spider_asin_detail.py 22.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
import copy
import json
import os
import random
import re
import ast
import sys
import threading
import time
import logging
import traceback
import zlib
import pandas as pd
import numpy as np
import redis
from datetime import datetime
sys.path.append("/opt/module/spark-3.2.0-bin-hadoop3.2/demo/py_demo/")
sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from sqlalchemy import create_engine
from utils.templates import Templates
# from ..utils.templates import Templates
from utils.templates_mysql import TemplatesMysql
# from ..utils.templates_mysql import TemplatesMysql
from pyspark.sql.types import IntegerType
from pyspark.sql import functions as F
from pyspark.sql.types import *
from psycopg2.errors import NumericValueOutOfRange
from sqlalchemy.exc import OperationalError, DataError, PendingRollbackError
from utils.mysql_db import sql_connect, sql_update_many, sql_delete, get_country_engine
from pyspark.sql import SparkSession
logging.basicConfig(format='%(asctime)s %(name)s %(levelname)s %(message)s', level=logging.INFO)
# from ..utils.DolphinschedulerHelper import DolphinschedulerHelper
from utils.DolphinschedulerHelper import DolphinschedulerHelper
from utils.db_util import DbTypes, DBUtil
from queue import  Queue


class SpiderAsinDetail(Templates):

    def __init__(self, site_name='us', date_type="day", date_info='2022-10-01', consumer_type='lastest', topic_name="us_asin_detail", batch_size_history=100000, processing_time=900):
        super(SpiderAsinDetail, self).__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.consumer_type = consumer_type  # 消费实时还是消费历史
        self.topic_name = topic_name
        self.batch_size_history = batch_size_history
        self.processing_time = processing_time
        self.db_save = f'spider_asin_detail'
        # self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}, {self.consumer_type}")
        self.app_name = self.get_app_name()
        self.spark = self.create_spark_object(app_name=f"{self.app_name}")
        # 通过date_type 获取 topic
        self.get_topic_name()
        # 获取日期变量
        self.get_year_week_tuple()
        # 连接数据库
        # self.engine_mysql = DBUtil.get_db_engine(db_type=DbTypes.mysql.name, site_name=self.site_name)
        self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name, site_name=self.site_name)
        # 获取数据库表名
        self.db_detail_name = str()
        self.db_variation_name = str()
        self.db_image_name = str()
        self.get_db_name()
        self.columns_detail_list = self.get_db_detail_columns()
        # self.get_db_columns()
        # 通过date_type 获取 schema
        self.init_schema()
        # self.topic_name = topic_name  # 主题名字
        # self.schema = self.init_schema()
        self.pdf_type_list = ["asin_vartion_list", "img_list", "asin_detail"]
        self.chunk_size = 1000
        # 创建分区表队列
        self.part_name_queue_image = Queue()
        self.part_name_queue_variation = Queue()
        # self.beginning_offsets = 2993_0000 if self.site_name == 'uk' else 0
        # self.beginning_offsets = 3777_0000 if self.site_name == 'de' else 0
        # self.beginning_offsets = 219_9000 if self.site_name == 'us' else 0

    def init_schema(self):
        self.schema = StructType([
            StructField("asin", StringType(), True),
            StructField("week", StringType(), True),
            StructField("month", StringType(), True),
            StructField("asin_vartion_list", StringType(), True),
            StructField("img_list", StringType(), True),
            StructField("title", StringType(), True),
            StructField("img_url", StringType(), True),
            StructField("rating", StringType(), True),
            StructField("total_comments", StringType(), True),
            StructField("price", FloatType(), True),
            StructField("rank", StringType(), True),
            StructField("category", StringType(), True),
            StructField("launch_time", StringType(), True),
            StructField("volume", StringType(), True),
            StructField("weight", StringType(), True),
            StructField("page_inventory", IntegerType(), True),
            StructField("buy_box_seller_type", IntegerType(), True),
            StructField("title_len", IntegerType(), True),
            StructField("img_num", IntegerType(), True),
            StructField("img_type", StringType(), True),
            StructField("activity_type", StringType(), True),
            StructField("one_two_val", StringType(), True),
            StructField("three_four_val", StringType(), True),
            StructField("eight_val", StringType(), True),
            StructField("qa_num", IntegerType(), True),
            StructField("five_star", IntegerType(), True),
            StructField("four_star", IntegerType(), True),
            StructField("three_star", IntegerType(), True),
            StructField("two_star", IntegerType(), True),
            StructField("one_star", IntegerType(), True),
            StructField("low_star", IntegerType(), True),
            StructField("together_asin", StringType(), True),
            StructField("brand", StringType(), True),
            StructField("ac_name", StringType(), True),
            StructField("material", StringType(), True),
            StructField("node_id", StringType(), True),
            StructField("data_type", IntegerType(), True),
            StructField("sp_num", StringType(), True),
            StructField("describe", StringType(), True),
            StructField("date_info", StringType(), True),
            StructField("weight_str", StringType(), True),
            StructField("package_quantity", StringType(), True),
            StructField("pattern_name", StringType(), True),
            StructField("seller_id", StringType(), True),
            StructField("variat_num", IntegerType(), True),
            StructField("site_name", StringType(), True),
            StructField("best_sellers_rank", StringType(), True),
            StructField("best_sellers_herf", StringType(), True),
            StructField("account_url", StringType(), True),
            StructField("account_name", StringType(), True),
            StructField("parentAsin", StringType(), True),
            StructField("asinUpdateTime", StringType(), True),
            StructField("spider_int", StringType(), True),
            StructField("follow_sellers", StringType(), True),
            StructField("buy_sales", StringType(), True),
            StructField("product_description", StringType(), True),
            StructField("category_state", IntegerType(), True),
            StructField("five_six_val", IntegerType(), True),
            StructField("image_view", IntegerType(), True),
            StructField("review_label_json", StringType(), True),
            StructField("product_json", StringType(), True),
            StructField("review_ai_text", StringType(), True),
            StructField("product_detail_json", StringType(), True),
            StructField("lob_asin_json", StringType(), True),
            StructField("sp_initial_seen_asins_json", StringType(), True),
            StructField("compare_similar_asin_json", StringType(), True),
            StructField("sp_4stars_initial_seen_asins_json", StringType(), True),
            StructField("customer_reviews_json", StringType(), True),
            StructField("sp_delivery_initial_seen_asins_json", StringType(), True),
            StructField("together_asin_json", StringType(), True),
            StructField("min_match_asin_json", StringType(), True),
            StructField("seller_json", StringType(), True),
            StructField("variat_num", IntegerType(), True),
            StructField("current_asin", StringType(), True),
        ])
        # ['', '', '', '', '', '']

    def get_topic_name(self):
        if self.site_name in ["us", "uk", "de"] and self.date_type == "month":
            self.topic_name = f"{site_name}_asin_detail_{self.date_type}_{self.date_info.replace('-', '_')}"
        else:
            self.topic_name = f"{site_name}_asin_detail"

    def get_db_name(self):
        self.db_detail_name = f"{self.site_name}_asin_detail_{self.date_info.split('-')[0]}_{self.date_info.split('-')[1]}"
        self.db_detail_name = self.db_detail_name.replace("_detail", "_detail_month") if self.date_type=='month' else self.db_detail_name
        self.db_variation_name = f"{self.site_name}_variat"
        self.db_image_name = f"{self.site_name}_asin_image"
        logging.info(f"db_detail_name:{self.db_detail_name}, db_variation_name:{self.db_variation_name}, db_image_name:{self.db_image_name}")

    def get_db_detail_columns(self):
        sql = f"select * from {self.db_detail_name} limit 0;"
        df = pd.read_sql(sql, con=self.engine_pg14)
        columns_list = list(set(df.columns))
        columns_list.remove("id")
        columns_list.remove("updated_time")
        return columns_list

    def field_length_dispose(self, pdf):
        pdf.price = pdf.price.apply(lambda x: round(x, 2) if x is not None else None)  # 截取字符
        pdf.ac_name = pdf.ac_name.apply(lambda x: str(x)[:100] if x is not None else None)  # 截取字符
        pdf.brand = pdf.brand.apply(lambda x: str(x)[:100] if x is not None else None)  # 截取字符
        pdf.title = pdf.title.apply(lambda x: str(x)[:400] if x is not None else None)  # 截取字符
        pdf.category = pdf.category.apply(lambda x: str(x)[:400] if x is not None else None)  # 截取字符
        # pdf.img_url = pdf.img_url.apply(lambda x: str(x)[:400] if x is not None else None)  # 截取字符
        pdf.img_url = pdf.img_url.apply(lambda x: str(x)[:390] if x is not None else None)  # 截取字符
        pdf.material = pdf.material.apply(lambda x: str(x)[:150] if x is not None else None)  # 截取字符
        pdf.volume = pdf.volume.apply(lambda x: str(x)[:50] if x is not None else None)  # 截取字符
        if self.date_type in ["month", "week"]:
            pdf.package_quantity = pdf.package_quantity.apply(lambda x: str(x)[:50] if x is not None else None)  # 截取字符
            pdf.pattern_name = pdf.pattern_name.apply(lambda x: str(x)[:50] if x is not None else None)  # 截取字符
        pdf.weight_str = pdf.weight_str.apply(lambda x: str(x)[:250] if x is not None else None)  # 截取字符
        return pdf

    def start_process_instance(self):
        if site_name == 'us':
            # 最后一周走月流程
            # year, week = self.year_week_tuple[-1].split("-")
            # sql = f"select count(*) as st_count from {self.site_name}_brand_analytics_{year} where week={week} ;"
            # print("sql:", sql)
            # year, month = self.date_info.split("-")
            # sql = f"select count(*) from {self.site_name}_brand_analytics_month_{year} where year={year} and month={month} ;"
            # df = pd.read_sql(sql, con=self.engine_mysql)
            # if list(df.st_count)[0] >= 100_0000:
            #     process_df_name = f"{site_name}-月流程-ABA+反查(旧版)+流量选品(旧版)-api"
            # else:
            #     self.date_type = "month_week"
            #     process_df_name = f"{site_name}-30day+反查(旧版)+流量选品(旧版)-api"
            process_df_name = f"ALL站点-图片+变体表清洗"  # 先走变体清洗
        else:
            # process_df_name = f"{site_name}-ABA+反查(旧版)+流量选品(旧版)-api"
            process_df_name = f"ALL站点-图片+变体表清洗"  # 先走变体清洗
        print(f"process_df_name:{process_df_name}")
        DolphinschedulerHelper.start_process_instance(
            project_name="big_data_selection",
            process_df_name=process_df_name,
            startParams={
                "site_name": self.site_name,
                "date_type": self.date_type,
                "date_info": self.date_info
            },
            warning_Type="ALL"
        )

    @staticmethod
    # 将asin转换成数值--从而可以划分指定分区表
    def asin_to_number(asin):
        """
        Convert a 10-character ASIN string to a unique number.
        This function assumes that ASIN consists of uppercase letters and digits.
        """

        def char_to_number(char):
            if char.isdigit():
                return int(char)
            else:
                return ord(char) - 55  # 'A' -> 10, 'B' -> 11, ..., 'Z' -> 35

        if len(asin) != 10:
            raise ValueError(f"ASIN must be 10 characters long --{asin}--")

        base = 36
        asin_number = 0
        for i, char in enumerate(reversed(asin)):
            asin_number += char_to_number(char) * (base ** i)

        # The final number is taken modulo 1 billion to fit the range 1-10 billion
        return asin_number % 1000000000

    @staticmethod
    # 列表均匀拆分成多个列表
    def divide_list_into_equal_parts(lst, n):
        """
        Divide a list into n equal parts.
        :param lst: List to be divided.
        :param n: Number of parts to divide into.
        :return: List of n lists.
        """
        # Calculate the size of each part
        part_size = len(lst) // n
        return [lst[i * part_size:(i + 1) * part_size] for i in range(n)]

    @staticmethod
    # 将df对象的一行裂变成多行
    def handle_data_df_explode(pdf, pdf_type='asin_vartion_list', columns=[]):
        # 根据不同表类型解析df对象
        pdf[pdf_type] = pdf[pdf_type].apply(json.loads)
        # 对对应数据进行处理,将df_type内列表展开
        exploded_list = pdf[pdf_type].explode()
        # 展开后转换为一个大列表
        df_type_list = [i for i in exploded_list.tolist() if not isinstance(i, float)]
        df_type_list = [i for i in df_type_list if isinstance(i, list)]
        if df_type_list:
            df = pd.DataFrame(df_type_list, columns=columns)
            return df
        else:
            return None

    def save_data_image(self, pdf):
        logging.info("img处理")
        # 获取对应表字段
        pdf['mapped_asin'] = pdf['asin'].apply(self.asin_to_number)
        while True:
            try:
                pdf.to_sql(name=f"{self.site_name}_asin_image", con=self.engine_pg14, if_exists='append', index=False, chunksize=100_0000)
                logging.info(f"入库{self.site_name}_asin_image, 图片数量为:{pdf.shape} 成功 {pdf.head(2)}")
                break
            except Exception as e:
                print(e, traceback.format_exc())
                time.sleep(random.randint(3, 10))
                self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name, site_name=self.site_name)
                continue

    def save_data_variation(self, pdf):
        pdf.drop_duplicates(subset=["asin", "parent_asin"], inplace=True)
        # 处理字段长度问题
        pdf['color'] = pdf['color'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
        pdf['size'] = pdf['size'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
        pdf['style'] = pdf['style'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
        pdf['column_2'] = pdf['column_2'].apply(
            lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
        logging.info(f"变体数量为:{pdf.shape}")
        # 处理分区名称问题
        pdf['mapped_asin'] = pdf['parent_asin'].apply(self.asin_to_number)

        while True:
            try:
                pdf.to_sql(name=f"{self.site_name}_asin_variation", con=self.engine_pg14, if_exists='append', index=False, chunksize=100_0000)
                logging.info(f"入库{self.site_name}_asin_variation, 变体数量为:{pdf.shape} 成功 {pdf.head(2)}")
                break
            except Exception as e:
                print(e, traceback.format_exc())
                time.sleep(random.randint(3, 10))
                self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name, site_name=self.site_name)
                continue

    def save_data_asin_detail(self, pdf):
        print(f"{self.db_detail_name}: {pdf.columns}")
        # pdf.rename(columns={"asinUpdateTime": "created_time"}, inplace=True)
        pdf = pdf.loc[:, self.columns_detail_list]
        pdf = self.field_length_dispose(pdf)

        while True:
            try:
                # 分批次删除
                # asin_tuple_all = tuple(pdf.asin)
                # for i in range(0, len(asin_tuple_all)+1, self.chunk_size):
                #     asin_tuple = asin_tuple_all[i: i+self.chunk_size]
                #     if asin_tuple:
                #         asin_tuple = asin_tuple if len(asin_tuple) > 1 else f"('{asin_tuple[0]}')"
                #         with self.engine_pg14.begin() as conn:
                #             sql_del = f"delete from {self.db_detail_name} where asin in {asin_tuple};"
                #             print("sql_del:", sql_del[:100])
                #             conn.execute(sql_del)
                # 存储
                pdf.to_sql(name=self.db_detail_name, con=self.engine_pg14, if_exists='append', index=False, chunksize=100_0000)
                break
            except Exception as e:
                logging.info(f"error: {e}")
                time.sleep(random.randint(5, 20))
                self.engine_pg14 = DBUtil.get_db_engine(db_type=DbTypes.postgresql_14.name, site_name=self.site_name)
                continue

    def save_data_common(self, pdf, pdf_type):
        logging.info(f"{pdf_type} 处理")
        start_time = time.time()
        pdf.rename(columns={"asinUpdateTime": "created_time"}, inplace=True)
        if pdf_type == 'asin_vartion_list':
            columns_list = ['asin', 'color', 'parent_asin', 'size', 'state', 'style', 'column_2']  # , 'created_time'
            pdf = self.handle_data_df_explode(pdf, pdf_type=pdf_type, columns=columns_list)
            pdf['asin'] = pdf['asin'].apply(lambda x: str(x).replace('/', ''))

            self.save_data_variation(pdf=pdf)
        elif pdf_type == "img_list":
            columns_list = ['asin', 'img_url', 'img_order_by', 'data_type']  # , 'created_time'
            pdf = self.handle_data_df_explode(pdf, pdf_type=pdf_type, columns=columns_list)
            pdf['asin'] = pdf['asin'].apply(lambda x: str(x).replace('/', ''))

            self.save_data_image(pdf=pdf)
        elif pdf_type == "asin_detail":
            # if self.site_name != 'us' and self.date_type != 'month':
            self.save_data_asin_detail(pdf=pdf)
        logging.info(f"{pdf_type}: 耗时 -- {time.time() - start_time}")

    def save_data(self, pdf):
        threads = []
        for pdf_type in self.pdf_type_list:
            thread = threading.Thread(target=self.save_data_common, args=(pdf, pdf_type))
            threads.append(thread)
            thread.start()
        for thread in threads:
            thread.join()
        logging.info("所有线程处理完成")

    def handle_kafka_df(self, kafka_df):
        kafka_df.show(20)
        # pyspark的kafka_df对象转换成pandas的df对象
        pdf = kafka_df.toPandas()
        # pdf['asin'] = pdf['asin'].str.replace('/', '', regex=True)  # 去掉脏数据
        pdf['asin'] = pdf['asin'].apply(lambda x: str(x).replace('/', ''))
        # print(111111111111, pdf.loc[pdf.asin.str.contains("/")], pdf.loc[pdf.asin.str.contains("/")].shape)

        # 去重
        pdf = pdf.drop_duplicates(['asin'])
        # 过滤--不符合当前周期的数据
        pdf = pdf.loc[(~pdf.date_info.isna()) & (pdf.date_info == self.date_info)]
        if pdf.shape[0]:
            logging.info(f"{pdf.keys()}")
            logging.info(f"----------------------------")
            if self.date_type == "day":
                logging.info(f"天数据处理")
                img_columns = ['asin', 'img_url', 'img_order_by', 'data_type', 'created_time']
                img_df = self.handle_data_df(pdf, df_type='asin_vartion_list', columns=img_columns)
                if img_df.shape[0]:
                    self.save_data_image(df=img_df)
                vartion_columns = ['asin', 'color', 'parent_asin', 'size', 'state', 'style', 'column_2', 'created_time']
                vartion_df = self.handle_data_df(pdf, df_type='asin_vartion_list', columns=vartion_columns)
                if vartion_df.shape[0]:
                    self.save_data_variation(df=vartion_df)
                df = pdf[self.detail_col]
                df['site'] = df['site'].fillna(self.site_name)
                df.drop_duplicates(['asin', 'site'], inplace=True)
                now_date = time.strftime("%Y-%m-%d", time.gmtime(time.time()))
                detail_table_data_info = f"{self.site_name}_self_asin_detail"
                for name, group in df.groupby(['site']):
                    asins = list(group["asin"])
                    # 详情入库表名
                    if asins:
                        if len(asins) == 1:
                            sql_del = f"delete from `{detail_table_data_info}` where `asin`= '{asins[0]}' and `site`='{name[0]}' and created_at>='{now_date}';"
                        else:
                            sql_del = f"delete from `{detail_table_data_info}` where `asin` in {tuple(asins)} and `site`='{name[0]}' and created_at>='{now_date}';"
                        logging.info(f"{name}, {sql_del}")
                        sql_delete(sql_del)
                        logging.info(f"清理 {detail_table_data_info} 表中 {asins[0:10]} 数据")
                df.to_sql(name=f'{detail_table_data_info}', con=self.engine_pg14, if_exists='append', index=False)
                logging.info(f"入库 {detail_table_data_info} 成功 {df.head(10)}")
            else:
                self.save_data(pdf=pdf)
        else:
            logging.info(f"{pdf.shape}")

    def handle_kafka_history(self, kafka_df):
        # kafka_df = kafka_df.withColumn("asin", F.regexp_replace("asin", "/", ""))
        # kafka_df = kafka_df.withColumn("asin", F.translate("asin", "/", ""))
        self.handle_kafka_df(kafka_df)

    def handle_kafka_stream(self, kafka_df, epoch_id):
        # kafka_df = kafka_df.withColumn("asin", F.regexp_replace("asin", "/", ""))
        # kafka_df = kafka_df.withColumn("asin", F.translate("asin", "/", ""))
        self.handle_kafka_df(kafka_df)


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    # batch_size_history = 15000 if site_name == 'us' else 10000
    batch_size_history = 50000
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter/day
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
    consumer_type = sys.argv[4]  # 参数4:实时 latest 历史 history
    # us day date_info 2023-11-07
    handle_obj = SpiderAsinDetail(site_name=site_name, date_type=date_type, date_info=date_info, consumer_type=consumer_type, batch_size_history=batch_size_history)
    handle_obj.run_kafka()