1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
import re
import sys
import time
import numpy as np
import pandas as pd
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from pyspark.storagelevel import StorageLevel
from utils.templates import Templates
# from ..utils.templates import Templates
import faiss
import numpy as np
from pyspark.sql.functions import pandas_udf, PandasUDFType
import pandas as pd
# # 定义一个Pandas UDF,该UDF在每个分区上加载索引并进行查询
# @pandas_udf('int', PandasUDFType.SCALAR)
# def find_nearest_neighbors(series):
# # 加载索引
# index = faiss.read_index("/home/ffman/tmp/my_index.faiss")
# # 查询最近的5个邻居
# _, I = index.search(np.array(series.tolist()).astype('float32'), 5)
# return pd.Series(I[:, 0]) # 返回最近的邻居的索引
class Search(Templates):
def __init__(self, site_name='us'):
super(Search, self).__init__()
self.site_name = site_name
self.db_save = f'image_search'
self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}")
self.df_save = self.spark.sql(f"select 1+1;")
def read_data(self):
self.df_save = self.spark.read.parquet("hdfs://hadoop5:8020/home/ffman/faiss/embeddings/folder")
self.df_save.show(20)
# 将嵌入向量从数据中提取出来,注意这会将所有的数据加载到内存中,如果数据太大可能会出现内存问题
data = self.df_save.collect()
embeddings = np.array([row['embedding'] for row in data])
# 创建Faiss索引
print("开始创建索引")
index = faiss.IndexFlatL2(512)
index.add(embeddings)
faiss.write_index(index, "/home/ffman/tmp/my_index.faiss")
print("索引创建完成+存储hdfs完成")
# 在驱动程序上构建索引并保存到磁盘
# embeddings = np.random.rand(1000, 512).astype('float32') # 假设你的嵌入向量
# index = faiss.IndexFlatL2(embeddings.shape[1])
# index.add(embeddings)
while True:
# 假设query是你要查询的嵌入向量
query = np.random.rand(512).astype('float32')
print("query:", query.shape)
# 查找最近的5个邻居
D, I = index.search(query.reshape(1, -1), 5)
# 打印结果
print("Distances: ", D)
print("Indices: ", I)
time.sleep(1)
def handle_data(self):
# 在每个分区上进行查询
# df = self.df_save.withColumn('nearest_neighbor', find_nearest_neighbors(self.df_save['embedding']))
# df.show(20)
quit()
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
handle_obj = Search()
handle_obj.run()