0])
previous_date_id = cur_month_id - 1
df_loc = df.loc[df.id == previous_date_id]
previous_date = str(list(df_loc.year_month)[0])
return previous_date
@staticmethod
def get_previous_two_date(self):
self.df_date = self.spark.sql(f"select * from dim_date_20_to_30")
df = self.df_date.toPandas()
df_loc = df.loc[(df.year_month == f'{self.date_info}') & (df.day == 1)]
cur_month_id = int(list(df_loc.id)[0])
previous_two_date_id = cur_month_id - 40
df_loc = df.loc[df.id == previous_two_date_id]
prvious_two_date = str(list(df_loc.year_month)[0])
return prvious_two_date
@staticmethod
def get_launch_time_interval_dict():
cur_date = datetime.now().date()
return {
"one_month": (cur_date + timedelta(days=-30)).strftime('%Y-%m-%d'),
"three_month": (cur_date + timedelta(days=-90)).strftime('%Y-%m-%d'),
"six_month": (cur_date + timedelta(days=-180)).strftime('%Y-%m-%d'),
"twelve_month": (cur_date + timedelta(days=-360)).strftime('%Y-%m-%d'),
"twenty_four_month": (cur_date + timedelta(days=-720)).strftime('%Y-%m-%d'),
"thirty_six_month": (cur_date + timedelta(days=-1080)).strftime('%Y-%m-%d')
}
@staticmethod
def get_initial_batch_id(self):
max_bought_month_batch_id_sql = f"""
SELECT MAX(batch_id) as initial_batch_id from {self.doris_db}.{self.max_bought_month_table} WHERE date_info='{self.date_info}' AND consumer_type='{self.consumer_type}'
"""
df_max_bought_month_batch_id = DorisHelper.spark_import_with_sql(
self.spark, query=max_bought_month_batch_id_sql)
max_bought_month_batch_id = 0 if df_max_bought_month_batch_id.take(1)[0]['initial_batch_id'] is None else \
df_max_bought_month_batch_id.take(1)[0]['initial_batch_id']
return max_bought_month_batch_id
# 1. 处理asin分类及排名以及排名类型字段
def handle_asin_bs_category_info(self, df):
df = df.withColumnRenamed("parentAsin", "parent_asin")
cate_current_pattern = self.pattern_current_dict[self.site_name]
cate_1_pattern = self.pattern1_dict[self.site_name]
df = df.withColumn("asin_bs_sellers_rank_lower", F.lower("best_sellers_rank"))
df = df.withColumn("asin_bs", self.u_parse_bs_category(
"asin_bs_sellers_rank_lower", "best_sellers_herf", "all_best_sellers_herf", F.lit(cate_current_pattern), F.lit(cate_1_pattern)))
df = df.withColumn("asin_bs_cate_1_id", df.asin_bs.getField("asin_bs_cate_1_id")) \
.withColumn("asin_bs_cate_current_id", df.asin_bs.getField("asin_bs_cate_current_id")) \
.withColumn("asin_bs_cate_1_rank", df.asin_bs.getField("asin_bs_cate_1_rank")) \
.withColumn("asin_bs_cate_current_rank", df.asin_bs.getField("asin_bs_cate_current_rank")) \
.drop("asin_bs", "asin_bs_sellers_rank_lower", "best_sellers_herf", "all_best_sellers_herf",
"best_sellers_rank")
df = df.withColumn("rank_type", F.expr("""
CASE WHEN asin_bs_cate_1_rank IS NOT NULL AND asin_bs_cate_1_rank BETWEEN 0 AND 1000 THEN 1
WHEN asin_bs_cate_1_rank BETWEEN 1000 AND 5000 THEN 2 WHEN asin_bs_cate_1_rank BETWEEN 5000 AND 10000 THEN 3
WHEN asin_bs_cate_1_rank BETWEEN 10000 AND 20000 THEN 4 WHEN asin_bs_cate_1_rank BETWEEN 20000 AND 30000 THEN 5
WHEN asin_bs_cate_1_rank BETWEEN 30000 AND 50000 THEN 6 WHEN asin_bs_cate_1_rank BETWEEN 50000 AND 70000 THEN 7
WHEN asin_bs_cate_1_rank >= 70000 THEN 8 ELSE 0 END"""))
return df
# 2. 利用node_id以及分类描述进行分类补充(此时无排名信息)
def handle_asin_category_supplement(self, df):
df = df.join(self.df_asin_new_cate, on=['node_id'], how='left')
df = df.withColumn("asin_bs_cate_current_id", F.coalesce(F.col("asin_bs_cate_current_id"), F.col("node_id"))). \
withColumn("asin_bs_cate_1_id", F.coalesce(F.col("asin_bs_cate_1_id"), F.col("category_first_id"))). \
drop("category_first_id", "node_id")
df_with_category = df.filter("asin_bs_cate_1_id is null and category is not null").select("asin", "category")
df_with_category = df_with_category.withColumn(
"category_split", F.split(F.col("category"), "›")
).withColumn(
"category_first_name", F.lower(F.col("category_split").getItem(0))
).drop("category_split", "category")
df_with_category = df_with_category.join(self.df_asin_category, on=['category_first_name'], how='inner')
df_with_category = df_with_category.withColumnRenamed("category_first_id", "category_first_id_with_name").drop("category_first_name")
df = df.join(df_with_category, on=['asin'], how='left')
df = df.withColumn("asin_bs_cate_1_id", F.coalesce(F.col("asin_bs_cate_1_id"), F.col("category_first_id_with_name"))).drop("category_first_id_with_name")
return df
# 3. 处理bsr销量、价格类型字段以及BSR销售额信息
def handle_asin_bsr_orders(self, df):
df = df.join(self.df_bs_report, on=['asin_bs_cate_1_id', 'asin_bs_cate_1_rank'], how='left')
df = df.withColumn("price_type", F.expr("""
CASE WHEN price IS NOT NULL AND price > 0 AND price < 10 THEN 1 WHEN price >= 10 AND price < 15 THEN 2
WHEN price >= 15 AND price < 20 THEN 3 WHEN price >= 20 AND price < 30 THEN 4
WHEN price >= 30 AND price < 50 THEN 5 WHEN price >= 50 THEN 6 ELSE 0 END""")).\
withColumn("bsr_orders_sale", F.round(F.col("bsr_orders") * F.col("price"), 2))
return df
# 4.解析Make-It-A-Bundle信息
def handle_asin_lob_info(self, df):
df = df.withColumn("is_contains_lob_info",
F.when(F.col("lob_asin_json").isNotNull(), F.lit(1)).otherwise(F.lit(0)))
df_parsed = df.withColumn("parse_asin_lob",
F.when(F.col("is_contains_lob_info") == 1, F.from_json("lob_asin_json", "array<struct<lob_asin:string>>")))
df_result = df_parsed.withColumn("asin_lob_info", F.expr("transform(parse_asin_lob, x -> x.lob_asin)"))
df = df_result.withColumn(
"asin_lob_info", F.regexp_replace(F.concat_ws(",", "asin_lob_info"), "[{}]", "")).drop(
"parse_asin_lob", "lob_asin_json")
return df
# 5. 处理配送方式、卖家所在地以及卖家所在地类型
def handle_asin_buy_box_seller_type(self, df):
df = df.withColumn("seller_json_parsed", self.u_parse_seller_info(df.seller_json))
df = df.withColumn("buy_box_seller_type", df.seller_json_parsed.buy_box_seller_type).withColumn(
"account_name", df.seller_json_parsed.account_name).drop("seller_json_parsed")
df = df.join(self.df_seller_info, on=['seller_id'], how='left')
df = df.withColumn("site_name_type", F.expr("""
CASE WHEN buy_box_seller_type = 1 THEN 4
WHEN buy_box_seller_type != 1 AND seller_country_name is not null AND seller_country_name like '%US%' THEN 1
WHEN buy_box_seller_type != 1 AND seller_country_name is not null AND seller_country_name like '%CN%' THEN 2
ELSE 3 END"""))
return df
# 6. 处理asin基础属性信息(长宽高重量等)
def handle_asin_basic_attribute_info(self, df):
# 1.解析ASIN重量相关信息
df = df.withColumn("weight_str", F.lower(F.col("weight_str"))).withColumn("asin_weight", self.u_parse_weight("weight_str", F.lit(self.site_name))).drop("weight_str")
df = df.withColumn(
"weight", F.when(df.asin_weight.getField("weight_type") == 'pounds', df.asin_weight.getField("weight")).otherwise(F.lit(0))).drop("asin_weight")
# 2.处理重量类型
df = df.withColumn("weight_type", F.expr("""
CASE WHEN weight BETWEEN 0 AND 0.2 THEN 1 WHEN weight BETWEEN 0.2 AND 0.4 THEN 2
WHEN weight BETWEEN 0.4 AND 0.6 THEN 3 WHEN weight BETWEEN 0.6 AND 1 THEN 4
WHEN weight BETWEEN 1 AND 2 THEN 5 WHEN weight >= 2 THEN 6 ELSE 0 END"""))
# 3.解析ASIN体积相关信息
df = df.withColumn("asin_volume", self.u_parse_volume("volume"))
df = df.withColumn("asin_volume_type", df.asin_volume.getField("asin_volume_type")) \
.withColumn("asin_length", F.when(F.col("asin_volume_type") == 'inches', df.asin_volume.getField("length"))) \
.withColumn("asin_width", F.when(F.col("asin_volume_type") == 'inches', df.asin_volume.getField("width"))) \
.withColumn("asin_height", F.when(F.col("asin_volume_type") == 'inches', df.asin_volume.getField("height"))) \
.drop("asin_volume", "asin_volume_type")
# 4.获取体积重/毛重相关信息
df = df.withColumn(
"asin_weight_ratio", F.when(
F.col("asin_length").isNotNull() & (F.col("asin_width").isNotNull()) &
(F.col("asin_height").isNotNull()) &
(F.col("weight") > 0), F.round(F.col("asin_length") * F.col("asin_width") * F.col("asin_height") * 3.2774128 / (F.col("weight") * 453.59), 3))
.otherwise(F.lit(-1)))
# 5.处理尺寸类型
if self.site_name == 'us':
expr_str = f"""
CASE WHEN weight > 0 AND weight * 16 <= 16 AND asin_length > 0 AND asin_length <= 15 AND asin_width > 0 AND asin_width <= 12 AND asin_height > 0 AND asin_height <= 0.75 THEN 1
WHEN weight > 0 AND weight <= 20 AND asin_length > 0 AND asin_length <= 18 AND asin_width > 0 AND asin_width <= 14 AND asin_height > 0 AND asin_height <= 8 THEN 2
WHEN weight > 0 AND weight <= 70 AND asin_length > 0 AND asin_length <= 60 AND asin_width > 0 AND asin_width <= 30 AND asin_length + asin_length + (asin_width + asin_height) * 2 <= 130 THEN 3
WHEN weight > 0 AND weight <= 150 AND asin_length > 0 AND asin_length <= 108 AND asin_length + asin_length + (asin_width + asin_height) * 2 <= 130 THEN 4
WHEN weight > 0 AND weight <= 150 AND asin_length > 0 AND asin_length <= 108 AND asin_length + asin_length + (asin_width + asin_height) * 2 <= 165 THEN 5
WHEN weight > 150 AND asin_length > 108 AND asin_length + asin_length + (asin_width + asin_height) * 2 > 165 THEN 6 ELSE 0 END"""
else:
expr_str = f"""
CASE WHEN weight > 0 AND weight <= 100 AND asin_length > 0 AND asin_length <= 20 AND asin_width > 0 AND asin_width <= 15 AND asin_height > 0 AND asin_height <= 1 THEN 1
WHEN weight > 0 AND weight <= 500 AND asin_length > 0 AND asin_length <= 33 AND asin_width > 0 AND asin_width <= 23 AND asin_height > 0 AND asin_height <= 2.5 THEN 2
WHEN weight > 0 AND weight <= 1000 AND asin_length > 0 AND asin_length <= 33 AND asin_width > 0 AND asin_width <= 23 AND asin_height > 0 AND asin_height <= 5 THEN 3
WHEN weight > 0 AND weight <= 12000 AND asin_length > 0 AND asin_length <= 45 AND asin_width > 0 AND asin_width <= 34 AND asin_height > 0 AND asin_height <= 26 THEN 4
WHEN weight > 0 AND weight <= 2000 AND asin_length > 0 AND asin_length <= 61 AND asin_width > 0 AND asin_width <= 46 AND asin_height > 0 AND asin_height <= 46 THEN 5
WHEN asin_length > 0 AND asin_length <= 150 AND asin_length + asin_length + (asin_width + asin_height) <= 300 THEN 6
WHEN asin_length > 150 AND asin_length + asin_length + (asin_width + asin_height) > 300 THEN 7 ELSE 0 END"""
df = df.withColumn("size_type", F.expr(expr_str)).drop("asin_length", "asin_width", "asin_height")
return df
# 7. 处理asin图片信息
def handle_asin_img_info(self, df):
img_schema = ArrayType(ArrayType(StringType()))
df = df.withColumn("img_list", F.from_json(F.col("img_list"), img_schema))
df_with_img = df.filter(F.size("img_list") > 0).select("asin", "img_list")
df_with_img_attribute = df_with_img.select(
"asin", F.explode("img_list").alias("img_attributes")
).select(
"asin", F.col("img_attributes")[1].alias("img_url"), F.col("img_attributes")[2].alias("img_order_by"),
F.col("img_attributes")[3].alias("data_type")
)
df_with_img_attribute_agg = df_with_img_attribute.groupby("asin").agg(
F.to_json(F.collect_list(F.struct(F.col("img_url"), F.col("img_order_by"), F.col("data_type")))).alias(
"img_info")
)
df = df.drop("img_list")
df = df.join(df_with_img_attribute_agg, on=['asin'], how='left')
return df
# 8. 处理变体相关(ao及母体相关,自然占比及母体自然占比,各类型数量,月销信息等)
def handle_asin_measure(self, df):
df = CommonUtil.get_asin_variant_attribute(df_asin_detail=df, df_asin_measure=self.df_asin_measure,
partition_num=self.repartition_num, use_type=1)
# 是否数量变体类型和ao的类型
df = df.withColumn("quantity_variation_type", F.expr("""
CASE WHEN size is not null and size != '' and lower(size) like '%quantity%' THEN 1 ELSE 0 END""")).withColumn(
"ao_val_type", F.expr("""
CASE WHEN asin_ao_val BETWEEN 0 AND 0.1 THEN 1 WHEN asin_ao_val BETWEEN 0.1 AND 0.2 THEN 2
WHEN asin_ao_val BETWEEN 0.2 AND 0.4 THEN 3 WHEN asin_ao_val BETWEEN 0.4 AND 0.8 THEN 4
WHEN asin_ao_val BETWEEN 0.8 AND 1.2 THEN 5 WHEN asin_ao_val BETWEEN 1.2 AND 2 THEN 6
WHEN asin_ao_val >= 2 THEN 7 ELSE 0 END"""))
df = df.withColumnRenamed("asin_zr_counts", "zr_counts").withColumnRenamed("asin_ao_val", "ao_val") \
.withColumnRenamed("asin_zr_flow_proportion", "zr_flow_proportion") \
.withColumnRenamed("asin_amazon_orders", "asin_bought_month").drop("asin_st_counts", "asin_adv_counts")
# 获取parent_asin下最新ASIN信息
df_parent_asin_info = df.filter("parent_asin is not null").select("parent_asin", "asin_vartion_list", "asinUpdateTime")
parent_asin_window = Window.partitionBy(['parent_asin']).orderBy(
F.desc_nulls_last("asinUpdateTime")
)
df_parent_asin_info = df_parent_asin_info.withColumn("u_rank", F.row_number().over(window=parent_asin_window))
df_parent_asin_info = df_parent_asin_info.repartition(self.repartition_num)
df_parent_asin_info = df_parent_asin_info.filter("u_rank = 1").drop("u_rank")
df_asin_variat = df_parent_asin_info.filter(F.size("asin_vartion_list") > 0).\
select("parent_asin", "asinUpdateTime", F.explode("asin_vartion_list").alias("variant_attribute")).\
select("parent_asin", F.col("asinUpdateTime").alias("asin_crawl_date"),
F.col("variant_attribute")[0].alias("asin"), F.col("variant_attribute")[1].alias("color"),
F.col("variant_attribute")[3].alias("size"), F.col("variant_attribute")[5].alias("style"))
df_asin_variat_agg = df_asin_variat.groupby(['parent_asin']).agg(
F.first("asin_crawl_date").alias("asin_crawl_date"),
F.concat_ws(',', F.collect_list("asin")).alias("variation_info"),
F.to_json(F.collect_list(F.struct(F.col("color"), F.col("size"), F.col("style")))).alias("attr_info")
)
print("导出父ASIN最新变体信息到doris:")
df_doris = df_asin_variat_agg.select(
"parent_asin", F.lit(self.date_info).alias("date_info"), "asin_crawl_date", "variation_info", "attr_info")
table_columns = "parent_asin, date_info, asin_crawl_date, variation_info, attr_info"
DorisHelper.spark_export_with_columns(df_save=df_doris, db_name=self.doris_db, table_name=self.parent_asin_latest_detail_table, table_columns=table_columns)
df_doris.unpersist()
return df
# 9. 提取打包数量字段
def handle_asin_package_quantity(self, df):
df = df.withColumn(
"variat_attribute", F.concat_ws("&&&%", F.col("color"), F.col("style"), F.col("size"), F.col("material")))
df = df.withColumn("title_parse", self.u_parse_package_quantity(df.title)).withColumn(
"variat_parse", self.u_parse_package_quantity(df.variat_attribute))
df = df.withColumn("title_package_quantity", df.title_parse.getField("parse_package_quantity")). \
withColumn("variat_package_quantity", df.variat_parse.getField("parse_package_quantity")). \
withColumn("title_package_quantity_is_abnormal", df.title_parse.getField("is_package_quantity_abnormal")). \
withColumn("variat_package_quantity_is_abnormal", df.variat_parse.getField("is_package_quantity_abnormal")). \
drop("title_parse", "variat_parse", "variat_attribute")
df = df.withColumn(
"package_quantity", F.expr("""
CASE WHEN title_package_quantity is null and variat_package_quantity is not null THEN variat_package_quantity
WHEN title_package_quantity is not null THEN title_package_quantity ELSE 1 END""")
).withColumn(
"is_package_quantity_abnormal", F.expr("""
CASE WHEN title_package_quantity is null and variat_package_quantity is not null THEN variat_package_quantity_is_abnormal
WHEN title_package_quantity is not null THEN title_package_quantity_is_abnormal ELSE 2 END""")
).drop("title_package_quantity", "variat_package_quantity", "title_package_quantity_is_abnormal", "variat_package_quantity_is_abnormal")
df = df.withColumn("title", F.lower(F.col("title")))
df = df.join(self.df_user_package_num, on=['asin', 'title'], how='left')
df = df.withColumn("package_quantity", F.coalesce(F.col("user_package_num"), F.col("package_quantity"))). \
withColumn(
"is_package_quantity_abnormal", F.coalesce(F.col("user_is_package_quantity_abnormal"), F.col("is_package_quantity_abnormal"))
).drop("user_package_num", "user_is_package_quantity_abnormal")
return df
# 10. 处理品牌标签、是否告警品牌、处理asin_lqs_rating信息
def handle_asin_lqs_and_brand(self, df):
# 1.品牌标签以及是否告警品牌
df = df.withColumn("is_brand_label", F.expr("""CASE WHEN brand is not null THEN 1 ELSE 0 END"""))
df = df.withColumn("brand", F.lower("brand"))
df = df.join(self.df_alarm_brand_info, on=['brand'], how='left')
df = df.withColumn("is_alarm_brand",
F.when(F.col("is_alarm_brand").isNotNull(), F.col("is_alarm_brand")).otherwise(F.lit(0)))
# 2. lqs评分
df = df.withColumn("category_node_rating",
F.expr(f"""CASE WHEN asin_bs_cate_current_id is not null THEN 1 ELSE 0 END""")) \
.withColumn("zr_rating", F.expr(f"""CASE WHEN zr_counts > 0 THEN 0.5 ELSE 0 END""")) \
.withColumn("sp_rating", F.expr(f"""CASE WHEN sp_counts > 0 THEN 1 ELSE 0 END""")) \
.withColumn("a_add_rating", F.expr(f"""CASE WHEN img_type like '%3%' THEN 1 ELSE 0 END""")) \
.withColumn("video_rating", F.expr(f"""CASE WHEN img_type like '%2%' THEN 0.5 ELSE 0 END""")) \
.withColumn("brand_rating", F.expr(f"""CASE WHEN is_brand_label = 1 THEN 0.2 ELSE 0 END""")) \
.withColumn("product_describe_rating",
F.expr(f"""CASE WHEN product_description is not null THEN 0.2 ELSE 0 END""")) \
.withColumn("highlight_rating", F.expr(f"""
CASE WHEN describe is not null AND size(split(describe, '\\|-\\|')) <= 4 THEN size(split(describe, '\\|-\\|')) * 0.4
WHEN describe is not null AND size(split(describe, '\\|-\\|')) > 4 THEN 1.6 ELSE 0 END""")) \
.withColumn("title_len_rating", F.expr(f"""CASE WHEN title_len >= 50 AND title_len <=200 THEN 0.5 ELSE 0 END""")) \
.withColumn("title_brand_rating", F.expr(f"""
CASE WHEN brand is not null AND lower(regexp_replace(title, '[^a-zA-Z0-9\\s]', '')) LIKE lower(regexp_replace(brand, '[^a-zA-Z0-9\\s]', '')) || '%' THEN 0.5
ELSE 0 END""")) \
.withColumn("img_num_rating", F.expr(f"""
CASE WHEN img_num <= 4 THEN img_num * 0.5 WHEN img_num >4 THEN 2 ELSE 0 END""")) \
.withColumn("img_enlarge_rating", F.expr(f"""CASE WHEN image_view = 1 THEN 0.5 ELSE 0 END"""))
df = df.withColumn(
"asin_lqs_rating",
(F.col("category_node_rating") + F.col("zr_rating") + F.col("sp_rating") + F.col("a_add_rating") +
F.col("video_rating") + F.col("brand_rating") + F.col("product_describe_rating") +
F.col("highlight_rating") + F.col("title_len_rating") + F.col("title_brand_rating") +
F.col("img_num_rating") + F.col("img_enlarge_rating")).cast("double")).withColumn(
"asin_lqs_rating_detail", F.to_json(
F.struct(F.col("category_node_rating"), F.col("zr_rating"), F.col("sp_rating"), F.col("a_add_rating"),
F.col("video_rating"), F.col("brand_rating"), F.col("product_describe_rating"),
F.col("highlight_rating"), F.col("title_len_rating"), F.col("title_brand_rating"),
F.col("img_num_rating"), F.col("img_enlarge_rating")))
)
df = df.drop("product_description", "describe", "image_view", "category_node_rating", "zr_rating", "sp_rating",
"a_add_rating", "video_rating", "brand_rating", "product_describe_rating", "highlight_rating",
"title_len_rating", "title_brand_rating", "img_num_rating", "img_enlarge_rating")
return df
# 11. 通过ASIN页面信息处理(评分类型、上架时间类型、电影标签、是否内部asin、是否隐藏分类、有效类型、必需ASIN、asin_type)
def handle_asin_detail_all_type(self, df):
# 1. 评分类型
df = df.withColumn("rating_type", F.expr("""
CASE WHEN rating >= 4.5 THEN 1 WHEN rating >= 4 AND rating < 4.5 THEN 2 WHEN rating >= 3.5 AND rating < 4 THEN 3
WHEN rating >= 3 AND rating < 3.5 THEN 4 WHEN rating < 3 AND rating >= 0 THEN 5 ELSE 0 END"""))
# 2. 上架时间类型
df = df.join(self.df_asin_keep_date, on=['asin'], how='left')
df = df.withColumn("launch_time", F.when(F.col("launch_time").isNull(), F.col("new_launch_time")).otherwise(
F.col("launch_time")))
one_month = self.launch_time_interval_dict['one_month']
three_month = self.launch_time_interval_dict['three_month']
six_month = self.launch_time_interval_dict['six_month']
twelve_month = self.launch_time_interval_dict['twelve_month']
twenty_four_month = self.launch_time_interval_dict['twenty_four_month']
thirty_six_month = self.launch_time_interval_dict['thirty_six_month']
expr_str = f"""
CASE WHEN launch_time >= '{one_month}' THEN 1
WHEN launch_time >= '{three_month}' AND launch_time < '{one_month}' THEN 2
WHEN launch_time >= '{six_month}' AND launch_time < '{three_month}' THEN 3
WHEN launch_time >= '{twelve_month}' AND launch_time < '{six_month}' THEN 4
WHEN launch_time >= '{twenty_four_month}' AND launch_time < '{twelve_month}' THEN 5
WHEN launch_time >= '{thirty_six_month}' AND launch_time < '{twenty_four_month}' THEN 6
WHEN launch_time < '{thirty_six_month}' THEN 7 ELSE 0 END"""
df = df.withColumn("launch_time_type", F.expr(expr_str))
# 3. 电影标签
movie_label_list = ['prime video', 'dvd', 'blu-ray', 'kindle', 'app', 'paperback', 'audible audiobook',
'kindle edition', 'kindle & comixology', 'hardcover', 'comic', 'multi-format', '4k',
'library binding', 'vinyl', 'audio cd', 'mp3 music', 'single issue magazine',
'print magazine', 'unknown binding']
df = df.join(self.df_asin_label_info, on=['asin'], how='left')
condition = reduce(
lambda acc, keyword: acc | F.expr(f"exists(asin_label_list, x -> x like '%{keyword}%')"),
movie_label_list,
F.lit(False)
)
df = df.withColumn("is_movie_label", condition.cast("int")).drop("asin_label_list")
# 4. 是否内部asin、是否隐藏分类
df = df.join(self.df_self_asin_info, on=['asin'], how='left')
df = df.withColumn(
"is_self_asin", F.when(F.col("is_self_asin").isNotNull(), F.col("is_self_asin")).otherwise(F.lit(0)))
df = df.join(self.df_hide_category, on=['asin_bs_cate_current_id'], how='left')
df = df.na.fill({"hide_flag": 0})
df = df.withColumn("is_hide_asin", F.expr("""
CASE WHEN hide_flag = 1 THEN 1 WHEN asin_bs_cate_1_id = 'grocery' and asin_bs_cate_current_id != '6492272011' THEN 1
WHEN asin_bs_cate_current_id in ('21393128011', '21377129011', '21377127011', '21377130011', '21388218011', '21377132011') THEN 1
ELSE 0 END""")).drop("hide_flag")
# 5. 有效类型
df = df.join(self.df_asin_bsr_end, on=['asin_bs_cate_1_id'], how='left')
df = df.withColumn("bsr_type", F.expr("""
CASE WHEN limit_rank is null and asin_bs_cate_1_rank <= 500000 THEN 1 WHEN limit_rank is not null and asin_bs_cate_1_rank <= limit_rank THEN 1 ELSE 0 END"""
)).drop("limit_rank")
# 5. 是否必需ASIN
df = df.withColumn("is_need_asin", F.expr("""
CASE WHEN asin_bs_cate_1_id in ('mobile-apps', 'audible', 'books', 'music', 'dmusic', 'digital-text', 'magazines', 'movies-tv', 'software', 'videogames', 'amazon-devices', 'boost', 'us-live-explorations', 'amazon-renewed') THEN 1
WHEN asin NOT LIKE 'B0%' THEN 1
ELSE 0 END"""))
# 6. asin_type
df = df.withColumn("asin_type", F.expr("""
CASE WHEN is_self_asin=1 THEN 1 WHEN is_need_asin=1 THEN 2 WHEN is_hide_asin=1 THEN 3 ELSE 0 END"""
)).drop("is_self_asin", "is_need_asin", "is_hide_asin")
return df
# 12. 处理变化率相关字段
def handle_asin_attribute_change(self, df):
# 处理ASIN维度的变化率信息
df = df.join(self.df_previous_flow_asin, on=['asin'], how='left')
columns_to_change = [
("ao_val", "previous_asin_ao_val", "ao"),
("price", "previous_asin_price", "price"),
("asin_bs_cate_1_rank", "previous_first_category_rank", "rank"),
("bsr_orders", "previous_asin_bsr_orders", "bsr_orders"),
("rating", "previous_asin_rating", "rating"),
("total_comments", "previous_asin_total_comments", "comments"),
("variat_num", "previous_asin_variation_num", "variation"),
("bsr_orders_sale", "previous_sales", "sales")
]
def calculate_change(current_col, previous_col):
rise_col = F.col(current_col) - F.col(previous_col)
change_col = F.when((F.col(previous_col).isNotNull()) & (F.col(previous_col) != 0),
F.round((F.col(current_col) - F.col(previous_col)) / F.col(previous_col), 4)
).otherwise(None)
return rise_col, change_col
for current_col, previous_col, suffix in columns_to_change:
rise_col, change_col = calculate_change(current_col, previous_col)
if suffix == 'ao':
df = df.withColumn(f"{suffix}_rise", F.round(rise_col, 3))
elif suffix in ['price', 'sales']:
df = df.withColumn(f"{suffix}_rise", F.round(rise_col, 2))
elif suffix == 'rating':
df = df.withColumn(f"{suffix}_rise", F.round(rise_col, 1))
else:
df = df.withColumn(f"{suffix}_rise", rise_col.cast(IntegerType()))
df = df.withColumn(f"{suffix}_change", F.round(change_col, 4))
df = df.drop(previous_col)
return df
# 13. 字段标准化
def handle_column_name(self, df):
df = df.withColumnRenamed("asin_bs_cate_1_id", "category_first_id")\
.withColumnRenamed("asin_bs_cate_current_id", "category_id") \
.withColumnRenamed("asin_bs_cate_1_rank", "first_category_rank")\
.withColumnRenamed("asin_bs_cate_current_rank", "current_category_rank") \
.withColumnRenamed("variat_num", "variation_num")\
.withColumnRenamed("seller_id", "account_id").withColumnRenamed("seller_country_name", "site_name") \
.withColumnRenamed("asinUpdateTime", "asin_crawl_date")\
.withColumnRenamed("customer_reviews_json", "product_features")\
.withColumn("collapse_asin", F.coalesce(F.col("parent_asin"), F.col("asin")))\
.withColumn("bsr_best_orders_type", F.lit(-1))
df_save = df.select("asin", "ao_val", "zr_counts", "sp_counts", "sb_counts", "vi_counts", "bs_counts", "ac_counts",
"tr_counts", "er_counts", "bsr_orders", "bsr_orders_sale", "title", "title_len", "price",
"rating", "total_comments", "buy_box_seller_type", "page_inventory", "volume", "weight", "color",
"size", "style", "material", "launch_time", "img_num", "parent_asin", "img_type", "img_url",
"activity_type", "one_two_val", "three_four_val", "five_six_val", "eight_val", "brand",
"variation_num", "one_star", "two_star", "three_star", "four_star", "five_star", "low_star",
"together_asin", "account_name", "account_id", "rank_rise", "rank_change", "ao_rise",
"ao_change", "price_rise", "price_change", "rating_rise", "rating_change", "comments_rise",
"comments_change", "bsr_orders_rise", "bsr_orders_change", "sales_rise", "sales_change",
"variation_rise", "variation_change", "size_type", "rating_type", "site_name_type",
"weight_type", "launch_time_type", "ao_val_type", "rank_type", "price_type", "bsr_type",
"bsr_best_orders_type", "quantity_variation_type", "package_quantity", "is_movie_label",
"is_brand_label", "is_alarm_brand", "asin_type", "asin_crawl_date", "category_first_id",
"category_id", "first_category_rank", "current_category_rank", "asin_weight_ratio",
"site_name", "asin_bought_month", "asin_lqs_rating", "asin_lqs_rating_detail",
"asin_lob_info", "is_contains_lob_info", "is_package_quantity_abnormal", "category",
"zr_flow_proportion", "matrix_flow_proportion", "matrix_ao_val", "product_features", "img_info",
"collapse_asin", F.col("follow_sellers").alias("follow_sellers_count"), "seller_json")
df_save = df_save.na.fill(
{"zr_counts": 0, "sp_counts": 0, "sb_counts": 0, "vi_counts": 0, "bs_counts": 0, "ac_counts": 0,
"tr_counts": 0, "er_counts": 0, "title_len": 0, "total_comments": 0, "variation_num": 0, "img_num": 0,
"one_two_val": 0.0, "three_four_val": 0.0, "five_six_val": 0.0, "eight_val": 0.0,
"one_star": 0, "two_star": 0, "three_star": 0, "four_star": 0, "five_star": 0, "low_star": 0,
"size_type": 0, "rating_type": 0, "site_name_type": 0, "weight_type": 0, "launch_time_type": 0,
"ao_val_type": 0, "rank_type": 0, "price_type": 0, "quantity_variation_type": 0, "package_quantity": 1,
"is_movie_label": 0, "is_brand_label": 0, "is_alarm_brand": 0, "asin_lqs_rating": 0.0, "follow_sellers_count": -1}
)
print("asin的标准信息:")
df_save.show(10, truncate=False)
return df_save
def read_data(self):
print("1. 读取上个维度的flow_asin")
sql = f"""
select asin, asin_ao_val as previous_asin_ao_val, asin_price as previous_asin_price,
variation_num as previous_asin_variation_num, asin_rating as previous_asin_rating,
asin_total_comments as previous_asin_total_comments, first_category_rank as previous_first_category_rank,
bsr_orders as previous_asin_bsr_orders, sales as previous_sales
from dwt_flow_asin where site_name = '{self.site_name}' and date_type = '{self.date_type}'
and date_info = '{self.previous_date}'
"""
print("sql=", sql)
self.df_previous_flow_asin = self.spark.sql(sqlQuery=sql)
if self.df_previous_flow_asin.count() <= 1:
print("该历史节点数据不全,调整到上上个月")
sql = f"""
select asin, first_category_rank as previous_first_category_rank,
round(asin_ao_val, 3) as previous_asin_ao_val, asin_price as previous_asin_price,
bsr_orders as previous_bsr_orders, asin_rating as previous_asin_rating,
asin_total_comments as previous_asin_total_comments, sales as previous_sales,
variation_num as previous_variation_num
from dwt_flow_asin where site_name = '{self.site_name}' and date_type = '{self.date_type}'
and date_info = '{self.previous_two_date}'
"""
print("sql=", sql)
self.df_previous_flow_asin = self.spark.sql(sqlQuery=sql)
self.df_previous_flow_asin = self.df_previous_flow_asin.repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
self.df_previous_flow_asin.show(10, truncate=False)
print("2. 获取卖家相关信息")
sql = f"""
select fd_unique as seller_id, upper(fd_country_name) as seller_country_name from dim_fd_asin_info
where site_name='{self.site_name}' and fd_unique is not null group by fd_unique, fd_country_name"""
print("sql=", sql)
self.df_seller_info = self.spark.sql(sqlQuery=sql)
self.df_seller_info = self.df_seller_info.repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
self.df_seller_info.show(10, truncate=False)
print("3. 读取内部asin信息")
sql = f"""select asin, 1 as is_self_asin from {self.site_name}_self_asin group by asin"""
print("sql=", sql)
mysql_con_info = DBUtil.get_connection_info(db_type='mysql', site_name=self.site_name)
if mysql_con_info is not None:
df_self_asin_info = SparkUtil.read_jdbc_query(
session=self.spark, url=mysql_con_info['url'], pwd=mysql_con_info['pwd'],
username=mysql_con_info['username'], query=sql)
self.df_self_asin_info = F.broadcast(df_self_asin_info)
self.df_self_asin_info.show(10, truncate=False)
print("4. 读取告警品牌信息")
sql = f"""
select brand, 1 as is_alarm_brand
from (select lower(trim(brand_name)) as brand
from brand_alert_erp where brand_name is not null) t group by brand"""
print("sql=", sql)
if self.site_name == 'us':
pg_cluster_con_info = DBUtil.get_connection_info(db_type="postgresql_cluster", site_name=self.site_name)
if pg_cluster_con_info is not None:
df_alarm_brand_info = SparkUtil.read_jdbc_query(
session=self.spark, url=pg_cluster_con_info['url'], pwd=pg_cluster_con_info['pwd'],
username=pg_cluster_con_info['username'], query=sql)
self.df_alarm_brand_info = F.broadcast(df_alarm_brand_info)
self.df_alarm_brand_info.show(10, truncate=False)
else:
schema = StructType([
StructField("brand", StringType(), True),
StructField("is_alarm_brand", IntegerType(), True)
])
self.df_alarm_brand_info = self.spark.createDataFrame([], schema)
print("5. 读取隐藏分类信息")
sql = f"""
select category_id_base as asin_bs_cate_current_id, 1 as hide_flag from us_bs_category_hide group by category_id_base
"""
print("sql=", sql)
us_mysql_con_info = DBUtil.get_connection_info(db_type='mysql', site_name='us')
if us_mysql_con_info is not None:
df_hide_category = SparkUtil.read_jdbc_query(
session=self.spark, url=us_mysql_con_info['url'], pwd=us_mysql_con_info['pwd'],
username=us_mysql_con_info['username'], query=sql)
self.df_hide_category = F.broadcast(df_hide_category)
self.df_hide_category.show(10, truncate=False)
print("6. 读取asin_label信息")
sql = f"""
select asin, label from
(select asin, lower(label) as label, created_time,row_number() over(partition by asin,label order by updated_time desc) as crank
from ods_other_search_term_data where site_name='{self.site_name}' and date_type='{self.date_type}' and
date_info='{self.date_info}' and trim(label) not in ('null','') and label is not null) t where t.crank=1
"""
print("sql=", sql)
self.df_asin_label_info = self.spark.sql(sqlQuery=sql)
if self.df_asin_label_info.count() <= 1:
print("该历史节点数据不全,调整到上上个月")
sql = f"""
select asin, label from
(select asin, lower(label) as label, created_time,row_number()
over(partition by asin,label order by updated_time desc) as crank
from ods_other_search_term_data where site_name='{self.site_name}' and date_type='{self.date_type}' and
date_info='{self.previous_date}' and trim(label) not in ('null','') and label is not null) t where t.crank=1
"""
print("sql=", sql)
self.df_asin_label_info = self.spark.sql(sqlQuery=sql)
self.df_asin_label_info = self.df_asin_label_info.groupby(['asin']).agg(
F.collect_set("label").alias("asin_label_list"))
self.df_asin_label_info = self.df_asin_label_info.repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
self.df_asin_label_info.show(10, truncate=False)
print("7. 读取dwd_asin_measure拿取ao及各类型数量")
sql = f"""
select asin, asin_sp_counts as sp_counts, (asin_sb1_counts + asin_sb2_counts) as sb_counts, asin_sb3_counts as vi_counts,
asin_bs_counts as bs_counts, asin_ac_counts as ac_counts, asin_tr_counts as tr_counts, asin_er_counts as er_counts,
asin_st_counts, asin_zr_counts, asin_adv_counts, round(asin_zr_flow_proportion, 3) as asin_zr_flow_proportion,
round(asin_ao_val, 3) as asin_ao_val, asin_amazon_orders
from dwd_asin_measure where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'
"""
print("sql=", sql)
self.df_asin_measure = self.spark.sql(sqlQuery=sql)
self.df_asin_measure = self.df_asin_measure.repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
self.df_asin_measure.show(10, truncate=False)
print("8. 读取one_category_report表")
if int(self.year) == 2022 and int(self.month) < 3:
sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, orders as bsr_orders from ods_one_category_report " \
f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='2022-12'"
else:
sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, orders as bsr_orders from ods_one_category_report " \
f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
print("sql=", sql)
self.df_bs_report = self.spark.sql(sqlQuery=sql)
self.df_bs_report = self.df_bs_report.repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
self.df_bs_report.show(10, truncate=False)
print("9. 读取keep_date获取上架时间")
sql = f"""
select asin, new_launch_time from
(select asin, launch_time as new_launch_time,
row_number() over(partition by asin order by updated_at desc) as trank
from ods_asin_keep_date where site_name='{self.site_name}' and state=3) t where t.trank=1
"""
print("sql=", sql)
self.df_asin_keep_date = self.spark.sql(sqlQuery=sql)
self.df_asin_keep_date = self.df_asin_keep_date.repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
self.df_asin_keep_date.show(10, truncate=False)
print("10. 读取bsr有效排名信息")
sql = f"""select rank as limit_rank, category_id as asin_bs_cate_1_id from {self.site_name}_bsr_end"""
print("sql=", sql)
if mysql_con_info is not None:
df_asin_bsr_end = SparkUtil.read_jdbc_query(
session=self.spark, url=mysql_con_info['url'], pwd=mysql_con_info['pwd'],
username=mysql_con_info['username'], query=sql)
self.df_asin_bsr_end = F.broadcast(df_asin_bsr_end)
self.df_asin_bsr_end.show(10, truncate=False)
print("11. 通过node_id获取一级分类进行分类补充")
df_asin_new_cate = get_node_first_id_df(self.site_name, self.spark)
self.df_asin_new_cate = F.broadcast(df_asin_new_cate)
self.df_asin_new_cate.show(10, truncate=False)
print("12. 获取用户修改打包数量信息")
pg_con_info = DBUtil.get_connection_info("postgresql", "us")
sql = f"""
WITH ranked_edit_logs AS (SELECT edit_key_id, lower(val_related_info) as val_related_info, val_after,
ROW_NUMBER() OVER (PARTITION BY edit_key_id ORDER BY create_time DESC) AS rn FROM sys_edit_log
WHERE module = '流量选品' AND filed = 'package_quantity' AND site_name='{self.site_name}')
SELECT edit_key_id as asin, val_related_info as title, cast(val_after as int) as user_package_num,
0 as user_is_package_quantity_abnormal FROM ranked_edit_logs WHERE rn = 1"""
if pg_con_info is not None:
df_user_package_num = SparkUtil.read_jdbc_query(
session=self.spark, url=pg_con_info['url'], pwd=pg_con_info['pwd'],
username=pg_con_info['username'], query=sql)
self.df_user_package_num = F.broadcast(df_user_package_num)
self.df_user_package_num.show(10, truncate=False)
print("14. 获取分类ID与分类名称的对应关系")
self.df_asin_category = get_first_id_from_category_desc_df(self.site_name, self.spark)
self.df_asin_category = self.df_asin_category.withColumn(
"category_first_name", F.lower("category_first_name")
).repartition(self.repartition_num).persist(StorageLevel.DISK_ONLY)
self.df_asin_category.show(10, truncate=False)
# 字段处理逻辑综合
def handle_all_field(self, df):
# 1. 处理asin分类及排名以及排名类型字段
df = self.handle_asin_bs_category_info(df)
# 2. 利用node_id进行分类补充
df = self.handle_asin_category_supplement(df)
# 3. 处理bsr销量及销售额信息以及价格类型字段
df = self.handle_asin_bsr_orders(df)
# 4. 解析Make-It-A-Bundle信息
df = self.handle_asin_lob_info(df)
# 5. 处理配送方式、卖家所在地以及卖家所在地类型
df = self.handle_asin_buy_box_seller_type(df)
# 6. 处理asin基础属性信息(长宽高重量等)
df = self.handle_asin_basic_attribute_info(df)
# 7. 处理asin图片信息
df = self.handle_asin_img_info(df)
# 8. 处理变体相关(ao及母体相关,自然占比及母体自然占比,各类型数量,月销信息等)
df = self.handle_asin_measure(df)
# 9. 提取打包数量字段
df = self.handle_asin_package_quantity(df)
# 10. 处理品牌标签、是否告警品牌、处理asin_lqs_rating信息
df = self.handle_asin_lqs_and_brand(df)
# 11.通过ASIN页面信息处理(评分类型、上架时间类型、电影标签、ASIN类型、有效类型)
df = self.handle_asin_detail_all_type(df)
# 12. 处理变化率相关字段
df = self.handle_asin_attribute_change(df)
# 13. 字段标准化
df_save = self.handle_column_name(df)
return df_save
# 写入es前的准备工作
def es_prepare(self):
# 创建对应es索引
EsUtils.create_index(self.es_index_name, self.client, self.es_index_body)
print("索引名称为:", self.es_index_name)
if not EsUtils.exist_index_alias(self.es_index_alias_name, self.client):
EsUtils.create_index_alias(self.es_index_name, self.es_index_alias_name, self.client)
else:
index_name_list = EsUtils.get_index_names_associated_alias(self.es_index_alias_name, self.client)
if self.es_index_name not in index_name_list:
EsUtils.delete_index_alias(self.es_index_alias_name, self.client)
EsUtils.create_index_alias(self.es_index_name, self.es_index_alias_name, self.client)
else:
pass
# 写入elasticsearch逻辑
def save_to_es(self, df, batch_num):
print("插入当前批次数据, 插入的数量量为: " + str(batch_num))
start_time = time.time()
df_asin_latest_detail = df. \
select("asin", F.col("ao_val").alias("asin_ao_val"), F.col("title").alias("asin_title"),
F.col("title_len").alias("asin_title_len"), F.col("category").alias("asin_category_desc"),
F.col("volume").alias("asin_volume"), F.col("weight").alias("asin_weight"),
F.col("launch_time").alias("asin_launch_time"), F.col("brand").alias("asin_brand_name"), "one_star",
"two_star", "three_star", "four_star", "five_star", "low_star", "account_name", "account_id",
F.col("site_name").alias("seller_country_name"), "category_first_id", "parent_asin", "variation_num",
"img_info", "asin_crawl_date", F.col("price").alias("asin_price"),
F.col("rating").alias("asin_rating"),
F.col("total_comments").alias("asin_total_comments"), "matrix_ao_val", "zr_flow_proportion",
"matrix_flow_proportion", F.lit(self.date_info).alias("date_info"), "img_url",
F.col("category_id").alias("category_current_id"),
F.col("first_category_rank").alias("category_first_rank"),
F.col("current_category_rank").alias("category_current_rank"), "asin_type",
"bsr_orders", "bsr_orders_sale", "page_inventory", "asin_bought_month", "seller_json", "buy_box_seller_type")
df = df.drop("category", "seller_json")
df.write.format("org.elasticsearch.spark.sql").options(**self.es_options).mode("append").save()
end_time = time.time()
elapsed_time = end_time - start_time
print("当前插入时长为:" + str(elapsed_time))
# ASIN最新详情的信息
if self.consumer_type == 'latest' and self.test_flag == 'normal':
print("导出ASIN最新详情信息到doris:")
table_columns = """asin, asin_ao_val, asin_title, asin_title_len, asin_category_desc, asin_volume,
asin_weight, asin_launch_time, asin_brand_name, one_star, two_star, three_star, four_star, five_star, low_star,
account_name, account_id, seller_country_name, category_first_id, parent_asin, variation_num, img_info,
asin_crawl_date, asin_price, asin_rating, asin_total_comments, matrix_ao_val, zr_flow_proportion, matrix_flow_proportion,
date_info, img_url, category_current_id, category_first_rank, category_current_rank, asin_type, bsr_orders, bsr_orders_sale,
page_inventory, asin_bought_month, seller_json, buy_box_seller_type"""
DorisHelper.spark_export_with_columns(df_save=df_asin_latest_detail, db_name=self.doris_db, table_name=self.asin_latest_detail_table, table_columns=table_columns)
df_asin_latest_detail.unpersist()
# 实时消费中批次数据的处理逻辑
def handle_kafka_stream(self, df, batch_id):
try:
batch_num = df.count()
if batch_num > 0:
start_time = time.time()
print("当前批次:" + str(batch_id) + "; 该批次数据量为:" + str(batch_num))
df = df.repartition(self.repartition_num)
batch_id = int(batch_id) + self.initial_batch_id
df_save = self.handle_all_field(df)
self.es_prepare()
self.save_to_es(df_save, batch_num)
df_save.unpersist()
end_time = time.time()
print("当前批次:" + str(batch_id) + "执行完毕, 执行时长为:" + str(end_time - start_time))
else:
print("当前批次没有数据")
except Exception as e:
print(e, traceback.format_exc())
# 消费主题下的所有历史数据
def handle_kafka_history(self, kafka_df):
print("处理kafka历史数据")
batch_num = kafka_df.count()
if batch_num > 0:
self.history_batch_id = self.history_batch_id + 1
start_time = time.time()
kafka_df = kafka_df.repartition(self.repartition_num)
kafka_df = self.handle_all_field(kafka_df)
self.es_prepare()
self.save_to_es(kafka_df, batch_num)
end_time = time.time()
print("该批次数据处理完毕, 执行时长为:" + str(end_time - start_time))
else:
raise ValueError("当前主题中没有数据,请注意检查!")
if __name__ == '__main__':
arguments = sys.argv[1:]
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter/day
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
consumer_type = sys.argv[4] # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
if len(arguments) == 5:
test_flag = sys.argv[5]
else:
test_flag = 'normal'
handle_obj = KafkaFlowAsinDetail(site_name=site_name, date_type=date_type, date_info=date_info, consumer_type=consumer_type, test_flag=test_flag, batch_size=200000)
handle_obj.run_kafka()