1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
import sys
sys.path.append(os.path.dirname(sys.path[0]))
from utils.ssh_util import SSHUtil
from utils.common_util import CommonUtil
from utils.db_util import DBUtil
if __name__ == '__main__':
# 获取入参
site_name = CommonUtil.get_sys_arg(1, None)
date_type = CommonUtil.get_sys_arg(2, None)
date_info = CommonUtil.get_sys_arg(3, None)
# 获取最后一个参数--判断导出环境
test_flag = CommonUtil.get_sys_arg(len(sys.argv) - 1, None)
print(f"执行参数为{sys.argv}")
if test_flag == 'test':
db_type = 'postgresql_test'
print("导出到测试库中")
else:
db_type = "postgresql"
print("导出到PG库中")
# 获取数据库连接
engine = DBUtil.get_db_engine(db_type, site_name)
export_master_tb = f"{site_name}_aba_last_total_time"
# 用于补充数据导入的分区
year_str = CommonUtil.safeIndex(date_info.split("-"), 0, None)
year_next = str(int(year_str) + 1)
export_table = f"{export_master_tb}_{year_str}"
# 基于该表设计,仅需创建分区补充即可
# 为了避免数据重复导出,需要在导出前先清空该date_info的数据
sql = f"""
create table if not exists {export_table} partition of {export_master_tb} for values from ('{year_str}') to ('{year_next}');
delete from {export_table} where date_info = '{date_info}'
"""
# 通过db引擎执行sql
DBUtil.engine_exec_sql(engine, sql)
# 导出执行sqoop的sh编写
sh = CommonUtil.build_export_sh(
site_name=site_name,
db_type=db_type,
hive_tb="dwt_st_base_report",
export_tb=export_table,
col=[
"st_key",
"search_term",
"st_volume",
"st_rank",
"st_orders",
"years",
"created_time",
"updated_time",
"date_type",
"date_info"
],
partition_dict={
"site_name": site_name,
"date_type": date_type,
"date_info": date_info
}
)
client = SSHUtil.get_ssh_client()
SSHUtil.exec_command_async(client, sh, ignore_err=False)
client.close()
pass