templates.py 34.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
"""
author: 方星钧(ffman)
description: pyspark程序继承模板
table_read_name: 无
table_save_name: 无
table_save_level: 无
version: 1.0
created_date: 2022-05-07
updated_date: 2022-05-07
"""
import calendar
import json
import os
import sys
import time
import traceback
import uuid

import pandas as pd
import redis

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录

from utils.spark_util import SparkUtil
from pyspark.sql import functions as F
from kafka import KafkaConsumer, TopicPartition
from pyspark.sql.types import *
from utils.db_util import DbTypes, DBUtil
from utils.hdfs_utils import HdfsUtils
from pyspark.sql import Window
from utils.common_util import CommonUtil
import subprocess
import requests


class Templates(object):
    def __init__(self):
        # 站点
        self.site_name = str()
        # 日期相关
        self.year_quarter = str()
        self.year_month = str()
        self.year_week = str()
        self.year = int()
        self.quarter = int()
        self.month = int()
        self.week = int()
        self.day = int()
        self.year_month_days_dict = dict()
        self.year_quarter_tuple = tuple()
        self.year_month_tuple = tuple()
        self.year_week_tuple = tuple()
        self.date_info_tuple = tuple()
        self.last_30_date_tuple = tuple()
        self.date_type = str()  # week/4_week/month/quarter
        self.date_info = str()  # 2022-1/2022-1/2022-1/2022-1
        self.app_name = str()
        # spark相关
        self.db_save = str()  # 需要存储的hive表名
        self.db_name = "big_data_selection"  # 需要存储的hive表名
        # self.db_name = "selection_off_line"  # 需要存储的hive表名
        self.df_save = object()  # 需要存储的df数据对象
        self.df_week = object()  # 需要存储的df数据对象
        self.df_date = object()  # 需要存储的df数据对象
        self.partitions_num = int()  # df数据对象的分区数重置
        self.partitions_by = list()  # hive分区表对应的分区
        # self.reset_partitions()
        self.reset_partitions_by()
        self.spark = None  # spark程序的执行入口对象
        self.topic_name = str()
        # my_kafka
        self.consumer = object()
        # 在此处定义 Kafka 认证和安全参数
        # self.kafka_servers = "192.168.10.221:9092,192.168.10.220:9092,192.168.10.210:9092"
        # self.kafka_servers_producer = "61.145.136.61:19092,61.145.136.61:29092,61.145.136.61:39092"
        self.kafka_servers = "192.168.10.218:9092,192.168.10.219:9092,192.168.10.220:9092"
        self.kafka_servers_producer = "'61.145.136.61:19092,61.145.136.61:29092,61.145.136.61:49092,61.145.136.61:59092'"
        self.kafka_security_protocol = "SASL_PLAINTEXT"
        self.kafka_sasl_mechanism = "PLAIN"
        self.kafka_username = "consumer"
        self.kafka_password = "J2#aLmPq7zX"
        self.consumer_type = 'lastest'
        self.processing_time = 300
        self.check_path = str()
        # 实时计算的query对象
        self.query = None
        # 数据库连接
        self.engine_mysql = DBUtil.get_db_engine(db_type=DbTypes.mysql.name, site_name="us")
        # 爬虫类型
        self.spider_type = "asin详情"
        # 指定历史消费起始偏移量
        self.beginning_offsets = 0
        # 测试标识
        self.test_flag = 'normal'
        self.beginning_offsets_dict = {}  # history消费时, 初始的偏移量
        # redis连接对象--用来锁定--解决并发
        self.client = redis.Redis(host='192.168.10.224', port=6379, db=9, password='yswg2023')

    def create_spark_object(self, app_name=None):
        if self.topic_name != '':
            print("创建实时相关SparkSession对象")
            spark = SparkUtil.get_stream_spark(app_name, self.db_name)
        else:
            print("创建非实时相关SparkSession对象")
            spark = SparkUtil.get_spark_session(app_name, self.db_name)
        return spark

    # 针对消费kafka得到的dataframe去重
    def deduplication_kafka_data(self, kafka_df, deduplicaiton_key_field, deduplication_time_field):
        print(f"数据去重清洗,清洗依据字段: {deduplicaiton_key_field}, 排序依据字段: {deduplication_time_field}")
        window = Window.partitionBy(deduplicaiton_key_field).orderBy(
            F.col(deduplication_time_field).desc_nulls_last()
        )
        kafka_df = kafka_df.withColumn("k_rank", F.row_number().over(window=window))
        kafka_df = kafka_df.filter("k_rank=1").drop("k_rank")
        return kafka_df

    def create_kafka_df_object(self, consumer_type=str(), topic_name=str(), starting_offsets_json=str(), ending_offsets_json=str(), schema=StructType()):
        if consumer_type == "latest":
            # 流处理
            kafka_df = self.spark.readStream \
                    .format("kafka") \
                    .option("kafka.bootstrap.servers", self.kafka_servers) \
                    .option("subscribe", topic_name) \
                    .option("kafka.security.protocol", self.kafka_security_protocol) \
                    .option("kafka.sasl.mechanism", self.kafka_sasl_mechanism) \
                    .option("kafka.sasl.jaas.config",
                            f'org.apache.kafka.common.security.plain.PlainLoginModule required username="{self.kafka_username}" password="{self.kafka_password}";') \
                    .option("startingOffsets", consumer_type) \
                    .option("failOnDataLoss", "false") \
                    .load() \
                    .select(F.from_json(F.col("value").cast("string"), schema=schema).alias("data")) \
                    .select("data.*")
            return kafka_df
        elif consumer_type == "history":
            # 批处理
            kafka_df = self.spark.read \
                    .format("kafka") \
                    .option("kafka.bootstrap.servers", self.kafka_servers) \
                    .option("subscribe", topic_name) \
                    .option("kafka.security.protocol", self.kafka_security_protocol) \
                    .option("kafka.sasl.mechanism", self.kafka_sasl_mechanism) \
                    .option("kafka.sasl.jaas.config",
                    f'org.apache.kafka.common.security.plain.PlainLoginModule required username="{self.kafka_username}" password="{self.kafka_password}";') \
                    .option("failOnDataLoss", "false") \
                    .option("startingOffsets", starting_offsets_json) \
                    .option("endingOffsets", ending_offsets_json) \
                    .load() \
                    .select(F.from_json(F.col("value").cast("string"), schema=schema).alias("data")) \
                    .select("data.*")
            if self.spider_type == 'asin详情' and kafka_df.count() > 0:
                kafka_df = self.deduplication_kafka_data(kafka_df, "asin", "asinUpdateTime")
            return kafka_df

    def get_kafka_object_by_python(self, topic_name="us_asin_detail"):
        consumer = KafkaConsumer(
            topic_name,
            bootstrap_servers=self.kafka_servers,
            value_deserializer=lambda x: json.loads(x.decode('utf-8')),
            security_protocol=self.kafka_security_protocol,  # 或者 'SASL_SSL' 如果你使用 SSL
            sasl_mechanism=self.kafka_sasl_mechanism,
            sasl_plain_username=self.kafka_username,
            sasl_plain_password=self.kafka_password
        )
        return consumer

    # @staticmethod
    def get_kafka_partitions_data(self, consumer=None, topic_name="us_asin_detail"):
        partitions = consumer.partitions_for_topic(topic_name)
        partition_data_count = {}

        for pid in partitions:
            # 创建一个TopicPartition对象
            tp = TopicPartition(topic_name, pid)

            # 获取该分区的最早和最新的offsets
            beginning_offsets = consumer.beginning_offsets([tp])[tp] if self.beginning_offsets == 0 else self.beginning_offsets
            end_offsets = consumer.end_offsets([tp])[tp]

            # 数据量即为这两个offsets之差
            data_count = end_offsets - beginning_offsets
            offset_dict = {
                "beginning_offsets": beginning_offsets,
                "end_offsets": end_offsets,
                "data_count": data_count,
            }
            # partition_data_count[pid] = data_count
            partition_data_count[pid] = offset_dict
        print("partition_data_count:", partition_data_count)
        return partition_data_count

    def get_kafka_df_by_spark(self, schema=None, consumption_type="lastest", topics=f"us_asin_detail"):
        # .option("startingOffsets", consumption_type) \
        # .option("maxOffsetsPerTrigger", 1000) \  # 每个触发器周期读取的最大消息数量
        kafka_df = self.spark.readStream \
            .format("kafka") \
            .option("kafka.bootstrap.servers", self.kafka_servers) \
            .option("subscribe", topics) \
            .option("kafka.security.protocol", self.kafka_security_protocol) \
            .option("kafka.sasl.mechanism", self.kafka_sasl_mechanism) \
            .option("kafka.sasl.jaas.config",
                    f'org.apache.kafka.common.security.plain.PlainLoginModule required username="{self.kafka_username}" password="{self.kafka_password}";') \
            .option("startingOffsets", consumption_type) \
            .load() \
            .select(F.from_json(F.col("value").cast("string"), schema=schema).alias("data")) \
            .select("data.*")
        return kafka_df

    def get_year_month_days_dict(self, year=2022):
        self.year_month_days_dict = {month: calendar.monthrange(year, month)[-1] for month in range(1, 13)}

    def get_date_info_tuple(self):
        self.df_date = self.spark.sql(f"select * from dim_date_20_to_30;")
        df = self.df_date.toPandas()
        if self.date_type == 'day':
            df_loc = df.loc[df.date == f'{self.date_info}']
            self.date_info_tuple = f"('{tuple(df_loc.date)[0]}')"
            self.year, self.month, self.day = self.date_info.split("-")
            self.week = list(df_loc.year_week)[0].split("-")[-1]
        if self.date_type in ['week', 'week_old', 'month', 'month_old']:
            # df_loc = df.loc[df[f'year_{self.date_type}'] == f"{self.date_info}"]
            # self.date_info_tuple = tuple(df_loc.date)
            if self.date_type in ['week', 'week_old']:
                df_loc = df.loc[df[f'year_week'] == f"{self.date_info}"]
                self.date_info_tuple = tuple(df_loc.date)
                self.year, self.week = self.date_info.split("-")
                self.month = list(df_loc.year_month)[0].split("-")[-1]
            if self.date_type in ['month', 'month_old']:
                df_loc = df.loc[df[f'year_month'] == f"{self.date_info}"]
                self.date_info_tuple = tuple(df_loc.date)
                self.year, self.month = self.date_info.split("-")
        if self.date_type == '4_week':
            df_loc = df.loc[(df[f'year_week'] == f"{self.date_info}") & (df.week_day == 1)]
            current_id = tuple(df_loc.id)[0]
            id_tuple = (current_id, current_id - 7 * 1, current_id - 7 * 2, current_id - 7 * 3)
            df_4_week = df.loc[df.id.isin(id_tuple)]  # 4
            df_4_week = df.loc[df.year_week.isin(df_4_week.year_week)]  # 4*7
            self.date_info_tuple = tuple(sorted(list(df_4_week.date)))
            self.year, self.week = self.date_info.split("-")
            self.year = tuple(df_loc.year)[0]
            self.month = list(df_loc.year_month)[0].split("-")[-1]
        if self.date_type == 'last30day':
            df_loc = df.loc[df.date == f'{self.date_info}']
            day_end_id = list(df_loc.id)[0]
            # 减去29天,获取到30天前的id
            day_begin_id = (int(day_end_id) - 29)
            df_loc = df.loc[(df.id >= day_begin_id) & (df.id <= day_end_id)]
            self.date_info_tuple = tuple(df_loc.date)
            self.year, self.month, self.day = self.date_info.split("-")
        print("self.date_info_tuple:", self.date_info_tuple)

    def get_year_week_tuple(self):
        self.df_week = self.spark.sql(f"select * from dim_date_20_to_30 where week_day=1;")
        # self.df_week = self.spark.sql(f"select * from dim_week_20_to_30;")
        df = self.df_week.toPandas()
        df.year_month = df.year_month.apply(lambda x: x.replace("_", "-"))
        df.year_quarter = df.year_quarter.apply(lambda x: x.replace("_quarter_", "-"))
        if self.date_type in ['week']:
            self.year_week = self.date_info
            # self.year, self.week = int(self.year_week.split("-")[0]), int(self.year_week.split("-")[1])
            self.year, self.week = self.year_week.split("-")[0], self.year_week.split("-")[1]
            self.year_week_tuple = f"('{self.year_week}')"
        if self.date_type in ['4_week']:
            self.year_week = self.date_info
            self.year, self.week = self.year_week.split("-")[0], self.year_week.split("-")[1]
            df_week = df.loc[df.year_week == self.year_week]
            current_id = list(df_week.id)[0] if list(df_week.id) else None
            id_tuple = (current_id, current_id - 7*1, current_id - 7*2, current_id - 7*3)
            df_4_week = df.loc[df.id.isin(id_tuple)]
            self.year_week_tuple = tuple(df_4_week.year_week) if tuple(df_4_week.year_week) else ()
            df_week = df.loc[(df.year_week == self.date_info) & (df.week_day == 1)]
            self.year = tuple(df_week.year)[0]
            self.month = tuple(df_week.month)[0]
            print(f"self.year:{self.year}, self.month:{self.month}")
        if self.date_type in ['month', 'month_old', 'month_week']:
            self.year_month = self.date_info
            self.year, self.month = self.year_month.split("-")[0], self.year_month.split("-")[1]
            df_month = df.loc[df.year_month == self.year_month]
            self.year_week_tuple = tuple(df_month.year_week) if tuple(df_month.year_week) else ()
        if self.date_type in ['quarter']:
            self.year_quarter = self.date_info
            self.year, self.quarter = self.year_quarter.split("-")[0], self.year_quarter.split("-")[1]
            df_quarter = df.loc[df.year_quarter == self.year_quarter]
            self.year_week_tuple = tuple(df_quarter.year_week) if tuple(df_quarter.year_week) else ()
        print("self.year_week_tuple:", self.year_week_tuple)
        return df

    def reset_partitions(self, partitions_num=10):
        print("重置分区数")
        if self.site_name in ['us']:
            self.partitions_num = partitions_num
        elif self.site_name in ['uk', 'de']:
            self.partitions_num = partitions_num // 2 if partitions_num // 2 > 0 else 1
        elif self.site_name in ['es', 'fr', 'it']:
            self.partitions_num = partitions_num // 4 if partitions_num // 4 > 0 else 1

    def reset_partitions_by(self):
        if self.date_type in ['week', '4_week']:
            self.partitions_by = ['site_name', 'dt']
        if self.date_type in ['month']:
            self.partitions_by = ['site_name', 'dm']
        if self.date_type in ['quarter']:
            self.partitions_by = ['site_name', 'dq']

    def read_data(self):
        pass

    def handle_data(self):
        pass

    @staticmethod
    def save_data_common(df_save=None, db_save=None, partitions_num=None, partitions_by=None):
        print("当前存储的表名为:", db_save)
        df_save = df_save.repartition(partitions_num)
        df_save.write.saveAsTable(name=db_save, format='hive', mode='append', partitionBy=partitions_by)

    def save_data(self):
        self.save_data_common(df_save=self.df_save, db_save=self.db_save, partitions_num=self.partitions_num,
                              partitions_by=self.partitions_by)

    # 采用insert overwrite模式覆写数据,覆写模式一定要保证dataFrame的字段顺序与表字段顺序一致
    @staticmethod
    def insert_data_overwrite(df_save=None, db_save=None, partitions_num=None):
        print("当前覆写得表名为:", db_save)
        df_save = df_save.repartition(partitions_num)
        df_save.write.insertInto(tableName=db_save, overwrite=True)

    def insert_data(self):
        self.insert_data_overwrite(df_save=self.df_save, db_save=self.db_save, partitions_num=self.partitions_num)

    def run(self):
        # while True:
        # try:
        self.read_data()
        self.handle_data()
        self.save_data()
            # break
        # except Exception as e:
        #     print("error_info:", e, traceback.format_exc())
            # continue

    def start_process_instance(self):
        pass

    def kafka_stream_stop(self):
        try:
            self.start_process_instance()  # 开启海豚调度
            if self.query is not None:
                self.query.awaitTermination()
                self.query.stop()  # 退出实时消费
            if self.spark is not None:
                self.spark.stop()
            exit(0) # 退出程序
        except Exception as e:
            print(e, traceback.format_exc())

    def kafka_consumption_is_finished(self):
        while True:
            try:
                # if self.site_name == 'us':
                #     # sql = f"SELECT * from workflow_progress WHERE site_name='{self.site_name}' and page='{self.spider_type}' ORDER BY created_at desc LIMIT 1;"
                #     sql = f"""
                #         SELECT * from workflow_progress WHERE site_name='{self.site_name}' and page='{self.spider_type}'
                #         and date_info in
                #         -- (SELECT MAX(year_week) as date_info from date_20_to_30 WHERE `year_month` = '2024-02' and week_day =1
                #         (SELECT year_week as date_info from date_20_to_30 WHERE `year_month` = '{self.date_info}' and week_day =1
                #         )
                #         ORDER BY created_at desc LIMIT 1;
                #
                #     """
                # else:
                #     sql = f"SELECT * from selection.workflow_progress WHERE site_name='{self.site_name}' and date_info='{self.date_info}' and page='{self.spider_type}' ORDER BY created_at desc LIMIT 1;"
                sql = f"SELECT * from selection.workflow_progress WHERE site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}' and page='{self.spider_type}' and spider_state=3;"
                print(f"判断爬虫'{self.spider_type}'是否结束, sql: {sql}")
                df = pd.read_sql(sql, con=self.engine_mysql)
                if df.shape[0]:
                    status_val = list(df.status_val)[0]
                    if int(status_val) == 3:
                        print(f"spider_type:{self.spider_type}已经爬取完毕, 退出kafka消费和停止程序")
                        if self.consumer_type == "latest":
                            if HdfsUtils.delete_hdfs_file_with_checkpoint(self.check_path):
                                print("实时消费正常完成,删除对应的检查点文件")
                            self.kafka_stream_stop()
                    else:
                        print(f"spider_type:{self.spider_type}还在爬取中, 继续下一个批次数据消费")
                break
            except Exception as e:
                print(f"判断判断爬虫'{self.spider_type}'是否结束---出现异常, 等待20s", e, traceback.format_exc())
                time.sleep(20)
                self.engine_mysql = DBUtil.get_db_engine(db_type=DbTypes.mysql.name, site_name="us")
                continue

    def kafka_stream(self, processing_time):
        kafka_df = self.create_kafka_df_object(consumer_type="latest", topic_name=self.topic_name, schema=self.schema)
        if self.test_flag == 'test':
            self.query = kafka_df.writeStream \
                .outputMode("append") \
                .format("console") \
                .foreachBatch(self.handle_kafka_stream_templates) \
                .trigger(processingTime=f'{processing_time} seconds') \
                .start()
            self.query.awaitTermination()
        else:
            self.check_path = f"/tmp/kafka/{self.topic_name}" if self.check_path == "" else self.check_path
            print("检查点目录为:", self.check_path)
            HdfsUtils.is_checkpoint_exist(self.check_path)
            self.query = kafka_df.writeStream \
                .outputMode("append") \
                .format("console") \
                .foreachBatch(self.handle_kafka_stream_templates) \
                .trigger(processingTime=f'{processing_time} seconds') \
                .option("checkpointLocation", self.check_path) \
                .start()
            self.query.awaitTermination()

    def handle_kafka_stream_templates(self, kafka_df, epoch_id):
        if self.spider_type == 'asin详情' and kafka_df.count() > 0:
            kafka_df = self.deduplication_kafka_data(kafka_df, "asin", "asinUpdateTime")
        self.handle_kafka_stream(kafka_df, epoch_id)
        if self.test_flag == 'normal':
            self.kafka_consumption_is_finished()

    def handle_kafka_stream(self, kafka_df, epoch_id):
        pass

    def get_offsets_by_history(self):
        if self.db_save in ['spider_asin_detail', 'spider_asin_search']:
            sql = f"select * from selection.kafka_offset_history_detail " \
                  f"where site_name='{self.site_name}' and date_type='{self.date_type}' " \
                  f"and date_info='{self.date_info}' and topic='{self.topic_name}';"
            print(f"sql: {sql}")
            df = pd.read_sql(sql, con=self.engine_mysql)
            if df.shape[0] == 1:
                end_offsets_json = list(df.end_offsets_json)[0]
                print(f"end_offsets_json: {end_offsets_json}")
                # self.beginning_offsets_dict = json.loads(end_offsets_json)  # history消费时, 初始的偏移量
                self.beginning_offsets_dict = eval(end_offsets_json)  # history消费时, 初始的偏移量

    def record_offsets_by_history(self, end_offsets_dict):
        if self.db_save in ['spider_asin_detail', 'spider_asin_search']:
            # 将字典转换为 JSON 字符串
            end_offsets_json = json.dumps(end_offsets_dict)

            sql = f"""
                INSERT INTO selection.kafka_offset_history_detail 
                (site_name, date_type, date_info, topic, end_offsets_json) 
                VALUES 
                ('{self.site_name}', '{self.date_type}', '{self.date_info}', '{self.topic_name}', '{end_offsets_json}')
                ON DUPLICATE KEY UPDATE 
                site_name = VALUES(site_name), 
                date_type = VALUES(date_type), 
                date_info = VALUES(date_info), 
                topic = VALUES(topic);
--                 end_offsets_json = VALUES(end_offsets_json);
                """
            print(f"记录爬虫历史消费的偏移量: {self.db_save}--sql: {sql}")

            with self.engine_mysql.begin() as conn:
                conn.execute(sql)
        else:
            print(f"只有爬虫才需要记录历史消费的偏移量: {self.db_save}")
            pass


    def kafka_history(self, topic_name, batch_size_history, schema):
        consumer = self.get_kafka_object_by_python(topic_name=topic_name)
        partition_offsets_dict = self.get_kafka_partitions_data(consumer=consumer, topic_name=topic_name)
        partition_num = len(partition_offsets_dict)
        beginning_offsets_dict = {}
        end_offsets_dict = {}
        # self.beginning_offsets_dict = {"0": 69355, "1": 69761, "2": 70827, "3": 69609, "4": 71099, "5": 69922, "6": 70054, "7": 70798}
        self.get_offsets_by_history()  # 获取历史消费的偏移量
        if self.beginning_offsets_dict != {}:
            for key, value in self.beginning_offsets_dict.items():
                beginning_offsets = int(partition_offsets_dict[int(key)]['beginning_offsets'])
                beginning_offsets = max(beginning_offsets, int(value))
                partition_offsets_dict[int(key)]['beginning_offsets'] = beginning_offsets

        while True:
            try:
                # 更新偏移量(当kafka主题有数据正在生产/数据自动删除时, 就需要及时更新起始偏移量)
                partition_offsets_dict_check = self.get_kafka_partitions_data(consumer=consumer, topic_name=topic_name)
                print("partition_offsets_dict:", partition_offsets_dict)
                print("partition_offsets_dict_check:", partition_offsets_dict_check)
                # 生产时 -- 更新end_offsets
                for key, value in partition_offsets_dict_check.items():
                    partition_offsets_dict[key]['end_offsets'] = value['end_offsets']
                    # 删除时 -- 更新beginning_offsets
                    if value['beginning_offsets'] > partition_offsets_dict[key]['beginning_offsets']:
                        partition_offsets_dict[key]['beginning_offsets'] = value['beginning_offsets']

                num = 0
                for key, value in partition_offsets_dict.items():
                    # 起始偏移量
                    beginning_offsets = value['beginning_offsets']
                    beginning_offsets_dict[str(key)] = beginning_offsets
                    # 结束偏移量
                    end_offsets = value['beginning_offsets'] + batch_size_history
                    end_offsets_partition = value['end_offsets']
                    end_offsets_dict[str(key)] = min(end_offsets, end_offsets_partition)
                    if end_offsets >= end_offsets_partition:
                        num += 1
                    else:
                        partition_offsets_dict[key]['beginning_offsets'] = end_offsets

                    # 当kafka主题有数据正在生产/数据自动删除时, 就需要及时更新起始偏移量
                    # 删除时
                    # if beginning_offsets_dict[str(key)] < partition_offsets_dict_check[key]['beginning_offsets']:
                    #     beginning_offsets_dict[str(key)] = partition_offsets_dict_check[key]['beginning_offsets']
                    #     partition_offsets_dict[key]['beginning_offsets'] = partition_offsets_dict_check[key]['beginning_offsets']
                    # # 生产时
                    # if partition_offsets_dict[key]['end_offsets'] < partition_offsets_dict_check[key]['end_offsets']:
                    #     partition_offsets_dict[key]['end_offsets'] = partition_offsets_dict_check[key]['end_offsets']

                starting_offsets_json = json.dumps({topic_name: beginning_offsets_dict})
                ending_offsets_json = json.dumps({topic_name: end_offsets_dict})
                print(f"starting_offsets_json: {starting_offsets_json}, ending_offsets_json:{ending_offsets_json}")
                while True:
                    try:
                        kafka_df = self.create_kafka_df_object(
                            consumer_type="history",
                            topic_name=topic_name,
                            schema=schema,
                            starting_offsets_json=starting_offsets_json,
                            ending_offsets_json=ending_offsets_json,
                        )
                        break
                    except Exception as e:
                        print(f"当前批次-历史消费出现报错--继续消费, 报错信息: {e}")
                        continue
                print(f"kafka_df.count():{kafka_df.count()}")

                if num >= partition_num:
                    self.handle_kafka_history_templates(kafka_df=kafka_df)  # 最后一批消费
                    self.record_offsets_by_history(end_offsets_dict=end_offsets_dict)
                    self.start_process_instance()  # 退出之前启动调度
                    break
                else:
                    self.handle_kafka_history_templates(kafka_df=kafka_df)
                    self.record_offsets_by_history(end_offsets_dict=end_offsets_dict)
                    time.sleep(10)
                    continue

                # break
            except Exception as e:
                print(e, traceback.format_exc())
                time.sleep(10)
                continue
            # kafka_df = self.spark.read \
            #     .format("kafka") \
            #     .option("kafka.bootstrap.servers", self.kafka_servers) \
            #     .option("subscribe", topic_name) \
            #     .option("kafka.security.protocol", self.kafka_security_protocol) \
            #     .option("kafka.sasl.mechanism", self.kafka_sasl_mechanism) \
            #     .option("kafka.sasl.jaas.config",
            #             f'org.apache.kafka.common.security.plain.PlainLoginModule required username="{self.kafka_username}" password="{self.kafka_password}";') \
            #     .option("failOnDataLoss", "true") \
            #     .option("startingOffsets", starting_offsets_json) \
            #     .option("endingOffsets", ending_offsets_json) \
            #     .load() \
            #     .select(F.from_json(F.col("value").cast("string"), schema=schema).alias("data")) \
            #     .select("data.*")
            # print(f"kafka_df.count():{kafka_df.count()}")
            # print(f"starting_offsets_json: {starting_offsets_json}, ending_offsets_json:{ending_offsets_json}")
            #
            # if num >= partition_num:
            #     self.start_process_instance()  # 退出之前启动调度
            #     break
            # else:
            #     self.handle_kafka_history_templates(kafka_df=kafka_df)
            #     continue

    def handle_kafka_history_templates(self, kafka_df):
        self.handle_kafka_history(kafka_df)
        self.kafka_consumption_is_finished()

    def handle_kafka_history(self, kafka_df):
        pass

    # 组成yarn上提交任务的任务名称
    def get_app_name(self):
        script_name = sys.argv[0].split("/")[-1].split(".")[0]
        if self.test_flag != 'normal':
            return f"{script_name}: {self.site_name}, {self.date_type}, {self.date_info}, {self.consumer_type}, {self.test_flag}"
        else:
            return f"{script_name}: {self.site_name}, {self.date_type}, {self.date_info}, {self.consumer_type}"

    # 获取yarn上任务示例的applicationID
    def get_application_ids(self):
        try:
            application_ids = []
            response = requests.get(
                f"http://hadoop15:8088/ws/v1/cluster/apps?state=RUNNING&name={self.app_name}")
            if len(response.json()['apps']) > 0:
                for app in response.json()['apps']['app']:
                    application_ids.append(app['id'])
            return application_ids
        except subprocess.CalledProcessError as e:
            print("Error running command:", e)
            return application_ids  # 发生错误

    # 用于标记记录表中实时消费准备阶段已完成
    def modify_kafka_state(self):
        # 正式的实时消费才修改状态
        script_name = sys.argv[0].split("/")[-1].split(".")[0]
        if self.consumer_type == 'latest' and self.test_flag == 'normal' and script_name in ['kafka_flow_asin_detail', 'kafka_asin_detail']:
            if script_name == 'kafka_flow_asin_detail':
                kafka_field = 'kafka_flow_state'
                wx_users = ['wangrui4', 'pengyanbing']
                wx_msg = f"站点: {self.site_name} 日期类型: {self.date_type} {self.date_info} asin详情实时消费数据到es准备工作已完成,可以开启详情爬取!"
            elif script_name == 'kafka_asin_detail':
                kafka_field = 'kafka_state'
                wx_users = ['fangxingjun', 'pengyanbing']
                wx_msg = f"站点: {self.site_name}, {self.date_type}, {self.date_info} asin详情实时消费数据到redis准备工作已完成,可以开启详情爬取!"
            else:
                pass
            try:
                sql = f"UPDATE selection.workflow_progress SET {kafka_field}=3, updated_at=CURRENT_TIMESTAMP where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}' and page='asin详情'"
                DBUtil.exec_sql('mysql', 'us', sql)
                CommonUtil.send_wx_msg(wx_users, f"asin详情kafka消费", wx_msg)
            except Exception as e:
                print(e, traceback.format_exc())
                CommonUtil.send_wx_msg(wx_users, f"\u26A0asin详情kafka实时消费\u26A0",
                                       f"站点: {self.site_name} asin详情实时消费准备失败,请等待处理!")
        else:
            pass

    def run_kafka(self):
        application_ids = self.get_application_ids()
        print("当前任务id列表为: ", application_ids)
        if len(application_ids) == 1:
            print("实时消费正常开启!")
            if self.test_flag == 'normal' and self.consumer_type == 'latest':
                self.kafka_consumption_is_finished()
            self.read_data()
            self.modify_kafka_state()
            self.handle_data()
            if self.consumer_type == 'latest':
                self.kafka_stream(processing_time=self.processing_time)
            else:
                self.kafka_history(topic_name=self.topic_name, batch_size_history=self.batch_size_history, schema=self.schema)
        elif len(application_ids) > 1:
            print("任务进程已启动,请不要重复开启!")
            earliest_applicaiton_id = min(application_ids)
            for application_id in application_ids:
                if application_id > earliest_applicaiton_id:
                    cmd = f"yarn application -kill {application_id}"
                    subprocess.run(cmd, shell=True, check=False)
            exit(0)
        else:
            print("任务未成功开启!")
            exit(0)

    def run_insert(self):
        self.read_data()
        self.handle_data()
        self.insert_data()

    def acquire_lock(self, lock_name, timeout=60):
        """
        尝试获取分布式锁, 能正常设置锁的话返回True, 不能设置锁的话返回None
        lock_name: 锁的key, 建议和任务名称保持一致
        """
        lock_value = str(uuid.uuid4())
        lock_acquired = self.client.set(lock_name, lock_value, nx=True, ex=timeout)  # 可以不设置超时时间
        # lock_acquired = self.client.set(lock_name, lock_value, nx=True)
        return lock_acquired, lock_value

    def release_lock(self, lock_name, lock_value):
        """释放分布式锁"""
        script = """
        if redis.call("get", KEYS[1]) == ARGV[1] then
            return redis.call("del", KEYS[1])
        else
            return 0
        end
        """
        result = self.client.eval(script, 1, lock_name, lock_value)
        return result