1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import sys
from pyspark.storagelevel import StorageLevel
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
#from AmazonSpider.pyspark_job.utils.templates import Templates
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, IntegerType
class DwtStAsinInfo(Templates):
def __init__(self, site_name="us", date_type="week", date_info="2022-1"):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save = f"dwt_st_asin_info"
self.spark = self.create_spark_object(app_name=f"{self.db_save} {self.site_name}, {self.date_type}, {self.date_info}")
self.df_date = self.get_year_week_tuple()
self.df_save = self.spark.sql(f"select 1+1;")
self.df_st_asin_info = self.spark.sql(f"select 1+1;")
self.df_st_counts = self.spark.sql(f"select 1+1;")
self.df_st_info = self.spark.sql(f"select 1+1;")
self.partitions_by = ['site_name', 'date_type', 'date_info']
if self.date_type in ["week"]:
self.reset_partitions(100)
elif self.date_type in ["month", "4_week"]:
self.reset_partitions(350)
elif self.date_type in ["quarter"]:
self.reset_partitions(600)
def read_data(self):
print("1.1 读取dwd_st_asin_info表")
sql = f"select * from dwd_st_asin_info " \
f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
print("sql:", sql)
self.df_st_asin_info = self.spark.sql(sql).cache()
self.df_st_asin_info.show(10, truncate=False)
print("1.2 读取dwd_st_counts表")
sql = f"select search_term, st_adv_counts, st_ao_val from dwd_st_counts " \
f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
print("sql:", sql)
self.df_st_counts = self.spark.sql(sql).cache()
self.df_st_counts.show(10, truncate=False)
print("1.3 读取dim_st_detail表")
sql = f"select search_term, st_quantity_being_sold from dim_st_detail " \
f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
print("sql:", sql)
self.df_st_info = self.spark.sql(sql).cache()
self.df_st_info.show(10, truncate=False)
def handle_data(self):
self.df_save = self.df_st_asin_info.join(
self.df_st_counts, on=['search_term'], how='left'
).join(
self.df_st_info, on=['search_term'], how='left'
)
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季, 比如: 2022-1
handle_obj = DwtStAsinInfo(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()