1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
import os
import sys
import time
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from pyspark.sql.types import IntegerType
from utils.db_util import DBUtil
from utils.spark_util import SparkUtil
from yswg_utils.common_udf import udf_detect_phrase_reg
class DwtAbaStAnalytics(Templates):
def __init__(self, site_name="us", date_type="week", date_info="2022-40"):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save = f"dwt_aba_st_analytics"
self.spark = self.create_spark_object(
app_name=f"{self.db_save}: {self.site_name},{self.date_type}, {self.date_info}")
# 写入、分区初始化
self.df_save = self.spark.sql(f"select 1+1;")
self.partitions_by = ['site_name', 'date_type', 'date_info']
self.reset_partitions(partitions_num=10)
# 初始化列表
self.sp_symbols = []
# 初始化全局df
self.df_st_measure = self.spark.sql(f"select 1+1;")
self.df_asin_measure = self.spark.sql(f"select 1+1;")
self.df_st_asin_measure = self.spark.sql(f"select 1+1;")
self.df_asin_detail = self.spark.sql(f"select 1+1;")
self.df_seller_asin_info = self.spark.sql(f"select 1+1;")
self.df_st_asin_cal = self.spark.sql(f"select 1+1;")
self.df_st_asin_join = self.spark.sql(f"select 1+1;")
self.df_seller_asin_country = self.spark.sql(f"select 1+1;")
self.df_st_brand_cal = self.spark.sql(f"select 1+1;")
self.df_top3_st_brand_cal = self.spark.sql(f"select 1+1;")
self.df_st_seller_cal = self.spark.sql(f"select 1+1;")
self.df_top3_st_seller_cal = self.spark.sql(f"select 1+1;")
self.df_st_num_stats = self.spark.sql(f"select 1+1;")
self.df_st_detail = self.spark.sql(f"select 1+1;")
self.df_st_key = self.spark.sql(f"select 1+1;")
self.df_st_market = self.spark.sql(f"select 1+1;")
self.df_st_volume_fba = self.spark.sql(f"select 1+1;")
self.df_st_brand = self.spark.sql(f"select 1+1;")
self.df_asin_label = self.spark.sql(f"select 1+1;")
self.df_is_hidden_cate = self.spark.sql(f"select 1+1;")
# 自定义udf函数注册
self.u_contains = self.spark.udf.register('u_contains', self.udf_contains, IntegerType())
self.u_judge_color = self.spark.udf.register('u_judge_color', self.udf_judge_color, IntegerType())
self.u_judge_title_color = self.spark.udf.register(
'u_judge_title_color', self.udf_judge_title_color, IntegerType()
)
self.u_judge_multi_size = self.spark.udf.register(
'u_judge_multi_size', self.udf_judge_multi_size, IntegerType()
)
# 解析aba搜索词的拆词个数
def st_word_count(self, sp_symbols):
def udf_st_word_count(name):
# 特殊字符基准列表---迁移到数据库维护 -已处理
# sp_symbols = ['?', '!', '-', '%', '&', '|']
split_list = name.split(" ")
# 取切割list中包含的特殊字符
sp_list = list(set(split_list).intersection(set(sp_symbols)))
# 排除掉特殊list中的特殊字符
word_list = list(filter(lambda x: x not in sp_list, split_list))
word_count = len(word_list)
# 存在多个特殊字符都设定为 1
if len(sp_list) > 0:
symbol_count = 1
else:
symbol_count = 0
return word_count + symbol_count
return F.udf(udf_st_word_count, IntegerType())
@staticmethod
def udf_contains(sub, text):
if text is None:
return None
if str(sub).lower() in str(text).lower():
return 1
else:
return 0
# @staticmethod
# def udf_get_volume(volume):
# # print("get_volume", volume)
# volume = str(volume)
# if volume == "null":
# return None
# else:
# pattern = r"\d+\.?\d*"
# volumeList = re.findall(pattern, volume)
# if len(volumeList):
# volumeList = list(map(float, volumeList))
# result = reduce((lambda x, y: x * y), volumeList)
# return result
# else:
# return None
@staticmethod
def udf_judge_color(color):
if color is None:
return None
color = str(color).lower()
color_len = len(color)
if color not in ['null', 'none'] and color_len > 1:
return 1
else:
return 0
@staticmethod
def udf_judge_title_color(asin_title):
if asin_title is None:
return None
title = str(asin_title).lower()
modeTypes = ['colorful', 'assorted color', 'multi color']
for color in modeTypes:
if color in title:
return 1
return 0
@staticmethod
def udf_judge_multi_size(size, style):
size = str(size).lower()
style = str(style).lower()
# 变体表中即有size又有style时,取size进行计数。如果无size,则判断是否有style进行计数
if size not in ['none', 'null']:
return 1
else:
if style not in ['none', 'null']:
return 1
return 0
def read_data(self):
# 一些不涵盖month_old的分区,重定义成month,其他正常
spe_date_type = 'month' if 'month_old' == self.date_type else self.date_type
# 获取ods_st_key, st唯一主键
sql = f"""
select
search_term,
cast(st_key as int) as id
from ods_st_key
where site_name = '{self.site_name}'
"""
self.df_st_key = self.spark.sql(sqlQuery=sql)
self.df_st_key = self.df_st_key.repartition(80, 'search_term').cache()
print("self.df_st_key:")
self.df_st_key.show(10, truncate=True)
# 获取dwd_st_measure 事实表
sql = f"""
select
search_term,
st_zr_orders,
st_bsr_orders,
st_ao_val as st_ao_avg,
st_ao_val_rate,
st_zr_page1_title_appear_rate as page1_title_proportion,
null as st_4_20_ao_avg,
null as st_4_20_ao_rate,
st_volume_avg as volume_avg,
st_weight_avg as weight_avg,
st_price_avg as price_avg,
st_zr_page123_title_appear_rate,
st_sp_page123_title_appear_rate,
st_zr_flow_proportion,
st_ao_val_matrix,
st_flow_proportion_matrix,
st_zr_counts,
st_sp_counts,
st_self_asin_counts,
st_self_asin_proportion
from dwd_st_measure
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}'
"""
self.df_st_measure = self.spark.sql(sqlQuery=sql)
self.df_st_measure = self.df_st_measure.repartition(80, 'search_term').cache()
print("self.df_st_measure:")
self.df_st_measure.show(10, truncate=True)
# 获取dwd_st_asin_measure 事实表
sql = f"""
select
search_term,
asin
from dwd_st_asin_measure
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}'
"""
self.df_st_asin_measure = self.spark.sql(sqlQuery=sql)
self.df_st_asin_measure = self.df_st_asin_measure.repartition(80, 'asin').cache()
print("self.df_st_asin_measure:")
self.df_st_asin_measure.show(10, truncate=True)
# 获取dwd_asin_measure 事实表
sql = f"""
select
asin,
asin_bsr_orders,
asin_zr_orders,
asin_amazon_orders
from dwd_asin_measure
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}'
"""
self.df_asin_measure = self.spark.sql(sqlQuery=sql)
self.df_asin_measure = self.df_asin_measure.repartition(80, 'asin').cache()
print("self.df_asin_measure:")
self.df_asin_measure.show(10, truncate=True)
# 获取dim_asin_detail表
sql = f"""
select
asin,
asin_title,
asin_title_len,
asin_category_desc,
asin_rank,
asin_color,
asin_size,
asin_style,
asin_price,
asin_rating,
asin_total_comments,
asin_material,
asin_brand_name,
bsr_cate_1_id,
asin_buy_box_seller_type,
asin_is_amazon,
asin_is_fba,
asin_is_fbm,
asin_is_other,
asin_is_sale,
asin_launch_time,
asin_is_new,
asin_img_num,
asin_img_type,
asin_is_picture,
asin_is_video,
asin_is_aadd
from dim_asin_detail
where site_name = '{self.site_name}'
and date_type = '{spe_date_type}'
and date_info = '{self.date_info}'
"""
self.df_asin_detail = self.spark.sql(sqlQuery=sql)
self.df_asin_detail = self.df_asin_detail.repartition(80, 'asin').cache()
print("self.df_asin_detail:")
self.df_asin_detail.show(10, truncate=True)
# 仅获取 asin和country_name,对country_name进行了聚合处理
sql = f"""
select
asin,
concat_ws(\",\",collect_list(cast(fd_country_name as string))) as country_name
from dim_fd_asin_info
where site_name = '{self.site_name}'
group by asin;
"""
self.df_seller_asin_country = self.spark.sql(sqlQuery=sql)
self.df_seller_asin_country = self.df_seller_asin_country.repartition(80, 'asin').cache()
print("self.df_seller_asin_country:")
self.df_seller_asin_country.show(10, truncate=True)
# 获取 dim_fd_asin_info 表
sql = f"""
select
asin,
fd_unique as account_id,
fd_country_name as country_name
from dim_fd_asin_info
where site_name = '{self.site_name}'
"""
self.df_seller_asin_info = self.spark.sql(sqlQuery=sql)
self.df_seller_asin_info = self.df_seller_asin_info.drop_duplicates(['asin']).repartition(80, 'asin').cache()
print("self.df_seller_asin_info:")
self.df_seller_asin_info.show(10, truncate=True)
# 获取 dim_st_detail asin1-3共享点击信息表
sql = f"""
select
search_term,
st_rank as rank,
st_asin1 as asin1,
st_asin2 as asin2,
st_asin3 as asin3,
st_click_share1 as click_share1,
st_click_share2 as click_share2,
st_click_share3 as click_share3,
st_click_share_sum as total_click_share,
st_is_new_market_segment as is_new_market_segment,
st_conversion_share1 as conversion_share1,
st_conversion_share2 as conversion_share2,
st_conversion_share3 as conversion_share3,
st_conversion_share_sum as total_conversion_share,
st_quantity_being_sold as quantity_being_sold,
cast(st_bsr_cate_1_id as int) as category_id,
st_search_num as search_volume,
st_is_first_text as is_first_text,
st_is_ascending_text as is_ascending_text,
st_is_search_text as is_search_text,
cast(st_bsr_cate_current_id as int) as category_current_id,
st_appear_history_counts as st_num,
cast((st_quantity_being_sold / st_search_num) as decimal(10, 3)) as supply_demand,
st_brand1,
st_category1,
st_brand2,
st_category2,
st_brand3,
st_category3,
st_bsr_cate_1_id_new,
st_bsr_cate_current_id_new,
if(st_appear_history_counts>=4 and (st_click_share_sum > st_conversion_share_sum),1,0) as is_high_return_text,
date_format(st_updated_time, 'yyyy-MM-dd HH:mm:ss') as st_crawl_date,
st_competition_level
from dim_st_detail
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}'
"""
self.df_st_detail = self.spark.sql(sqlQuery=sql)
self.df_st_detail = self.df_st_detail.repartition(80, 'search_term').cache()
print("self.df_st_detail:")
self.df_st_detail.show(10, truncate=True)
# 获取dws_st_num_stats表 取max_num、most_proportion
sql = f"""
select
search_term,
cast(max_num as double) as max_num,
most_proportion,
max_num_asin,
is_self_max_num_asin
from dws_st_num_stats
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}'
and max_num_asin is not null
"""
self.df_st_num_stats = self.spark.sql(sqlQuery=sql)
self.df_st_num_stats = self.df_st_num_stats.repartition(80, 'search_term').cache()
print("self.df_st_num_stats:")
self.df_st_num_stats.show(10, truncate=True)
# 获取dwt_st_market表 取market_cycle_type
sql = f"""
select
search_term,
cast(market_cycle_type as int ) as market_cycle_type
from dwt_st_market
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}'
"""
self.df_st_market = self.spark.sql(sqlQuery=sql)
self.df_st_market = self.df_st_market.repartition(80, 'search_term').cache()
print("self.df_st_market:")
self.df_st_market.show(10, truncate=True)
# 获取dwd_st_volume_fba 取gross_profit_fee_air 和 gross_profit_fee_sea
sql = f"""
select
search_term,
gross_profit_fee_air,
gross_profit_fee_sea
from dwd_st_volume_fba
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}'
"""
self.df_st_volume_fba = self.spark.sql(sqlQuery=sql)
self.df_st_volume_fba = self.df_st_volume_fba.repartition(80, 'search_term').cache()
print("self.df_st_volume_fba:")
self.df_st_volume_fba.show(10, truncate=True)
# 获取影视标签dim_asin_label 取 asin_label_type
sql = f"""
select
asin,
asin_label_type
from dim_asin_label
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}'
"""
self.df_asin_label = self.spark.sql(sqlQuery=sql)
self.df_asin_label = self.df_asin_label.repartition(80, 'asin').cache()
print("self.df_asin_label:")
self.df_asin_label.show(10, truncate=True)
# 获取品牌词库
sql = f"""
select
search_term,
st_brand_label
from dws_st_brand_info
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}'
and st_brand_label = 1
"""
self.df_st_brand = self.spark.sql(sqlQuery=sql)
self.df_st_brand = self.df_st_brand.repartition(80, 'search_term').cache()
print("self.df_st_brand:")
self.df_st_brand.show(10, truncate=True)
# 从pgsql获取特殊字符匹配字典表:match_character_dict
pg_sql = f"""
select
character_name
from match_character_dict
where match_type = '特殊字符'
"""
conn_info = DBUtil.get_connection_info("mysql", "us")
chart_dict_df = SparkUtil.read_jdbc_query(
session=self.spark,
url=conn_info["url"],
pwd=conn_info["pwd"],
username=conn_info["username"],
query=pg_sql
)
# 将数据转换成pandas df
dict_df = chart_dict_df.toPandas()
# 提取特殊字符list
self.sp_symbols = dict_df["character_name"].values.tolist()
# 隐藏分类
# Apps & Games、Audible Books & Originals、Books、CDs & Vinyl、Digital Music、Kindle Store、Movies & TV、Software
sql = f"""
select
category_id as st_bsr_cate_1_id_new,
1 as is_hidden_cate
from dim_bsr_category_tree
where site_name = '{self.site_name}'
and en_name in ("Apps & Games", "Audible Books & Originals", "Books", "CDs & Vinyl", "Digital Music", "Kindle Store", "Movies & TV", "Software")
and category_parent_id = 0;
"""
self.df_is_hidden_cate = self.spark.sql(sqlQuery=sql)
self.df_is_hidden_cate = self.df_is_hidden_cate.repartition(80).cache()
print("self.df_is_hidden_cate:")
self.df_is_hidden_cate.show(10, truncate=True)
def handle_data(self):
# 对基础计算表进行关联
self.handle_base_join()
# 对st_asin按st进行指标聚合
self.handle_st_agg()
# 对品牌和卖家按st进行指标聚合
self.handle_brand_seller_agg()
# 计算最终指标
self.handle_st_cal()
# 语种处理
self.handle_calc_lang()
# 处理输出字段
self.handle_column()
def handle_base_join(self):
self.df_st_asin_join = self.df_st_asin_measure.join(
self.df_asin_measure, on=['asin'], how='left'
).join(
self.df_asin_detail, on=['asin'], how='left'
).join(
self.df_asin_label, on=['asin'], how='left'
).cache()
self.df_st_asin_measure.unpersist()
self.df_asin_measure.unpersist()
self.df_asin_detail.unpersist()
self.df_asin_label.unpersist()
self.df_st_asin_cal = self.df_st_asin_join.join(
self.df_seller_asin_country, on=['asin'], how='left'
)
# 计算品牌相关指标df
self.df_st_brand_cal = self.df_st_asin_join
# 计算卖家相关指标df
self.df_st_seller_cal = self.df_st_asin_join.join(
self.df_seller_asin_info, on=['asin'], how='left'
)
def handle_st_agg(self):
self.df_st_asin_cal = self.df_st_asin_cal.withColumn(
# 打上是否中国卖家标签
"asin_is_cn",
self.u_contains(F.lit('CN'), F.col("country_name"))
).withColumn(
# 新品bsr销量
"asin_is_new_bsr_orders",
F.when(F.col("asin_is_new") == 1, F.col("asin_bsr_orders"))
).withColumn(
# 新品zr销量
"asin_is_new_zr_orders",
F.when(F.col("asin_is_new") == 1, F.col("asin_zr_orders"))
).withColumn(
# 标记是否有颜色标签
"asin_is_color_flag",
self.u_judge_color(F.col("asin_color"))
).withColumn(
# 标记标题中是否出现多色关键词
"asin_is_multi_color",
self.u_judge_title_color(F.col("asin_title"))
).na.fill({
# 判断是否多尺寸时,先对多尺寸判断字段进行空值处理
"asin_size": "None",
"asin_style": "None"
}).withColumn(
# 判断是否多尺寸
"asin_is_multi_size",
self.u_judge_multi_size(F.col("asin_size"), F.col("asin_style"))
).withColumn(
# 增加判断是否是影视产品标签
"asin_is_movie_flag",
F.when(F.col("asin_label_type") == 1, F.lit(1))
)
# group by 按search_term 聚合
self.df_st_asin_cal = self.df_st_asin_cal.groupby(['search_term']).agg(
F.count("asin").alias("asin_count"),
F.sum("asin_is_new").alias("asin_is_new_total"),
F.sum("asin_is_aadd").alias("asin_aadd_count"),
F.sum("asin_is_video").alias("asin_video_count"),
F.sum("asin_is_fbm").alias("asin_fbm_count"),
F.sum("asin_is_amazon").alias("asin_amazon_count"),
F.sum("asin_is_cn").alias("asin_cn_count"),
F.sum("asin_is_new_bsr_orders").alias("new_asin_bsr_orders"),
F.sum("asin_is_new_zr_orders").alias("new_asin_orders"),
F.sum("asin_is_color_flag").alias("asin_color_count"),
F.sum("asin_is_multi_color").alias("asin_multi_color_count"),
F.sum("asin_is_multi_size").alias("asin_multi_size_count"),
F.sum("asin_is_movie_flag").alias("asin_movie_type_count"),
F.sum("asin_amazon_orders").alias("amazon_monthly_sales"),
F.avg("asin_title_len").alias("title_length_avg"),
F.avg("asin_rating").alias("rating_avg"),
F.avg("asin_total_comments").alias("total_comments_avg")
).repartition(80, 'search_term').cache()
def handle_brand_seller_agg(self):
# 计算品牌top3销量和总销量
self.df_st_brand_cal = self.df_st_brand_cal.filter("asin_brand_name is not null")
self.df_st_brand_cal = self.df_st_brand_cal.filter("asin_brand_name not in('null','None')")
self.df_st_brand_cal = self.df_st_brand_cal.groupby(['search_term', 'asin_brand_name']).agg(
F.sum("asin_bsr_orders").alias("asin_brand_bsr_orders_total"),
F.sum("asin_zr_orders").alias("asin_brand_zr_orders_total")
)
self.df_top3_st_brand_cal = self.df_st_brand_cal
# top3品牌bsr销量
brand_bsr_window = Window.partitionBy(["search_term"]).orderBy(
self.df_top3_st_brand_cal.asin_brand_bsr_orders_total.desc_nulls_last()
)
df_st_brand_top3_bsr_orders = self.df_top3_st_brand_cal.withColumn(
"brand_rank",
F.row_number().over(window=brand_bsr_window)
)
df_st_brand_top3_bsr_orders = df_st_brand_top3_bsr_orders.filter("brand_rank<=3")
df_st_brand_top3_bsr_orders = df_st_brand_top3_bsr_orders.groupby(["search_term"]).agg(
F.sum("asin_brand_bsr_orders_total").alias("top3_brand_bsr_orders")
)
# top3品牌zr销量
brand_zr_window = Window.partitionBy(["search_term"]).orderBy(
self.df_top3_st_brand_cal.asin_brand_zr_orders_total.desc_nulls_last()
)
df_st_brand_top3_zr_orders = self.df_top3_st_brand_cal.withColumn(
"brand_rank",
F.row_number().over(window=brand_zr_window)
)
df_st_brand_top3_zr_orders = df_st_brand_top3_zr_orders.filter("brand_rank<=3")
df_st_brand_top3_zr_orders = df_st_brand_top3_zr_orders.groupby(["search_term"]).agg(
F.sum("asin_brand_zr_orders_total").alias("top3_brand_orders")
)
# 品牌总销量
self.df_st_brand_cal = self.df_st_brand_cal.groupby(['search_term']).agg(
F.count_distinct("asin_brand_name").alias("page3_brand_num")
).repartition(80, 'search_term')
# 聚合得到st_brand
self.df_st_brand_cal = self.df_st_brand_cal.join(
df_st_brand_top3_bsr_orders, on=['search_term'], how='left'
).join(
df_st_brand_top3_zr_orders, on=['search_term'], how='left'
)
self.df_st_brand_cal = self.df_st_brand_cal.select(
"search_term", "page3_brand_num", "top3_brand_bsr_orders", "top3_brand_orders"
).cache()
# 计算卖家top3销量和总销量
self.df_st_seller_cal = self.df_st_seller_cal.filter("account_id is not null")
self.df_st_seller_cal = self.df_st_seller_cal.groupby(['search_term', 'account_id']).agg(
F.sum("asin_bsr_orders").alias("asin_seller_bsr_orders_total"),
F.sum("asin_zr_orders").alias("asin_seller_zr_orders_total")
)
self.df_top3_st_seller_cal = self.df_st_seller_cal
# 计算top3卖家bsr销量
seller_bsr_window = Window.partitionBy(["search_term"]).orderBy(
self.df_top3_st_seller_cal.asin_seller_bsr_orders_total.desc_nulls_last()
)
df_st_seller_top3_bsr_orders = self.df_top3_st_seller_cal.withColumn(
"seller_rank",
F.row_number().over(window=seller_bsr_window)
)
df_st_seller_top3_bsr_orders = df_st_seller_top3_bsr_orders.filter("seller_rank<=3")
df_st_seller_top3_bsr_orders = df_st_seller_top3_bsr_orders.groupby(["search_term"]).agg(
F.sum("asin_seller_bsr_orders_total").alias("top3_seller_bsr_orders")
)
# 计算top3卖家的zr销量
seller_zr_window = Window.partitionBy(["search_term"]).orderBy(
self.df_st_seller_cal.asin_seller_zr_orders_total.desc_nulls_last()
)
df_st_seller_top3_zr_orders = self.df_st_seller_cal.withColumn(
"seller_rank",
F.row_number().over(window=seller_zr_window)
)
df_st_seller_top3_zr_orders = df_st_seller_top3_zr_orders.filter("seller_rank<=3")
df_st_seller_top3_zr_orders = df_st_seller_top3_zr_orders.groupby(["search_term"]).agg(
F.sum("asin_seller_zr_orders_total").alias("top3_seller_orders")
)
# 卖家总数量
self.df_st_seller_cal = self.df_st_seller_cal.groupby(['search_term']).agg(
F.countDistinct("account_id").alias("page3_seller_num")
).repartition(80, 'search_term')
# 聚合得到st_seller
self.df_st_seller_cal = self.df_st_seller_cal.join(
df_st_seller_top3_bsr_orders, on=['search_term'], how='left'
).join(
df_st_seller_top3_zr_orders, on=['search_term'], how='left'
)
self.df_st_seller_cal = self.df_st_seller_cal.select(
"search_term", "page3_seller_num", "top3_seller_bsr_orders", "top3_seller_orders"
).cache()
# 计算最终指标
def handle_st_cal(self):
# 将st,st_asin,st_seller,st_brand按search_term聚合
df_st_agg = self.df_st_measure.join(
self.df_st_asin_cal, on=['search_term'], how='left'
).join(
self.df_st_brand_cal, on=['search_term'], how='left'
).join(
self.df_st_seller_cal, on=['search_term'], how='left'
)
self.df_st_measure.unpersist()
self.df_st_asin_cal.unpersist()
self.df_st_brand_cal.unpersist()
self.df_st_seller_cal.unpersist()
# 求值
df_st_agg = df_st_agg.withColumn(
# 新品产品数量/前三页产品总数
"new_asin_proportion",
F.round(F.col("asin_is_new_total") / F.col("asin_count"), 3)
).withColumn(
# 当日A+商品占比
"aadd_proportion",
F.round(F.col("asin_aadd_count") / F.col("asin_count"), 3)
).withColumn(
# 当日视频商品占比
"sp_proportion",
F.round(F.col("asin_video_count") / F.col("asin_count"), 3)
).withColumn(
# 当日FBM商品占比
"fbm_proportion",
F.round(F.col("asin_fbm_count") / F.col("asin_count"), 3)
).withColumn(
# 中国卖家占比
"cn_proportion",
F.round(F.col("asin_cn_count") / F.col("asin_count"), 3)
).withColumn(
# Amazon自营占比
"amzon_proportion",
F.round(F.col("asin_amazon_count") / F.col("asin_count"), 3)
).withColumn(
# 多颜色占比 = 关键字有颜色的asin数/关键字的asin数
"color_proportion",
F.round(F.col("asin_color_count") / F.col("asin_count"), 3)
).withColumn(
# 多色比例 = 关键词前三页产品标题中出现colorful/assorted color/multi color的词产品个数/前三页产品数量
"multi_color_proportion",
F.round(F.col("asin_multi_color_count") / F.col("asin_count"), 3)
).withColumn(
# 多尺寸占比
"multi_size_proportion",
F.round(F.col("asin_multi_size_count") / F.col("asin_count"), 3)
).withColumnRenamed(
# 新品总数
"asin_is_new_total",
"new_asin_num"
).withColumnRenamed(
# 产品总数
"asin_count",
"total_asin_num"
).withColumnRenamed(
# 总bsr销量
"st_bsr_orders",
"bsr_orders"
).withColumnRenamed(
# 总预估销量
"st_zr_orders",
"orders"
).withColumn(
# 销量占比 新品销量占比
"new_bsr_orders_proportion",
F.round(F.col("new_asin_bsr_orders") / F.col("bsr_orders"), 3)
).withColumn(
# 品牌垄断系数
"brand_monopoly",
F.ceil((F.col("top3_brand_bsr_orders") / F.col("bsr_orders")) * 1000) / 1000
).withColumn(
# 卖家垄断系数
"seller_monopoly",
F.ceil((F.col("top3_seller_bsr_orders") / F.col("bsr_orders")) * 1000) / 1000
).withColumn(
# ABA搜索词拆分的单词个数
"st_word_num",
self.st_word_count(self.sp_symbols)(F.col("search_term"))
).withColumn(
# aba搜索词影视比例
"movie_prop",
F.round((F.col("asin_movie_type_count") / F.col("total_asin_num"))*100, 2)
).withColumn(
# 影视标记类型 0:非影视; 1:0< 比例 <= 20%; 2: 20% < 比例 <= 50%; 3:50% < 比例
"st_movie_label",
F.when(
(F.col("movie_prop") > 0) & (F.col("movie_prop") <= 20), F.lit(1)
).when(
(F.col("movie_prop") > 20) & (F.col("movie_prop") <= 50), F.lit(2)
).when(
(F.col("movie_prop") > 50), F.lit(3)
).otherwise(F.lit(0))
)
self.df_save = df_st_agg.join(
self.df_st_detail, on=['search_term'], how='inner'
).join(
self.df_st_key, on=['search_term'], how='inner'
).join(
self.df_st_num_stats, on=['search_term'], how='left'
).join(
self.df_st_market, on=['search_term'], how='left'
).join(
self.df_st_volume_fba, on=['search_term'], how='left'
).join(
self.df_st_brand, on=['search_term'], how='left'
).join(
self.df_is_hidden_cate, on=['st_bsr_cate_1_id_new'], how='left'
)
self.df_st_detail.unpersist()
self.df_st_key.unpersist()
self.df_st_num_stats.unpersist()
self.df_st_market.unpersist()
self.df_st_volume_fba.unpersist()
self.df_st_brand.unpersist()
self.df_is_hidden_cate.unpersist()
# 语种处理
def handle_calc_lang(self):
sql = """
select
word,
langs
from big_data_selection.tmp_lang_word_frequency;
"""
lang_word_list = self.spark.sql(sql).collect()
# 转为map
lang_word_map = {row['word']: row['langs'] for row in lang_word_list}
self.df_save = self.df_save.withColumn(
"lang",
F.coalesce(udf_detect_phrase_reg(lang_word_map)(F.col("search_term")).getField("lang"), F.lit("other"))
)
def handle_column(self):
# 入库前字段处理
self.df_save = self.df_save.select(
"id",
"search_term",
"rank",
"category_id",
"orders",
"bsr_orders",
"search_volume",
"quantity_being_sold",
F.round("st_ao_avg", 3).alias("st_ao_avg"),
"st_ao_val_rate",
"new_bsr_orders_proportion",
"new_asin_proportion",
F.round("page1_title_proportion", 3).alias("page1_title_proportion"),
F.round("price_avg", 3).alias("price_avg"),
F.round("total_comments_avg", 0).alias("total_comments_avg"),
F.round("rating_avg", 3).alias("rating_avg"),
F.round("weight_avg", 3).alias("weight_avg"),
F.round("volume_avg", 3).alias("volume_avg"),
F.round("title_length_avg", 0).alias("title_length_avg"),
"st_num",
"aadd_proportion",
"sp_proportion",
"fbm_proportion",
"cn_proportion",
"amzon_proportion",
"most_proportion",
"max_num",
"asin1",
"asin2",
"asin3",
F.round("click_share1", 3).alias("click_share1"),
F.round("click_share2", 3).alias("click_share2"),
F.round("click_share3", 3).alias("click_share3"),
F.round("total_click_share", 3).alias("total_click_share"),
F.round("conversion_share1", 3).alias("conversion_share1"),
F.round("conversion_share2", 3).alias("conversion_share2"),
F.round("conversion_share3", 3).alias("conversion_share3"),
F.round("total_conversion_share", 3).alias("total_conversion_share"),
"new_asin_num",
"total_asin_num",
"new_asin_orders",
"new_asin_bsr_orders",
"is_first_text",
"is_ascending_text",
"is_search_text",
"top3_seller_orders",
"top3_seller_bsr_orders",
"top3_brand_orders",
"top3_brand_bsr_orders",
"page3_brand_num",
"page3_seller_num",
"brand_monopoly",
"seller_monopoly",
"max_num_asin",
"is_self_max_num_asin",
"is_new_market_segment",
F.when(F.col('category_current_id').isNull(), F.col('category_id'))
.otherwise(F.col('category_current_id')).alias('category_current_id'),
"supply_demand",
"market_cycle_type",
"color_proportion",
"gross_profit_fee_air",
"gross_profit_fee_sea",
"multi_color_proportion",
"multi_size_proportion",
"st_4_20_ao_avg",
"st_4_20_ao_rate",
"asin_aadd_count",
"asin_video_count",
"asin_fbm_count",
"asin_cn_count",
"asin_amazon_count",
"asin_color_count",
"asin_multi_color_count",
"asin_multi_size_count",
"st_word_num",
"st_movie_label",
"st_brand_label",
"st_brand1",
"st_category1",
"st_brand2",
"st_category2",
"st_brand3",
"st_category3",
"st_bsr_cate_1_id_new",
"st_bsr_cate_current_id_new",
"st_crawl_date",
"is_high_return_text",
F.round("st_zr_page123_title_appear_rate", 3).alias("st_zr_page123_title_appear_rate"),
F.round("st_sp_page123_title_appear_rate", 3).alias("st_sp_page123_title_appear_rate"),
"st_competition_level",
"amazon_monthly_sales",
"st_zr_flow_proportion",
"st_ao_val_matrix",
"st_flow_proportion_matrix",
"st_zr_counts",
"st_sp_counts",
"st_self_asin_counts",
"st_self_asin_proportion",
"lang",
"asin_movie_type_count",
"is_hidden_cate"
)
# 空值处理
self.df_save = self.df_save.na.fill({
"is_first_text": 0,
"is_ascending_text": 0,
"is_search_text": 0,
"st_movie_label": 0,
"st_brand_label": 0,
"is_self_max_num_asin": 0,
"market_cycle_type": 0,
"is_new_market_segment": 0,
"is_high_return_text": 0,
"amazon_monthly_sales": 0,
"is_hidden_cate": 0
})
# 日期字段补全
self.df_save = self.df_save.withColumn(
"created_time",
F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')
).withColumn(
"updated_time",
F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS')
)
# 预留字段补全
self.df_save = self.df_save.withColumn(
"re_string_field1", F.lit(None)
)
# 用户标记字段(已废弃,济苍直接填充)
self.df_save = self.df_save.withColumn(
"usr_mask_type", F.lit(None)
).withColumn(
"usr_mask_progress", F.lit(None)
)
# 分区字段补全
self.df_save = self.df_save.withColumn(
"site_name", F.lit(self.site_name)
).withColumn(
"date_type", F.lit(self.date_type)
).withColumn(
"date_info", F.lit(self.date_info)
)
if __name__ == '__main__':
start_time = time.time()
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季, 比如: 2022-1
handle_obj = DwtAbaStAnalytics(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()
end_time = time.time()
consumer_time = end_time - start_time
print("aba数据存储完毕, 执行时长为:" + str(consumer_time))