1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import re
import sys
import time
os.environ["PYARROW_IGNORE_TIMEZONE"] = "1"
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from pyspark.storagelevel import StorageLevel
from utils.templates import Templates
# from ..utils.templates import Templates
from pyspark.sql.types import StringType, IntegerType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
class DimAsinTitleInfo(Templates):
def __init__(self, site_name='us', date_type="month", date_info='2022-1'):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save_vertical = f'dim_asin_title_info_vertical'
self.db_save_wide = f'dim_asin_title_info_wide'
self.spark = self.create_spark_object(app_name=f"{self.db_save_vertical}: {self.site_name}, {self.date_type}, {self.date_info}")
self.df_theme = self.spark.sql(f"select 1+1;")
self.df_asin_title = self.spark.sql(f"select 1+1;")
self.df_save_vertical = self.spark.sql(f"select 1+1;") # 竖表
self.df_save_wide = self.spark.sql(f"select 1+1;") # 宽表
# 注册自定义函数 (UDF)
self.u_theme_pattern = F.udf(self.udf_theme_pattern, StringType())
# 其他变量
self.pattern = str() # 正则匹配
# 分区参数
self.partitions_by = ['site_name']
self.partitions_num = 100
@staticmethod
def udf_theme_pattern(title, pattern):
results_list = re.findall(pattern, title) # , re.IGNORECASE,
if results_list:
unique_first_values = set() # 集合 -- 自带去重功能
for item in results_list:
theme = item[0].strip() # 去掉匹配的两头空格
unique_first_values.add(theme)
return ','.join(unique_first_values)
else:
return None
def read_data(self):
sql = f"select id, theme_type_en, theme_en, theme_en_lower, theme_ch from ods_theme where site_name='{self.site_name}'"
print("sql:", sql)
self.df_theme = self.spark.sql(sql).cache()
self.df_theme.show(10, truncate=False)
# sql = f"-- select asin, title as asin_volume, date_info from ods_asin_detail where site_name='{self.site_name}' and date_type='week'" # and date_info>='2023-15'
sql = f"select asin, title as asin_title, date_info, site_name from ods_asin_detail where site_name='{self.site_name}' and date_type='week' and date_info>='2023-25'" # and date_info>='2023-15'
print("sql:", sql)
self.df_asin_title = self.spark.sql(sqlQuery=sql).cache()
self.df_asin_title.show(10, truncate=False)
def handle_data(self):
self.handle_filter_dirty_data()
self.handle_theme()
def handle_filter_dirty_data(self):
"""
过滤脏数据+保留最新的title
"""
# 小写
self.df_asin_title = self.df_asin_title.withColumn("asin_title_lower", F.lower(self.df_asin_title["asin_title"]))
# 过滤空值
self.df_asin_title = self.df_asin_title.filter("asin_title_lower is not null")
# 过滤null和none字符串
self.df_asin_title = self.df_asin_title.filter("asin_title_lower not in ('none', 'null', 'nan')")
# 取最新的date_info对应的title
window = Window.partitionBy('asin').orderBy(F.desc('date_info')) # 按照 date_info 列进行分区,并按照 date 列进行排序
self.df_asin_title = self.df_asin_title.withColumn('row_number', F.row_number().over(window)) # 使用窗口函数为每个分区的行编号
self.df_asin_title = self.df_asin_title.filter(self.df_asin_title.row_number == 1).drop('row_number') # 只保留每个分区中 row_number 最大的行,并删除 row_number 列
def handle_theme(self):
pdf_theme = self.df_theme.toPandas()
pattern_list = list(set(pdf_theme.theme_en_lower))
# pattern_list = [f' {pattern} ' for pattern in pattern_list if pattern] # 去掉空字符串 -- 优化匹配
pattern_list = [re.escape(f' {pattern} ') for pattern in pattern_list if pattern] # 去掉空字符串 -- 优化匹配
pattern_list.sort(key=len, reverse=True) # 根据长度进行排序
pattern_str = '|'.join(pattern_list) # | 或匹配
# pattern_str = re.escape(pattern_str)
self.pattern = '(?=(' + pattern_str + '))' # 正则匹配模式
# self.pattern = re.escape(self.pattern)
print("self.pattern:", self.pattern)
df_asin_title = self.df_asin_title.cache() # 后面用作匹配asin_title
self.df_asin_title = self.df_asin_title.withColumn("asin_title_lower", F.concat(F.lit(" "), "asin_title_lower", F.lit(" "))) # 标题两头加空字符串用来匹配整个词
self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", self.u_theme_pattern('asin_title_lower', F.lit(self.pattern)))
# 将列拆分为数组多列
self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.split(self.df_asin_title["theme_en_lower"], ","))
# 将数组合并到多行
self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.explode(self.df_asin_title["theme_en_lower"]))
# self.df_asin_title.show(100, truncate=False)
# self.df_asin_title.filter("asin='0060574437'").show(100, truncate=False)
# self.df_asin_title.filter('theme_en_lower is null').show(20, truncate=False) # 没有记录
self.df_asin_title = self.df_asin_title.join(
self.df_theme, on=['theme_en_lower'], how='left' # 改成inner, 这样避免正则匹配结果不准
)
self.df_save_vertical = self.df_asin_title
self.df_save_vertical.show(30, truncate=False)
self.df_asin_title = self.df_asin_title.drop_duplicates(['asin', 'theme_type_en', 'theme_ch'])
# self.df_asin_title.filter('theme_en_lower is null').show(20, truncate=False) # 没有记录
# self.df_save.show(30, truncate=False)
self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_counts", F.concat("theme_type_en", F.lit("_counts")))
self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_ids", F.concat("theme_type_en", F.lit("_ids")))
# self.df_asin_title.filter('theme_type_en_counts is null').show(20, truncate=False) # 没有记录
self.df_asin_title = self.df_asin_title.filter('theme_type_en_counts is not null')
pivot_df1 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_counts").agg(F.expr("IFNULL(count(*), 0) AS value"))
pivot_df1 = pivot_df1.na.fill(0)
pivot_df2 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_ids").agg(F.concat_ws(",", F.collect_list("id")))
pivot_df1.show(30, truncate=False)
# pivot_df2.show(30, truncate=False)
self.df_save_wide = df_asin_title.join(
pivot_df1, on='asin', how='left'
).join(
pivot_df2, on='asin', how='left'
)
# self.df_save_wide.show(30, truncate=False)
print(self.df_save_wide.columns)
def save_data(self):
self.reset_partitions(partitions_num=50)
self.save_data_common(
df_save=self.df_save_vertical,
db_save=self.db_save_vertical,
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
self.reset_partitions(partitions_num=100)
self.save_data_common(
df_save=self.df_save_wide,
db_save=self.db_save_wide,
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:day/week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-月-日/年-周/年-月/年-季, 比如: 2022-1
handle_obj = DimAsinTitleInfo(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()