1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
"""
author: 方星钧(ffman)
description: pyspark程序继承模板
table_read_name: 无
table_save_name: 无
table_save_level: 无
version: 1.0
created_date: 2022-05-07
updated_date: 2022-05-07
"""
import calendar
import json
import os
import sys
import time
import traceback
import uuid
import pandas as pd
import redis
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F
from kafka import KafkaConsumer, TopicPartition
from pyspark.sql.types import *
from utils.db_util import DbTypes, DBUtil
from utils.hdfs_utils import HdfsUtils
from pyspark.sql import Window
from utils.common_util import CommonUtil
import subprocess
import requests
class Templates(object):
def __init__(self):
# 站点
self.site_name = str()
# 日期相关
self.year_quarter = str()
self.year_month = str()
self.year_week = str()
self.year = int()
self.quarter = int()
self.month = int()
self.week = int()
self.day = int()
self.year_month_days_dict = dict()
self.year_quarter_tuple = tuple()
self.year_month_tuple = tuple()
self.year_week_tuple = tuple()
self.date_info_tuple = tuple()
self.last_30_date_tuple = tuple()
self.date_type = str() # week/4_week/month/quarter
self.date_info = str() # 2022-1/2022-1/2022-1/2022-1
self.app_name = str()
# spark相关
self.db_save = str() # 需要存储的hive表名
self.db_name = "big_data_selection" # 需要存储的hive表名
# self.db_name = "selection_off_line" # 需要存储的hive表名
self.df_save = object() # 需要存储的df数据对象
self.df_week = object() # 需要存储的df数据对象
self.df_date = object() # 需要存储的df数据对象
self.partitions_num = int() # df数据对象的分区数重置
self.partitions_by = list() # hive分区表对应的分区
# self.reset_partitions()
self.reset_partitions_by()
self.spark = None # spark程序的执行入口对象
self.topic_name = str()
# my_kafka
self.consumer = object()
# 在此处定义 Kafka 认证和安全参数
# self.kafka_servers = "192.168.10.221:9092,192.168.10.220:9092,192.168.10.210:9092"
# self.kafka_servers_producer = "61.145.136.61:19092,61.145.136.61:29092,61.145.136.61:39092"
self.kafka_servers = "192.168.10.218:9092,192.168.10.219:9092,192.168.10.220:9092"
self.kafka_servers_producer = "'61.145.136.61:19092,61.145.136.61:29092,61.145.136.61:49092,61.145.136.61:59092'"
self.kafka_security_protocol = "SASL_PLAINTEXT"
self.kafka_sasl_mechanism = "PLAIN"
self.kafka_username = "consumer"
self.kafka_password = "J2#aLmPq7zX"
self.consumer_type = 'lastest'
self.processing_time = 300
self.check_path = str()
# 实时计算的query对象
self.query = None
# 数据库连接
self.engine_mysql = DBUtil.get_db_engine(db_type=DbTypes.mysql.name, site_name="us")
# 爬虫类型
self.spider_type = "asin详情"
# 指定历史消费起始偏移量
self.beginning_offsets = 0
# 测试标识
self.test_flag = 'normal'
self.beginning_offsets_dict = {} # history消费时, 初始的偏移量
# redis连接对象--用来锁定--解决并发
self.client = redis.Redis(host='192.168.10.224', port=6379, db=9, password='yswg2023')
def create_spark_object(self, app_name=None):
if self.topic_name != '':
print("创建实时相关SparkSession对象")
spark = SparkUtil.get_stream_spark(app_name, self.db_name)
else:
print("创建非实时相关SparkSession对象")
spark = SparkUtil.get_spark_session(app_name, self.db_name)
return spark
# 针对消费kafka得到的dataframe去重
def deduplication_kafka_data(self, kafka_df, deduplicaiton_key_field, deduplication_time_field):
print(f"数据去重清洗,清洗依据字段: {deduplicaiton_key_field}, 排序依据字段: {deduplication_time_field}")
window = Window.partitionBy(deduplicaiton_key_field).orderBy(
F.col(deduplication_time_field).desc_nulls_last()
)
kafka_df = kafka_df.withColumn("k_rank", F.row_number().over(window=window))
kafka_df = kafka_df.filter("k_rank=1").drop("k_rank")
return kafka_df
def create_kafka_df_object(self, consumer_type=str(), topic_name=str(), starting_offsets_json=str(), ending_offsets_json=str(), schema=StructType()):
if consumer_type == "latest":
# 流处理
kafka_df = self.spark.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", self.kafka_servers) \
.option("subscribe", topic_name) \
.option("kafka.security.protocol", self.kafka_security_protocol) \
.option("kafka.sasl.mechanism", self.kafka_sasl_mechanism) \
.option("kafka.sasl.jaas.config",
f'org.apache.kafka.common.security.plain.PlainLoginModule required username="{self.kafka_username}" password="{self.kafka_password}";') \
.option("startingOffsets", consumer_type) \
.option("failOnDataLoss", "false") \
.load() \
.select(F.from_json(F.col("value").cast("string"), schema=schema).alias("data")) \
.select("data.*")
return kafka_df
elif consumer_type == "history":
# 批处理
kafka_df = self.spark.read \
.format("kafka") \
.option("kafka.bootstrap.servers", self.kafka_servers) \
.option("subscribe", topic_name) \
.option("kafka.security.protocol", self.kafka_security_protocol) \
.option("kafka.sasl.mechanism", self.kafka_sasl_mechanism) \
.option("kafka.sasl.jaas.config",
f'org.apache.kafka.common.security.plain.PlainLoginModule required username="{self.kafka_username}" password="{self.kafka_password}";') \
.option("failOnDataLoss", "false") \
.option("startingOffsets", starting_offsets_json) \
.option("endingOffsets", ending_offsets_json) \
.load() \
.select(F.from_json(F.col("value").cast("string"), schema=schema).alias("data")) \
.select("data.*")
if self.spider_type == 'asin详情' and kafka_df.count() > 0:
kafka_df = self.deduplication_kafka_data(kafka_df, "asin", "asinUpdateTime")
return kafka_df
def get_kafka_object_by_python(self, topic_name="us_asin_detail"):
consumer = KafkaConsumer(
topic_name,
bootstrap_servers=self.kafka_servers,
value_deserializer=lambda x: json.loads(x.decode('utf-8')),
security_protocol=self.kafka_security_protocol, # 或者 'SASL_SSL' 如果你使用 SSL
sasl_mechanism=self.kafka_sasl_mechanism,
sasl_plain_username=self.kafka_username,
sasl_plain_password=self.kafka_password
)
return consumer
# @staticmethod
def get_kafka_partitions_data(self, consumer=None, topic_name="us_asin_detail"):
partitions = consumer.partitions_for_topic(topic_name)
partition_data_count = {}
for pid in partitions:
# 创建一个TopicPartition对象
tp = TopicPartition(topic_name, pid)
# 获取该分区的最早和最新的offsets
beginning_offsets = consumer.beginning_offsets([tp])[tp] if self.beginning_offsets == 0 else self.beginning_offsets
end_offsets = consumer.end_offsets([tp])[tp]
# 数据量即为这两个offsets之差
data_count = end_offsets - beginning_offsets
offset_dict = {
"beginning_offsets": beginning_offsets,
"end_offsets": end_offsets,
"data_count": data_count,
}
# partition_data_count[pid] = data_count
partition_data_count[pid] = offset_dict
print("partition_data_count:", partition_data_count)
return partition_data_count
def get_kafka_df_by_spark(self, schema=None, consumption_type="lastest", topics=f"us_asin_detail"):
# .option("startingOffsets", consumption_type) \
# .option("maxOffsetsPerTrigger", 1000) \ # 每个触发器周期读取的最大消息数量
kafka_df = self.spark.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", self.kafka_servers) \
.option("subscribe", topics) \
.option("kafka.security.protocol", self.kafka_security_protocol) \
.option("kafka.sasl.mechanism", self.kafka_sasl_mechanism) \
.option("kafka.sasl.jaas.config",
f'org.apache.kafka.common.security.plain.PlainLoginModule required username="{self.kafka_username}" password="{self.kafka_password}";') \
.option("startingOffsets", consumption_type) \
.load() \
.select(F.from_json(F.col("value").cast("string"), schema=schema).alias("data")) \
.select("data.*")
return kafka_df
def get_year_month_days_dict(self, year=2022):
self.year_month_days_dict = {month: calendar.monthrange(year, month)[-1] for month in range(1, 13)}
def get_date_info_tuple(self):
self.df_date = self.spark.sql(f"select * from dim_date_20_to_30;")
df = self.df_date.toPandas()
if self.date_type == 'day':
df_loc = df.loc[df.date == f'{self.date_info}']
self.date_info_tuple = f"('{tuple(df_loc.date)[0]}')"
self.year, self.month, self.day = self.date_info.split("-")
self.week = list(df_loc.year_week)[0].split("-")[-1]
if self.date_type in ['week', 'week_old', 'month', 'month_old']:
# df_loc = df.loc[df[f'year_{self.date_type}'] == f"{self.date_info}"]
# self.date_info_tuple = tuple(df_loc.date)
if self.date_type in ['week', 'week_old']:
df_loc = df.loc[df[f'year_week'] == f"{self.date_info}"]
self.date_info_tuple = tuple(df_loc.date)
self.year, self.week = self.date_info.split("-")
self.month = list(df_loc.year_month)[0].split("-")[-1]
if self.date_type in ['month', 'month_old']:
df_loc = df.loc[df[f'year_month'] == f"{self.date_info}"]
self.date_info_tuple = tuple(df_loc.date)
self.year, self.month = self.date_info.split("-")
if self.date_type == '4_week':
df_loc = df.loc[(df[f'year_week'] == f"{self.date_info}") & (df.week_day == 1)]
current_id = tuple(df_loc.id)[0]
id_tuple = (current_id, current_id - 7 * 1, current_id - 7 * 2, current_id - 7 * 3)
df_4_week = df.loc[df.id.isin(id_tuple)] # 4
df_4_week = df.loc[df.year_week.isin(df_4_week.year_week)] # 4*7
self.date_info_tuple = tuple(sorted(list(df_4_week.date)))
self.year, self.week = self.date_info.split("-")
self.year = tuple(df_loc.year)[0]
self.month = list(df_loc.year_month)[0].split("-")[-1]
if self.date_type == 'last30day':
df_loc = df.loc[df.date == f'{self.date_info}']
day_end_id = list(df_loc.id)[0]
# 减去29天,获取到30天前的id
day_begin_id = (int(day_end_id) - 29)
df_loc = df.loc[(df.id >= day_begin_id) & (df.id <= day_end_id)]
self.date_info_tuple = tuple(df_loc.date)
self.year, self.month, self.day = self.date_info.split("-")
print("self.date_info_tuple:", self.date_info_tuple)
def get_year_week_tuple(self):
self.df_week = self.spark.sql(f"select * from dim_date_20_to_30 where week_day=1;")
# self.df_week = self.spark.sql(f"select * from dim_week_20_to_30;")
df = self.df_week.toPandas()
df.year_month = df.year_month.apply(lambda x: x.replace("_", "-"))
df.year_quarter = df.year_quarter.apply(lambda x: x.replace("_quarter_", "-"))
if self.date_type in ['week']:
self.year_week = self.date_info
# self.year, self.week = int(self.year_week.split("-")[0]), int(self.year_week.split("-")[1])
self.year, self.week = self.year_week.split("-")[0], self.year_week.split("-")[1]
self.year_week_tuple = f"('{self.year_week}')"
if self.date_type in ['4_week']:
self.year_week = self.date_info
self.year, self.week = self.year_week.split("-")[0], self.year_week.split("-")[1]
df_week = df.loc[df.year_week == self.year_week]
current_id = list(df_week.id)[0] if list(df_week.id) else None
id_tuple = (current_id, current_id - 7*1, current_id - 7*2, current_id - 7*3)
df_4_week = df.loc[df.id.isin(id_tuple)]
self.year_week_tuple = tuple(df_4_week.year_week) if tuple(df_4_week.year_week) else ()
df_week = df.loc[(df.year_week == self.date_info) & (df.week_day == 1)]
self.year = tuple(df_week.year)[0]
self.month = tuple(df_week.month)[0]
print(f"self.year:{self.year}, self.month:{self.month}")
if self.date_type in ['month', 'month_old', 'month_week']:
self.year_month = self.date_info
self.year, self.month = self.year_month.split("-")[0], self.year_month.split("-")[1]
df_month = df.loc[df.year_month == self.year_month]
self.year_week_tuple = tuple(df_month.year_week) if tuple(df_month.year_week) else ()
if self.date_type in ['quarter']:
self.year_quarter = self.date_info
self.year, self.quarter = self.year_quarter.split("-")[0], self.year_quarter.split("-")[1]
df_quarter = df.loc[df.year_quarter == self.year_quarter]
self.year_week_tuple = tuple(df_quarter.year_week) if tuple(df_quarter.year_week) else ()
print("self.year_week_tuple:", self.year_week_tuple)
return df
def reset_partitions(self, partitions_num=10):
print("重置分区数")
if self.site_name in ['us']:
self.partitions_num = partitions_num
elif self.site_name in ['uk', 'de']:
self.partitions_num = partitions_num // 2 if partitions_num // 2 > 0 else 1
elif self.site_name in ['es', 'fr', 'it']:
self.partitions_num = partitions_num // 4 if partitions_num // 4 > 0 else 1
def reset_partitions_by(self):
if self.date_type in ['week', '4_week']:
self.partitions_by = ['site_name', 'dt']
if self.date_type in ['month']:
self.partitions_by = ['site_name', 'dm']
if self.date_type in ['quarter']:
self.partitions_by = ['site_name', 'dq']
def read_data(self):
pass
def handle_data(self):
pass
@staticmethod
def save_data_common(df_save=None, db_save=None, partitions_num=None, partitions_by=None):
print("当前存储的表名为:", db_save)
df_save = df_save.repartition(partitions_num)
df_save.write.saveAsTable(name=db_save, format='hive', mode='append', partitionBy=partitions_by)
def save_data(self):
self.save_data_common(df_save=self.df_save, db_save=self.db_save, partitions_num=self.partitions_num,
partitions_by=self.partitions_by)
# 采用insert overwrite模式覆写数据,覆写模式一定要保证dataFrame的字段顺序与表字段顺序一致
@staticmethod
def insert_data_overwrite(df_save=None, db_save=None, partitions_num=None):
print("当前覆写得表名为:", db_save)
df_save = df_save.repartition(partitions_num)
df_save.write.insertInto(tableName=db_save, overwrite=True)
def insert_data(self):
self.insert_data_overwrite(df_save=self.df_save, db_save=self.db_save, partitions_num=self.partitions_num)
def run(self):
# while True:
# try:
self.read_data()
self.handle_data()
self.save_data()
# break
# except Exception as e:
# print("error_info:", e, traceback.format_exc())
# continue
def start_process_instance(self):
pass
def kafka_stream_stop(self):
try:
self.start_process_instance() # 开启海豚调度
if self.query is not None:
self.query.awaitTermination()
self.query.stop() # 退出实时消费
if self.spark is not None:
self.spark.stop()
exit(0) # 退出程序
except Exception as e:
print(e, traceback.format_exc())
def kafka_consumption_is_finished(self):
while True:
try:
# if self.site_name == 'us':
# # sql = f"SELECT * from workflow_progress WHERE site_name='{self.site_name}' and page='{self.spider_type}' ORDER BY created_at desc LIMIT 1;"
# sql = f"""
# SELECT * from workflow_progress WHERE site_name='{self.site_name}' and page='{self.spider_type}'
# and date_info in
# -- (SELECT MAX(year_week) as date_info from date_20_to_30 WHERE `year_month` = '2024-02' and week_day =1
# (SELECT year_week as date_info from date_20_to_30 WHERE `year_month` = '{self.date_info}' and week_day =1
# )
# ORDER BY created_at desc LIMIT 1;
#
# """
# else:
# sql = f"SELECT * from selection.workflow_progress WHERE site_name='{self.site_name}' and date_info='{self.date_info}' and page='{self.spider_type}' ORDER BY created_at desc LIMIT 1;"
sql = f"SELECT * from selection.workflow_progress WHERE site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}' and page='{self.spider_type}' and spider_state=3;"
print(f"判断爬虫'{self.spider_type}'是否结束, sql: {sql}")
df = pd.read_sql(sql, con=self.engine_mysql)
if df.shape[0]:
status_val = list(df.status_val)[0]
if int(status_val) == 3:
print(f"spider_type:{self.spider_type}已经爬取完毕, 退出kafka消费和停止程序")
if self.consumer_type == "latest":
if HdfsUtils.delete_hdfs_file_with_checkpoint(self.check_path):
print("实时消费正常完成,删除对应的检查点文件")
self.kafka_stream_stop()
else:
print(f"spider_type:{self.spider_type}还在爬取中, 继续下一个批次数据消费")
break
except Exception as e:
print(f"判断判断爬虫'{self.spider_type}'是否结束---出现异常, 等待20s", e, traceback.format_exc())
time.sleep(20)
self.engine_mysql = DBUtil.get_db_engine(db_type=DbTypes.mysql.name, site_name="us")
continue
def kafka_stream(self, processing_time):
kafka_df = self.create_kafka_df_object(consumer_type="latest", topic_name=self.topic_name, schema=self.schema)
if self.test_flag == 'test':
self.query = kafka_df.writeStream \
.outputMode("append") \
.format("console") \
.foreachBatch(self.handle_kafka_stream_templates) \
.trigger(processingTime=f'{processing_time} seconds') \
.start()
self.query.awaitTermination()
else:
self.check_path = f"/tmp/kafka/{self.topic_name}" if self.check_path == "" else self.check_path
print("检查点目录为:", self.check_path)
HdfsUtils.is_checkpoint_exist(self.check_path)
self.query = kafka_df.writeStream \
.outputMode("append") \
.format("console") \
.foreachBatch(self.handle_kafka_stream_templates) \
.trigger(processingTime=f'{processing_time} seconds') \
.option("checkpointLocation", self.check_path) \
.start()
self.query.awaitTermination()
def handle_kafka_stream_templates(self, kafka_df, epoch_id):
if self.spider_type == 'asin详情' and kafka_df.count() > 0:
kafka_df = self.deduplication_kafka_data(kafka_df, "asin", "asinUpdateTime")
self.handle_kafka_stream(kafka_df, epoch_id)
if self.test_flag == 'normal':
self.kafka_consumption_is_finished()
def handle_kafka_stream(self, kafka_df, epoch_id):
pass
def get_offsets_by_history(self):
if self.db_save in ['spider_asin_detail', 'spider_asin_search']:
sql = f"select * from selection.kafka_offset_history_detail " \
f"where site_name='{self.site_name}' and date_type='{self.date_type}' " \
f"and date_info='{self.date_info}' and topic='{self.topic_name}';"
print(f"sql: {sql}")
df = pd.read_sql(sql, con=self.engine_mysql)
if df.shape[0] == 1:
end_offsets_json = list(df.end_offsets_json)[0]
print(f"end_offsets_json: {end_offsets_json}")
# self.beginning_offsets_dict = json.loads(end_offsets_json) # history消费时, 初始的偏移量
self.beginning_offsets_dict = eval(end_offsets_json) # history消费时, 初始的偏移量
def record_offsets_by_history(self, end_offsets_dict):
if self.db_save in ['spider_asin_detail', 'spider_asin_search']:
# 将字典转换为 JSON 字符串
end_offsets_json = json.dumps(end_offsets_dict)
sql = f"""
INSERT INTO selection.kafka_offset_history_detail
(site_name, date_type, date_info, topic, end_offsets_json)
VALUES
('{self.site_name}', '{self.date_type}', '{self.date_info}', '{self.topic_name}', '{end_offsets_json}')
ON DUPLICATE KEY UPDATE
site_name = VALUES(site_name),
date_type = VALUES(date_type),
date_info = VALUES(date_info),
topic = VALUES(topic);
-- end_offsets_json = VALUES(end_offsets_json);
"""
print(f"记录爬虫历史消费的偏移量: {self.db_save}--sql: {sql}")
with self.engine_mysql.begin() as conn:
conn.execute(sql)
else:
print(f"只有爬虫才需要记录历史消费的偏移量: {self.db_save}")
pass
def kafka_history(self, topic_name, batch_size_history, schema):
consumer = self.get_kafka_object_by_python(topic_name=topic_name)
partition_offsets_dict = self.get_kafka_partitions_data(consumer=consumer, topic_name=topic_name)
partition_num = len(partition_offsets_dict)
beginning_offsets_dict = {}
end_offsets_dict = {}
# self.beginning_offsets_dict = {"0": 69355, "1": 69761, "2": 70827, "3": 69609, "4": 71099, "5": 69922, "6": 70054, "7": 70798}
self.get_offsets_by_history() # 获取历史消费的偏移量
if self.beginning_offsets_dict != {}:
for key, value in self.beginning_offsets_dict.items():
beginning_offsets = int(partition_offsets_dict[int(key)]['beginning_offsets'])
beginning_offsets = max(beginning_offsets, int(value))
partition_offsets_dict[int(key)]['beginning_offsets'] = beginning_offsets
while True:
try:
# 更新偏移量(当kafka主题有数据正在生产/数据自动删除时, 就需要及时更新起始偏移量)
partition_offsets_dict_check = self.get_kafka_partitions_data(consumer=consumer, topic_name=topic_name)
print("partition_offsets_dict:", partition_offsets_dict)
print("partition_offsets_dict_check:", partition_offsets_dict_check)
# 生产时 -- 更新end_offsets
for key, value in partition_offsets_dict_check.items():
partition_offsets_dict[key]['end_offsets'] = value['end_offsets']
# 删除时 -- 更新beginning_offsets
if value['beginning_offsets'] > partition_offsets_dict[key]['beginning_offsets']:
partition_offsets_dict[key]['beginning_offsets'] = value['beginning_offsets']
num = 0
for key, value in partition_offsets_dict.items():
# 起始偏移量
beginning_offsets = value['beginning_offsets']
beginning_offsets_dict[str(key)] = beginning_offsets
# 结束偏移量
end_offsets = value['beginning_offsets'] + batch_size_history
end_offsets_partition = value['end_offsets']
end_offsets_dict[str(key)] = min(end_offsets, end_offsets_partition)
if end_offsets >= end_offsets_partition:
num += 1
else:
partition_offsets_dict[key]['beginning_offsets'] = end_offsets
# 当kafka主题有数据正在生产/数据自动删除时, 就需要及时更新起始偏移量
# 删除时
# if beginning_offsets_dict[str(key)] < partition_offsets_dict_check[key]['beginning_offsets']:
# beginning_offsets_dict[str(key)] = partition_offsets_dict_check[key]['beginning_offsets']
# partition_offsets_dict[key]['beginning_offsets'] = partition_offsets_dict_check[key]['beginning_offsets']
# # 生产时
# if partition_offsets_dict[key]['end_offsets'] < partition_offsets_dict_check[key]['end_offsets']:
# partition_offsets_dict[key]['end_offsets'] = partition_offsets_dict_check[key]['end_offsets']
starting_offsets_json = json.dumps({topic_name: beginning_offsets_dict})
ending_offsets_json = json.dumps({topic_name: end_offsets_dict})
print(f"starting_offsets_json: {starting_offsets_json}, ending_offsets_json:{ending_offsets_json}")
while True:
try:
kafka_df = self.create_kafka_df_object(
consumer_type="history",
topic_name=topic_name,
schema=schema,
starting_offsets_json=starting_offsets_json,
ending_offsets_json=ending_offsets_json,
)
break
except Exception as e:
print(f"当前批次-历史消费出现报错--继续消费, 报错信息: {e}")
continue
print(f"kafka_df.count():{kafka_df.count()}")
if num >= partition_num:
self.handle_kafka_history_templates(kafka_df=kafka_df) # 最后一批消费
self.record_offsets_by_history(end_offsets_dict=end_offsets_dict)
self.start_process_instance() # 退出之前启动调度
break
else:
self.handle_kafka_history_templates(kafka_df=kafka_df)
self.record_offsets_by_history(end_offsets_dict=end_offsets_dict)
time.sleep(10)
continue
# break
except Exception as e:
print(e, traceback.format_exc())
time.sleep(10)
continue
# kafka_df = self.spark.read \
# .format("kafka") \
# .option("kafka.bootstrap.servers", self.kafka_servers) \
# .option("subscribe", topic_name) \
# .option("kafka.security.protocol", self.kafka_security_protocol) \
# .option("kafka.sasl.mechanism", self.kafka_sasl_mechanism) \
# .option("kafka.sasl.jaas.config",
# f'org.apache.kafka.common.security.plain.PlainLoginModule required username="{self.kafka_username}" password="{self.kafka_password}";') \
# .option("failOnDataLoss", "true") \
# .option("startingOffsets", starting_offsets_json) \
# .option("endingOffsets", ending_offsets_json) \
# .load() \
# .select(F.from_json(F.col("value").cast("string"), schema=schema).alias("data")) \
# .select("data.*")
# print(f"kafka_df.count():{kafka_df.count()}")
# print(f"starting_offsets_json: {starting_offsets_json}, ending_offsets_json:{ending_offsets_json}")
#
# if num >= partition_num:
# self.start_process_instance() # 退出之前启动调度
# break
# else:
# self.handle_kafka_history_templates(kafka_df=kafka_df)
# continue
def handle_kafka_history_templates(self, kafka_df):
self.handle_kafka_history(kafka_df)
self.kafka_consumption_is_finished()
def handle_kafka_history(self, kafka_df):
pass
# 组成yarn上提交任务的任务名称
def get_app_name(self):
script_name = sys.argv[0].split("/")[-1].split(".")[0]
if self.test_flag != 'normal':
return f"{script_name}: {self.site_name}, {self.date_type}, {self.date_info}, {self.consumer_type}, {self.test_flag}"
else:
return f"{script_name}: {self.site_name}, {self.date_type}, {self.date_info}, {self.consumer_type}"
# 获取yarn上任务示例的applicationID
def get_application_ids(self):
try:
application_ids = []
response = requests.get(
f"http://hadoop15:8088/ws/v1/cluster/apps?state=RUNNING&name={self.app_name}")
if len(response.json()['apps']) > 0:
for app in response.json()['apps']['app']:
application_ids.append(app['id'])
return application_ids
except subprocess.CalledProcessError as e:
print("Error running command:", e)
return application_ids # 发生错误
# 用于标记记录表中实时消费准备阶段已完成
def modify_kafka_state(self):
# 正式的实时消费才修改状态
script_name = sys.argv[0].split("/")[-1].split(".")[0]
if self.consumer_type == 'latest' and self.test_flag == 'normal' and script_name in ['kafka_flow_asin_detail', 'kafka_asin_detail']:
if script_name == 'kafka_flow_asin_detail':
kafka_field = 'kafka_flow_state'
wx_users = ['wangrui4', 'pengyanbing']
wx_msg = f"站点: {self.site_name} 日期类型: {self.date_type} {self.date_info} asin详情实时消费数据到es准备工作已完成,可以开启详情爬取!"
elif script_name == 'kafka_asin_detail':
kafka_field = 'kafka_state'
wx_users = ['fangxingjun', 'pengyanbing']
wx_msg = f"站点: {self.site_name}, {self.date_type}, {self.date_info} asin详情实时消费数据到redis准备工作已完成,可以开启详情爬取!"
else:
pass
try:
sql = f"UPDATE selection.workflow_progress SET {kafka_field}=3, updated_at=CURRENT_TIMESTAMP where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}' and page='asin详情'"
DBUtil.exec_sql('mysql', 'us', sql)
CommonUtil.send_wx_msg(wx_users, f"asin详情kafka消费", wx_msg)
except Exception as e:
print(e, traceback.format_exc())
CommonUtil.send_wx_msg(wx_users, f"\u26A0asin详情kafka实时消费\u26A0",
f"站点: {self.site_name} asin详情实时消费准备失败,请等待处理!")
else:
pass
def run_kafka(self):
application_ids = self.get_application_ids()
print("当前任务id列表为: ", application_ids)
if len(application_ids) == 1:
print("实时消费正常开启!")
if self.test_flag == 'normal' and self.consumer_type == 'latest':
self.kafka_consumption_is_finished()
self.read_data()
self.modify_kafka_state()
self.handle_data()
if self.consumer_type == 'latest':
self.kafka_stream(processing_time=self.processing_time)
else:
self.kafka_history(topic_name=self.topic_name, batch_size_history=self.batch_size_history, schema=self.schema)
elif len(application_ids) > 1:
print("任务进程已启动,请不要重复开启!")
earliest_applicaiton_id = min(application_ids)
for application_id in application_ids:
if application_id > earliest_applicaiton_id:
cmd = f"yarn application -kill {application_id}"
subprocess.run(cmd, shell=True, check=False)
exit(0)
else:
print("任务未成功开启!")
exit(0)
def run_insert(self):
self.read_data()
self.handle_data()
self.insert_data()
def acquire_lock(self, lock_name, timeout=60):
"""
尝试获取分布式锁, 能正常设置锁的话返回True, 不能设置锁的话返回None
lock_name: 锁的key, 建议和任务名称保持一致
"""
lock_value = str(uuid.uuid4())
lock_acquired = self.client.set(lock_name, lock_value, nx=True, ex=timeout) # 可以不设置超时时间
# lock_acquired = self.client.set(lock_name, lock_value, nx=True)
return lock_acquired, lock_value
def release_lock(self, lock_name, lock_value):
"""释放分布式锁"""
script = """
if redis.call("get", KEYS[1]) == ARGV[1] then
return redis.call("del", KEYS[1])
else
return 0
end
"""
result = self.client.eval(script, 1, lock_name, lock_value)
return result