1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import sys
os.environ["PYARROW_IGNORE_TIMEZONE"] = "1"
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
from ..utils.templates import Templates
from pyspark.sql.types import StringType, FloatType, StructType, StructField
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from ..yswg_utils.common_udf import parse_weight_str
class DimAsinStableInfo(Templates):
def __init__(self, site_name='us'):
super().__init__()
self.site_name = site_name
self.db_save = f'dim_asin_stable_info'
self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}")
self.df_asin_detail = self.spark.sql(f"select 1+1;")
self.df_theme = self.spark.sql(f"select 1+1;")
self.df_asin_img_url = self.spark.sql(f"select 1+1;")
self.df_asin_title = self.spark.sql(f"select 1+1;")
self.df_asin_weight = self.spark.sql(f"select 1+1;")
self.df_asin_weight_new = self.spark.sql(f"select 1+1;")
self.df_asin_weight_old = self.spark.sql(f"select 1+1;")
self.df_asin_volume = self.spark.sql(f"select 1+1;")
self.df_save = self.spark.sql(f"select 1+1;")
self.partitions_by = ['site_name']
self.reset_partitions(100)
self.window = Window.orderBy(['asin']).orderBy(F.desc("date_info")) # 按照 date_info 列进行分区,并按照 date 列进行排序
schema = StructType([
StructField('weight', FloatType(), True),
StructField('weight_type', StringType(), True),
])
self.u_get_weight = F.udf(parse_weight_str, schema)
self.weight_type = 'pounds' if site_name == 'us' else 'grams'
self.db_save_vertical = f'dim_asin_title_info_vertical' # 主题竖表
def sort_by_latest(self, df):
df = df.withColumn('row_number', F.row_number().over(self.window)) # 使用窗口函数为每个分区的行编号
df = df.filter(df.row_number == 1).drop(
'row_number') # 只保留每个分区中 row_number 最大的行,并删除 row_number 列
return df
def read_data(self):
sql = f"select asin, img_url, title, weight, weight_str, volume, date_info " \
f"from ods_asin_detail where site_name='{self.site_name}' and date_type='week';"
print("sql:", sql)
self.df_asin_detail = self.spark.sql(sql).cache()
self.df_asin_detail.show(10, truncate=False)
sql = f"select id as theme_id, theme_type_en, theme_en, theme_en_lower, theme_ch from ods_theme where site_name='{self.site_name}'"
print("sql:", sql)
self.df_theme = self.spark.sql(sql).cache()
self.df_theme.show(10, truncate=False)
def handle_data(self):
self.handle_img_url()
self.handle_title()
self.handle_weight()
self.handle_volume()
def handle_img_url(self):
self.df_asin_img_url = self.df_asin_detail.select("asin", "img_url").filter("img_url is not null")
self.df_asin_img_url = self.df_asin_img_url.filter(self.df_asin_img_url.asin_img_url.contains('amazon')) # 保留包含amazon的字符串记录
self.df_asin_img_url = self.sort_by_latest(df=self.df_asin_img_url)
for i in range(1, 10, 1):
self.df_asin_img_url = self.df_asin_img_url.withColumn(f"asin_trun_{i}", F.substring(self.df_asin_img_url.asin, 1, 1))
self.df_asin_img_url = self.df_asin_img_url.withColumn(
"asin_img_path",
F.concat(
F.lit("/"), self.df_asin_img_url.asin_trun_1,
F.lit("/"), self.df_asin_img_url.asin_trun_2,
F.lit("/"), self.df_asin_img_url.asin_trun_3,
F.lit("/"), self.df_asin_img_url.asin_trun_4,
F.lit("/"), self.df_asin_img_url.asin_trun_5,
F.lit("/"), self.df_asin_img_url.asin_trun_6,
F.lit("/")
)
)
def handle_title(self):
# 过滤null和none字符串
self.df_asin_title = self.df_asin_detail.select("asin", "title").filter("title is not null and title not in ('none', 'null', 'nan')")
# 小写
self.df_asin_title = self.df_asin_title.withColumn("title_lower", F.lower(self.df_asin_title["title"])) # 小写
# 取最新的date_info对应的title
self.df_asin_title = self.sort_by_latest(df=self.df_asin_title)
# 匹配主题数据
self.handle_title_theme()
self.reset_partitions(partitions_num=100)
self.save_data_common(
df_save=self.df_save_vertical,
db_save=self.db_save_vertical,
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
def handle_title_theme(self):
pdf_theme = self.df_theme.toPandas()
theme_list = list(set(pdf_theme.theme_en_lower))
self.theme_list_str = str([f" {theme} " for theme in theme_list])
print("self.theme_list_str:", self.theme_list_str)
# 匹配宽表时用到
df_asin_title = self.df_asin_title.cache() # 后面用作匹配asin_title
self.df_asin_title = self.df_asin_title.withColumn("asin_title_lower", F.concat(F.lit(" "), "asin_title_lower", F.lit(" "))) # 标题两头加空字符串用来匹配整个词
self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", self.u_theme_pattern('asin_title_lower', F.lit(self.theme_list_str)))
# 将列拆分为数组多列
self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.split(self.df_asin_title["theme_en_lower"], ","))
# 将数组合并到多行
self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.explode(self.df_asin_title["theme_en_lower"]))
self.df_asin_title = self.df_asin_title.join(
self.df_theme, on=['theme_en_lower'], how='left' # 改成inner, 这样避免正则匹配结果不准
)
# 1. 竖表
self.df_save_vertical = self.df_asin_title.cache()
print(self.df_save_vertical.columns)
self.df_save_vertical.show(30, truncate=False)
# self.df_save_vertical.filter("theme_en_lower is not null").show(30, truncate=False)
# 2. 宽表
self.df_asin_title = self.df_asin_title.drop_duplicates(['asin', 'theme_type_en', 'theme_ch'])
self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_counts", F.concat("theme_type_en", F.lit("_counts")))
self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_ids", F.concat("theme_type_en", F.lit("_ids")))
# self.df_asin_title.filter('theme_type_en_counts is null').show(20, truncate=False) # 没有记录
self.df_asin_title = self.df_asin_title.filter('theme_type_en_counts is not null')
pivot_df1 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_counts").agg(
F.expr("IFNULL(count(*), 0) AS value"))
pivot_df1 = pivot_df1.na.fill(0)
pivot_df2 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_ids").agg(
F.concat_ws(",", F.collect_list("theme_id")))
pivot_df1.show(30, truncate=False)
pivot_df2.show(30, truncate=False)
self.df_save_wide = df_asin_title.join(
pivot_df1, on='asin', how='left'
).join(
pivot_df2, on='asin', how='left'
)
# self.df_save_wide.show(30, truncate=False)
print(self.df_save_wide.columns)
def handle_weight(self):
self.df_asin_weight_new = self.df_asin_detail.select("asin", "weight", "weight_str").filter("date_info >= '2023-18'").cache()
self.df_asin_weight_old = self.df_asin_detail.select("asin", "weight", "weight_str").filter("date_info < '2023-18'").cache()
self.handle_weight_new()
self.handle_weight_old()
print("self.df_asin_weight.columns:", self.df_asin_weight.columns)
print("self.df_asin_weight_old.columns:", self.df_asin_weight_old.columns)
self.df_asin_weight = self.df_asin_weight_new.unionByName(self.df_asin_weight_old, allowMissingColumns=True)
self.df_asin_weight = self.sort_by_latest(df=self.df_asin_weight)
# 将weight列中的'none'转为null,并转为浮点数类型
self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") == 'none', None).otherwise(
F.col("weight").cast(FloatType())))
# weight列中小于等于0.001的值设为0.001
self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") <= 0.001, 0.001).otherwise(F.col("weight")))
# 保留4位小数
self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.round(self.df_asin_weight["weight"], 4))
# self.df_asin_weight.show(20, truncate=False)
self.df_asin_weight = self.df_asin_weight.withColumnRenamed(
"weight_str", "asin_weight_str"
).withColumnRenamed(
"weight", "asin_weight"
).withColumnRenamed(
"weight_type", "asin_weight_type"
)
def handle_weight_new(self):
print("开始处理重量数据: 2023-18周之后")
# 将列类型转为字符串并转为小写
self.df_asin_weight_new = self.df_asin_weight_new.withColumn("weight_str", F.lower(F.col("weight_str").cast(StringType())))
# 提取体积字符串中的weight_info, weight_type
self.df_asin_weight_new = self.df_asin_weight_new.withColumn('weight_detail', self.u_get_weight('weight_str', 'site_name'))
self.df_asin_weight_new = self.df_asin_weight_new \
.withColumn('weight', self.df_asin_weight_new.weight_detail.getField('weight')) \
.withColumn('weight_type', self.df_asin_weight_new.weight_detail.getField('weight_type')) \
.drop('weight_detail')
# # 将weight列中的'none'转为null,并转为浮点数类型
# self.df_asin_weight_new = self.df_asin_weight_new.withColumn("weight", F.when(F.col("weight") == 'none', None).otherwise(
# F.col("weight").cast(FloatType())))
#
# # weight列中小于等于0.001的值设为0.001
# self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") <= 0.001, 0.001).otherwise(F.col("weight")))
# # 将weight_str列中的'none'转为null
# self.df_asin_weight = self.df_asin_weight.withColumn("weight_str", F.when(F.col("weight_str") == 'none', None).otherwise(F.col("weight_str")))
def handle_weight_old(self):
print("开始处理重量数据: 2023-18周之前")
self.df_asin_weight_old = self.df_asin_weight_old.withColumn("weight_type", F.lit(self.weight_type))
window = Window.partitionBy(['asin']).orderBy(self.df_asin_weight_old.date_info.desc())
self.df_asin_weight_old = self.df_asin_weight_old.withColumn(
"row_number", F.row_number().over(window)
)
self.df_asin_weight_old = self.df_asin_weight_old.withColumn('row_number',
F.row_number().over(window)) # 使用窗口函数为每个分区的行编号
self.df_asin_weight_old = self.df_asin_weight_old.filter(self.df_asin_weight_old.row_number == 1).drop(
'row_number') # 只保留每个分区中 row_number 最大的行,并删除 row_number 列
def handle_volume(self):
pass