1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
"""
@Author : HuangJian
@Description : 店铺feedBack页面top20相关指标统计
@SourceTable :
①ods_seller_account_syn
②ods_seller_asin_account
③ods_seller_account_feedback_report
④ods_asin_detail_product
⑤dim_asin_history_info
@SinkTable :
①dwd_seller_asin_account_agg
②dwd_seller_asin_account_detail
@CreateTime : 2022/11/2 9:56
@UpdateTime : 2022/11/2 9:56
"""
import datetime
import traceback
import os
import sys
from datetime import date, timedelta
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from pyspark.sql.functions import ceil
from pyspark.sql.types import IntegerType
from utils.templates import Templates
# from ..utils.templates import Templates
from pyspark.sql import functions as F
from yswg_utils.common_udf import udf_get_package_quantity
class DwdFeedBack(Templates):
def __init__(self, site_name='us', date_type="week", date_info='2022-40'):
super().__init__()
self.db_save = "feedback_week"
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.spark = self.create_spark_object(
app_name=f"{self.db_save}:{self.site_name}_{self.date_type}_{self.date_info}")
self.df_date = self.get_year_week_tuple()
self.month = self.get_month_by_week()
self.week_date = self.get_calDay_by_dateInfo()
self.month_old = int(self.month)
self.ym = f"{self.year}_{self.month_old}"
self.partitions_by = ['site_name', 'date_type', 'date_info']
# 自定义udf函数相关对象
self.u_launch_time = self.spark.udf.register("u_launch_time", self.udf_launch_time, IntegerType())
self.u_days_diff = self.spark.udf.register("u_days_diff", self.udf_days_diff, IntegerType())
self.u_judge_package_quantity = F.udf(udf_get_package_quantity,IntegerType())
# 初始化全局变量df--ods获取数据的原始df
self.df_seller_acount_syn = self.spark.sql("select 1+1;")
self.df_seller_asin_acount = self.spark.sql("select 1+1;")
self.df_seller_account_feedback_report = self.spark.sql("select 1+1;")
self.df_asin_detail_product = self.spark.sql("select 1+1;")
self.df_asin_detail = self.spark.sql("select 1+1;")
# 初始化全局变量df--dwd层转换输出的df
self.df_seller = self.spark.sql("select 1+1;")
self.df_seller_agg = self.spark.sql("select 1+1;")
self.df_seller_detail = self.spark.sql("select 1+1;")
self.df_asin_parent = self.spark.sql("select 1+1;")
# 初始化全局变量df -- 中间过程使用
self.df_seller_top = self.spark.sql("select 1+1;")
self.df_asin_counts = self.spark.sql("select 1+1;")
self.df_asin_new_counts = self.spark.sql("select 1+1;")
self.df_variat_ratio = self.spark.sql("select 1+1;")
@staticmethod
def udf_launch_time(launch_time, cal_day):
# 针对launch_time字段进行计算与当前日期的间隔天数
if "-" in str(launch_time):
# print(DwdFeedBack.week_date)
asin_date_list = str(launch_time).split("-")
try:
asin_date = datetime.date(year=int(asin_date_list[0]),
month=int(asin_date_list[1]),
day=int(asin_date_list[2]))
if not cal_day.strip():
week_date = '2022-11-02'
else:
week_date = cal_day
cur_date_list = str(week_date).split("-")
cur_date = datetime.date(year=int(cur_date_list[0]),
month=int(cur_date_list[1]),
day=int(cur_date_list[2]))
days_diff = (cur_date - asin_date).days
except Exception as e:
print(e, traceback.format_exc())
print(launch_time, asin_date_list)
days_diff = 999999
else:
days_diff = 999999
return days_diff
@staticmethod
def udf_days_diff(days_diff):
# 针对days_diff字段进行计算180天,判断是否为新品
if days_diff <= 180:
return 1
elif days_diff == 999999:
return None
else:
return 0
def get_month_by_week(self):
if self.date_type == "week":
df = self.df_date.loc[self.df_date.year_week == self.year_week]
month = list(df.month)[0]
if int(month) < 10:
month = "0" + str(month)
print("month:", month)
return str(month)
def get_calDay_by_dateInfo(self):
if self.date_type in ['day', 'last30day']:
return str(self.date_info)
# 如果为 周、月则取该周、月的最后一日,作为新品计算基准日
if self.date_type in ['week', 'month']:
self.df_date = self.spark.sql(f"select * from dim_date_20_to_30;")
df = self.df_date.toPandas()
df_loc = df.loc[df[f'year_{self.date_type}'] == f"{self.date_info}"]
self.date_info_tuple = tuple(df_loc.date)
# week_date_info_tuple = tuple(df_loc.date)
# last_index = len(week_date_info_tuple)
# print("self.cal_day:", str(tuple(df_loc.date)[last_index - 1]))
# # 判断长度,取最后一日
# return str(tuple(df_loc.date)[last_index - 1])
# 取周第一天、月的第一天
print("self.cal_day:", str(list(df_loc.date)[0]))
return str(list(df_loc.date)[0])
# 1.获取原始数据
def read_data(self):
# 获取ods_seller相关原始表
print("获取 ods_seller_account_syn")
sql = f"select id as account_id, account_name, {self.week} as week from ods_seller_account_syn " \
f"where site_name='{self.site_name}' "
self.df_seller_acount_syn = self.spark.sql(sqlQuery=sql)
print(sql)
# print("self.df_seller_acount_syn:", self.df_seller_acount_syn.show(10, truncate=False))
print("获取 ods_seller_asin_account")
sql = f"select account_name, asin from ods_seller_asin_account " \
f"where site_name = '{self.site_name}' group by account_name, asin"
self.df_seller_asin_acount = self.spark.sql(sqlQuery=sql)
print(sql)
# print("self.df_seller_asin_acount:", self.df_seller_asin_acount.show(10, truncate=False))
print("获取 ods_seller_account_feedback_report")
sql = f"select account_id,num as asin_counts from ods_seller_account_feedback_report " \
f"where site_name='{self.site_name}' and date_type='month' and date_info='{self.year}-{self.month}'"
self.df_seller_account_feedback_report = self.spark.sql(sqlQuery=sql)
print(sql)
# print("self.df_seller_account_feedback_report", self.df_seller_account_feedback_report.show(10, truncate=False))
# 获取ods_asin相关原始表
print("获取 ods_asin_detail_product")
sql = f"select account_id, asin, price, rating, total_comments, {self.week} as week, row_num, created_at " \
f"from ods_asin_detail_product where site_name='{self.site_name}' and date_type='month' and date_info='{self.year}-{self.month}'"
self.df_asin_detail_product = self.spark.sql(sqlQuery=sql)
print(sql)
# print("self.df_asin_detail_product1:", self.df_asin_detail_product.show(10, truncate=False))
self.df_asin_detail_product = self.df_asin_detail_product.sort(['account_id', "row_num", "created_at"],
ascending=[True, True, False])
self.df_asin_detail_product = self.df_asin_detail_product.dropDuplicates(['account_id', "row_num"])
#print("self.df_asin_detail_product2:", self.df_asin_detail_product.show(10, truncate=False))
print("获取 dim_asin_history_info")
sql = f"select asin, asin_title,asin_launch_time as launch_time from dim_cal_asin_history_detail " \
f"where site_name='{self.site_name}'"
self.df_asin_detail = self.spark.sql(sqlQuery=sql)
print(sql)
# print("self.df_asin_detail:", self.df_asin_detail.show(10, truncate=False))
print("获取 dim_asin_variation_info")
sql = f"select asin,parent_asin from dim_asin_variation_info " \
f"where site_name='{self.site_name}'" \
f" and asin != parent_asin "
self.df_asin_parent = self.spark.sql(sqlQuery=sql)
print(sql)
# print("self.df_asin_parent:", self.df_asin_parent.show(10, truncate=False))
def handle_data(self):
self.handle_asin_top20_avg()
self.handle_asin_count()
self.handle_save_date()
# 2.1处理top20产品的平均指标值-按account聚合统计
def handle_asin_top20_avg(self):
print("处理asin_detail_product的top20指标逻辑")
self.df_seller_top = self.df_asin_detail_product.filter("row_num<=20")
self.df_seller_top = self.df_seller_top.groupby('account_id').agg(
F.avg('price').alias('top_20_avg_price'),
F.avg('rating').alias('top_20_avg_rating'),
F.avg('total_comments').alias('top_20_avg_total_comments'),
)
self.df_seller_top = self.df_seller_top.withColumn("top_20_avg_total_comments",
ceil(self.df_seller_top.top_20_avg_total_comments))
# print("df_seller_top:", self.df_seller_top.show(10, truncate=False))
# 2.2 计算asin_count和asin_new_count逻辑
def handle_asin_count(self):
print("处理df_seller_account相关数据逻辑")
# 让 df_seller_acount_syn 与 df_seller_asin_acount 和 df_seller_account_feedback_report 关联得到具体明细
self.df_seller = self.df_seller_acount_syn. \
join(self.df_seller_asin_acount, on='account_name', how='inner'). \
join(self.df_asin_detail, on='asin', how='left')
# 标记是否新品标签
self.df_seller = self.df_seller.withColumn("days_diff", self.u_launch_time(
self.df_seller.launch_time, F.lit(self.week_date)))
# 通过days_diff走自定义udf,生成is_asin_new字段(是否asin新品标记)
self.df_seller = self.df_seller.withColumn("is_asin_new", self.u_days_diff(
self.df_seller.days_diff))
# 做缓存
self.df_seller = self.df_seller.cache()
# 计算店铺-asin的打包数量
self.df_seller = self.df_seller.withColumn('asin_package_quantity', self.u_judge_package_quantity(F.col('asin_title')))
# 符合打包数量>=2的商品数标识
self.df_seller = self.df_seller.withColumn('is_pq_flag', F.when(F.col('asin_package_quantity') >= 2, F.lit(1)))
# 计算asin_counts_exists与asin_new_counts指标
self.df_asin_counts = self.df_seller.groupby(['account_id', 'account_name']).agg(
F.count('asin').alias('asin_counts_exists'),
F.sum('is_asin_new').alias('asin_new_counts'),
F.sum('is_pq_flag').alias('fb_package_quantity_num')
)
# 关联report表,获取店铺的商品数量
self.df_asin_counts = self.df_asin_counts\
.join(self.df_seller_account_feedback_report, on='account_id', how='left')
# 计算 counts_new_rate asin新品比率
self.df_asin_counts = self.df_asin_counts.withColumn('counts_new_rate',
F.round(F.col('asin_new_counts')/F.col('asin_counts_exists'), 3))
# 计算店铺打包数量的比例
self.df_asin_counts = self.df_asin_counts.withColumn('fb_package_quantity_prop',
F.round(F.col('fb_package_quantity_num') / F.col('asin_counts_exists'),
3))
# 计算店铺多数量占比 有变体asin数量/(有变体asin数量+单产品asin数量) 逻辑实现
self.df_variat_ratio = self.df_seller.join(self.df_asin_parent, on='asin', how='left')
# 没有匹配上asin_parent的给他附上自己的asin值:1.可能是父asin最顶端; 2.可能是asin单产品
self.df_variat_ratio = self.df_variat_ratio.withColumn('parent_asin_new',
F.when(F.col('parent_asin').isNull(), F.col('asin'))
.otherwise(F.col('parent_asin')))
# 按照account_name、asin_parent分组统计数量
self.df_variat_ratio = self.df_variat_ratio.groupby(['account_id', 'account_name', 'parent_asin_new'])\
.agg(
F.count('asin').alias('asin_son_count')
)
# 打上多变体标签
self.df_variat_ratio = self.df_variat_ratio.withColumn('is_variat_flag',
F.when(F.col('asin_son_count') > 1, F.lit(1)))
# 按照account_name分组,得出分子分母
self.df_variat_ratio = self.df_variat_ratio.groupby(['account_id', 'account_name'])\
.agg(
F.sum('is_variat_flag').alias('variat_num'),
F.count('parent_asin_new').alias('total_asin_num'))
self.df_variat_ratio = self.df_variat_ratio.na.fill({'variat_num': 0, 'total_asin_num': 0})
## 计算店铺多数量占比 有变体asin数量/(有变体asin数量+单产品asin数量)
self.df_variat_ratio = self.df_variat_ratio.withColumn('fb_variat_prop',
F.round(F.col('variat_num')/F.col('total_asin_num'), 3))
self.df_variat_ratio = self.df_variat_ratio.drop('account_name')
# 2.4 指标整合逻辑
def handle_save_date(self):
# seller_detail
self.df_seller = self.df_seller\
.select(
F.col('account_id'),
F.col('account_name'),
F.col('asin'),
F.col('launch_time'),
F.col('days_diff'),
F.col('is_asin_new'),
# 遗留的无用字段
F.lit(0).alias('asin_counts'),
F.lit(0).alias('asin_new_counts'),
F.lit(0).alias('counts_new_rate'),
F.lit(0).alias('asin_counts_exists'),
# 分区字段补全
F.lit(self.week).cast('int').alias('week'),
F.lit(self.site_name).alias("site_name"),
F.lit(self.date_type).alias("date_type"),
F.lit(self.date_info).alias("date_info")
)
# 关联top20avg相关计算指标以及计算店铺多数量占比计算指标
self.df_seller_agg = self.df_asin_counts\
.join(self.df_seller_top, on='account_id', how='left')\
.join(self.df_variat_ratio, on='account_id', how='left')
self.df_seller_agg = self.df_seller_agg.select(
F.col('account_id'),
F.col('account_name'),
F.col('asin_new_counts'),
F.col('asin_counts'),
F.col('counts_new_rate'),
F.col('top_20_avg_price'),
F.col('top_20_avg_rating'),
F.col('top_20_avg_total_comments'),
F.col('asin_counts_exists'),
F.col('variat_num').alias('fb_variat_num'),
F.col('total_asin_num').alias('fb_asin_total'),
F.col('fb_variat_prop'),
F.col('fb_package_quantity_prop'),
F.col('fb_package_quantity_num'),
# 分区字段补全
F.lit(self.week).cast('int').alias('week'),
F.lit(self.ym).alias('ym'),
F.lit(self.site_name).alias("site_name"),
F.lit(self.date_type).alias("date_type"),
F.lit(self.date_info).alias("date_info")
)
# 重写数据写入方法,对应两张目标表
def save_data(self):
self.reset_partitions(partitions_num=1)
self.save_data_common(
df_save=self.df_seller_agg,
db_save='dwd_seller_asin_account_agg',
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
self.reset_partitions(partitions_num=10)
self.save_data_common(
df_save=self.df_seller,
db_save='dwd_seller_asin_account_detail',
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季, 比如: 2022-1
handle_obj = DwdFeedBack(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()