1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
"""
@Author : HuangJian
@Description : ABA—关键词与Asin-Asin维度预聚合中间表
@SourceTable :
①dwd_st_asin_info
②dim_st_asin_info
③dim_asin_detail
④dim_seller_asin_info
⑤
@SinkTable : dws_aba_st_analytics_day
@CreateTime : 2022/11/21 15:56
@UpdateTime : 2022/11/21 15:56
"""
import os
import sys
from datetime import date, timedelta
import re
from functools import reduce
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
from pyspark.sql.types import IntegerType
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, IntegerType, DoubleType
class DwsAbaStAnalyticsDay(Templates):
def __init__(self, site_name="us", date_type="week", date_info="2022-1"):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save = f"dws_aba_st_analytics_day"
self.spark = self.create_spark_object(app_name=f"{self.db_save} {self.site_name}, {self.date_info}")
self.df_date = self.get_year_week_tuple()
self.year_week = self.get_year_week()
# 写入、分区初始化
self.df_save = self.spark.sql(f"select 1+1;")
self.partitions_by = ['site_name', 'date_type', 'date_info']
self.reset_partitions(partitions_num=10)
# 初始化全局df
self.df_aba_st_analytics = self.spark.sql(f"select 1+1;")
self.df_st_asin_info = self.spark.sql(f"select 1+1;")
self.df_asin_detail = self.spark.sql(f"select 1+1;")
self.df_seller_asin_info = self.spark.sql(f"select 1+1;")
self.df_st_asin_join = self.spark.sql(f"select 1+1;")
self.df_st_asin_orders_info = self.spark.sql(f"select 1+1;")
# 注册自定义udf函数
self.u_year_week = self.spark.udf.register('u_year_week', self.udf_year_week, StringType())
self.u_get_volume = self.spark.udf.register('u_get_volume', self.udf_get_volume, DoubleType())
self.u_get_image_type = self.spark.udf.register('u_get_image_type', self.udf_get_image_type, IntegerType())
self.u_title_contains = self.spark.udf.register('u_title_contains', self.udf_title_contains, IntegerType())
def get_year_week(self):
# 根据日期获取当前周
if self.date_type == "day":
sql = f"select year_week from dim_date_20_to_30 where `date`='{self.date_info}'"
df = self.spark.sql(sqlQuery=sql).toPandas()
# print(list(df.year_week)[0])
return list(df.year_week)[0]
@staticmethod
def udf_year_week(dt):
year, week = dt.split("-")[0], dt.split("-")[1]
if int(week) < 10:
return f"{year}-0{week}"
else:
return f"{year}-{week}"
@staticmethod
def udf_get_volume(volume):
# print("get_volume", volume)
volume = str(volume)
if volume == "null":
return 0.0
else:
pattern = r"\d+\.?\d*"
volumeList = re.findall(pattern, volume)
if len(volumeList):
volumeList = list(map(float, volumeList))
result = reduce((lambda x, y: x * y), volumeList)
return result
else:
return 0.0
@staticmethod
def udf_get_image_type(type_flag, image_type):
str_type = str(image_type)
type_flag = str(type_flag)
if type_flag in str_type:
return 1
else:
return 0
@staticmethod
def udf_title_contains(search_term, title):
if str(search_term).lower() in str(title).lower():
return 1
else:
return 0
def read_data(self):
# 1. 获取st 销量相关dwd表
sql = f"select search_term, asin, 2 as st_asin_zr_orders, 10 as st_asin_bs_orders from dwd_st_asin_info " \
f" where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}' " \
f"and st_asin_zr_page is not null"
self.df_st_asin_orders_info = self.spark.sql(sqlQuery=sql).cache()
# 2. 获取dwd_st_asin_info表
sql = f"select search_term, asin,page,page_row,page_rank,data_type from dim_st_asin_info " \
f" where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}'"
self.df_st_asin_info = self.spark.sql(sqlQuery=sql).cache()
# print("self.df_st_asin_info", self.df_st_asin_info.show(10, truncate=False))
# 3. 获取asin详情基表dim_asin_detail
sql = f"select asin,asin_title,asin_title_len,asin_total_comments,asin_price,asin_rating,asin_buy_box_seller_type," \
f"asin_volume,asin_weight,asin_img_type,asin_brand_name,asin_is_new,asin_is_sale,asin_rank from dim_asin_detail " \
f" where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}'"
self.df_asin_detail = self.spark.sql(sqlQuery=sql).cache()
# 4. 获取商家相关信息dim_seller_asin_info
sql = f" select asin,account_name,country_name from dim_seller_asin_info " \
f" where site_name = '{self.site_name}' and date_type = 'week' and date_info = '{self.year_week}' "
self.df_seller_asin_info = self.spark.sql(sqlQuery=sql)
self.df_seller_asin_info = self.df_seller_asin_info.drop_duplicates(['asin']).cache()
# print("self.df_seller_asin_info", self.df_seller_asin_info.show(10, truncate=False))
def handle_data(self):
# 初始化表join,获取目标合并表
self.handle_st_asin_join()
# 将asin相关得原子指标聚合得到派生指标
self.handle_asin_agg()
# 处理销量、预估销量原子指标聚合
self.handle_st_orders_agg()
# 数据入库前的字段处理
self.handle_column()
print(self.df_save.columns)
def handle_st_asin_join(self):
self.df_st_asin_info = self.df_st_asin_info.drop_duplicates(['search_term', 'asin'])
self.df_st_asin_join = self.df_st_asin_info.join(
self.df_asin_detail, on='asin', how='left'
).join(
self.df_seller_asin_info, on='asin', how='left'
).join(
self.df_st_asin_orders_info, on=['search_term', 'asin'], how='left'
)
self.df_st_asin_join.cache()
# print("df_st_asin_join", self.df_st_asin_join.show(10, truncate=False))
def handle_asin_agg(self):
# 加载需要参与计算的字段
df_st_asin_agg = self.df_st_asin_join.select(
"search_term", "asin", "page", "asin_title", "asin_title_len",
"asin_total_comments", "asin_price", "asin_rating", "asin_volume",
"asin_weight", "asin_buy_box_seller_type", "asin_img_type",
"country_name", "asin_is_new", "asin_is_sale"
)
# 为计算指标打上统计标签,方便统计
df_st_asin_agg = self.handle_asin_agg_flag(df_st_asin_agg)
# 多列聚合-并更名
df_st_asin_agg = self.handle_asin_group_agg(df_st_asin_agg)
# 品牌,卖家数量统计
df_st_asin_agg = self.handle_asin_agg_brand_seller(df_st_asin_agg)
self.df_aba_st_analytics = df_st_asin_agg
# print("df_aba_st_analytics", self.df_aba_st_analytics.show(10, truncate=False))
def handle_st_orders_agg(self):
# 获取计算销量所需要使用到的字段
df_st_orders_data = self.df_st_asin_join.select(
"search_term", "asin", "asin_is_new", "asin_brand_name", "account_name", "st_asin_zr_orders",
"st_asin_bs_orders"
).cache()
# 总销量 + 预估销量
df_asin_bs_orders = df_st_orders_data.groupby(['search_term']).agg(
F.sum("st_asin_bs_orders").alias("bsr_orders"))
df_asin_zr_orders = df_st_orders_data.groupby(['search_term']).agg(F.sum("st_asin_zr_orders").alias("orders"))
# 新品bs销量 + 预估销量
df_asin_new_bs_orders = df_st_orders_data.filter("asin_is_new=1").groupby(['search_term']).agg(
F.sum("st_asin_bs_orders").alias("new_asin_bsr_orders"))
df_asin_new_zr_orders = df_st_orders_data.filter("asin_is_new=1").groupby(['search_term']).agg(
F.sum("st_asin_zr_orders").alias("new_asin_orders"))
# 品牌销量 + 预估销量
df_asin_brand_bs_orders = df_st_orders_data.filter(
"asin_brand_name != 'null' or asin_brand_name is not null").groupby(
['search_term', 'asin_brand_name']).agg(F.sum("st_asin_bs_orders").alias("asin_brand_bs_orders"))
df_asin_brand_zr_orders = df_st_orders_data.filter(
"asin_brand_name != 'null' or asin_brand_name is not null").groupby(
['search_term', 'asin_brand_name']).agg(F.sum("st_asin_zr_orders").alias("asin_brand_zr_orders"))
# 品牌top3 bs销量+预估销量
window = Window.partitionBy(["search_term"]).orderBy(
df_asin_brand_bs_orders.asin_brand_bs_orders.asc_nulls_last()
)
df_asin_brand_bs_orders = df_asin_brand_bs_orders.withColumn("brand_rank", F.row_number().over(window=window))
df_asin_brand_bs_orders = df_asin_brand_bs_orders.filter("brand_rank<=3")
df_top3_brand_bs_total = df_asin_brand_bs_orders.groupby(["search_term"]).agg(
F.sum("asin_brand_bs_orders").alias("top3_brand_bsr_orders"))
window = Window.partitionBy(["search_term"]).orderBy(
df_asin_brand_zr_orders.asin_brand_zr_orders.asc_nulls_last()
)
df_asin_brand_zr_orders = df_asin_brand_zr_orders.withColumn("brand_rank", F.row_number().over(window=window))
df_asin_brand_zr_orders = df_asin_brand_zr_orders.filter("brand_rank<=3")
df_top3_brand_zr_total = df_asin_brand_zr_orders.groupby(["search_term"]).agg(
F.sum("asin_brand_zr_orders").alias("top3_brand_orders"))
# 卖家销量 + 预估销量
df_asin_seller_bs_orders = df_st_orders_data.groupby(['search_term', 'account_name']).agg(
F.sum("st_asin_bs_orders").alias("asin_seller_bs_orders"))
df_asin_seller_zr_orders = df_st_orders_data.groupby(['search_term', 'account_name']).agg(
F.sum("st_asin_zr_orders").alias("asin_seller_zr_orders"))
# 卖家top3 bs销量+预估销量
window = Window.partitionBy(["search_term"]).orderBy(
df_asin_seller_bs_orders.asin_seller_bs_orders.asc_nulls_last()
)
df_asin_seller_bs_orders = df_asin_seller_bs_orders.withColumn("seller_rank",
F.row_number().over(window=window))
df_asin_seller_bs_orders = df_asin_seller_bs_orders.filter("seller_rank<=3")
df_top3_seller_bs_total = df_asin_seller_bs_orders.groupby(["search_term"]).agg(
F.sum("asin_seller_bs_orders").alias("top3_seller_bsr_orders"))
window = Window.partitionBy(["search_term"]).orderBy(
df_asin_seller_zr_orders.asin_seller_zr_orders.asc_nulls_last()
)
df_asin_seller_zr_orders = df_asin_seller_zr_orders.withColumn("seller_rank",
F.row_number().over(window=window))
df_asin_seller_zr_orders = df_asin_seller_zr_orders.filter("seller_rank<=3")
df_top3_seller_zr_total = df_asin_seller_zr_orders.groupby(["search_term"]).agg(
F.sum("asin_seller_zr_orders").alias("top3_seller_orders"))
# 关联销量各项指标
self.df_aba_st_analytics = self.df_aba_st_analytics. \
join(df_asin_bs_orders, on=['search_term'], how='left'). \
join(df_asin_zr_orders, on=['search_term'], how='left'). \
join(df_asin_new_bs_orders, on=['search_term'], how='left'). \
join(df_asin_new_zr_orders, on=['search_term'], how='left'). \
join(df_top3_brand_bs_total, on=['search_term'], how='left'). \
join(df_top3_brand_zr_total, on=['search_term'], how='left'). \
join(df_top3_seller_bs_total, on=['search_term'], how='left'). \
join(df_top3_seller_zr_total, on=['search_term'], how='left')
def handle_column(self):
# 测试用字段填充
self.df_aba_st_analytics = self.df_aba_st_analytics.withColumn("st_num", F.lit(1))
self.df_aba_st_analytics = self.df_aba_st_analytics.withColumn("quantity_being_sold", F.lit(999))
self.df_aba_st_analytics = self.df_aba_st_analytics.withColumn("search_volume", F.lit(999))
self.df_aba_st_analytics = self.df_aba_st_analytics.withColumn("st_adv_num", F.lit(999))
self.df_aba_st_analytics = self.df_aba_st_analytics.withColumn("st_zr_num", F.lit(999))
# 列选择
self.df_save = self.df_aba_st_analytics.select(
"search_term", "st_num", "orders", "bsr_orders", "search_volume", "quantity_being_sold",
"new_asin_num", "total_asin_num", "new_asin_orders", "new_asin_bsr_orders", "st_adv_num",
"st_zr_num", "title_st_one_num", "title_page_one_total", "asin_price_total", "having_price_num",
"asin_comment_total", "having_comment_num", "asin_rating_total", "having_rating_num", "asin_weight_total",
"having_weight_num", "asin_volume_total", "having_volume_num", "asin_title_len_total", "having_title_num",
"is_A_num", "is_video_num", "is_FBM_num", "is_CN_num", "is_Amazon_num", "asin_brand_num",
"asin_account_num", "top3_seller_orders", "top3_seller_bsr_orders", "top3_brand_orders",
"top3_brand_bsr_orders"
)
# 空值处理
self.df_save = self.df_save.na.fill(
{
"search_term": 0, "st_num": 0, "orders": 0, "bsr_orders": 0, "search_volume": 0,
"quantity_being_sold": 0, "new_asin_num": 0, "total_asin_num": 0, "new_asin_orders": 0,
"new_asin_bsr_orders": 0, "st_adv_num": 0, "st_zr_num": 0, "title_st_one_num": 0,
"title_page_one_total": 0, "asin_price_total": 0, "having_price_num": 0, "asin_comment_total": 0,
"having_comment_num": 0, "asin_rating_total": 0, "having_rating_num": 0, "asin_weight_total": 0,
"having_weight_num": 0, "asin_volume_total": 0, "having_volume_num": 0, "asin_title_len_total": 0,
"having_title_num": 0, "is_A_num": 0, "is_video_num": 0, "is_FBM_num": 0, "is_CN_num": 0,
"is_Amazon_num": 0, "asin_brand_num": 0, "asin_account_num": 0, "top3_seller_orders": 0,
"top3_seller_bsr_orders": 0, "top3_brand_orders": 0, "top3_brand_bsr_orders": 0
})
# 预留字段补全
self.df_save = self.df_save.withColumn("re_double_field1", F.lit(0.0))
self.df_save = self.df_save.withColumn("re_double_field2", F.lit(0.0))
self.df_save = self.df_save.withColumn("re_double_field3", F.lit(0.0))
self.df_save = self.df_save.withColumn("re_int_field1", F.lit(0))
self.df_save = self.df_save.withColumn("re_int_field2", F.lit(0))
self.df_save = self.df_save.withColumn("re_int_field3", F.lit(0))
# 分区字段补全
self.df_save = self.df_save.withColumn("site_name", F.lit(self.site_name))
self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info))
def handle_asin_agg_flag(self, df_st_asin_agg):
# 为统计指标打上标签方便计算
# asin标题在关键词第一页数量
df_st_asin_agg = df_st_asin_agg.withColumn("title_st_one_flag", F.when(F.col("page") == 1,
self.u_title_contains(
F.col("search_term"),
F.col("asin_title"))).
otherwise(F.lit(0)))
# A+产品标签
df_st_asin_agg = df_st_asin_agg.withColumn("is_A_flag",
self.u_get_image_type(F.lit('3'), F.col("asin_img_type")))
# 视频产品标签
df_st_asin_agg = df_st_asin_agg.withColumn("is_video_flag",
self.u_get_image_type(F.lit('2'), F.col("asin_img_type")))
# FBM产品标签
df_st_asin_agg = df_st_asin_agg.withColumn("is_FBM_flag",
F.when(F.col("asin_buy_box_seller_type") == 3, F.lit(1)).otherwise(
F.lit(0)))
# Amazon自营产品标签
df_st_asin_agg = df_st_asin_agg.withColumn("is_Amazon_flag",
F.when(F.col("asin_buy_box_seller_type") == 1, F.lit(1)).otherwise(
F.lit(0)))
# 中国卖家标签
df_st_asin_agg = df_st_asin_agg.withColumn("is_CN_flag",
F.when(F.col("country_name") == 'CN', F.lit(1)).otherwise(F.lit(0)))
# asin体积从5.12"D x 6.69"W x 1.38"H中提取并计算计算
df_st_asin_agg = df_st_asin_agg.withColumn("asin_volume_val", self.u_get_volume(F.col("asin_volume")))
# 是否新品统计标签
df_st_asin_agg = df_st_asin_agg.withColumn("asin_is_new_flag",
F.when(F.col("asin_is_new") == 1, F.lit(1)).otherwise(F.lit(0)))
# 第一页标题得统计标签
df_st_asin_agg = df_st_asin_agg.withColumn("title_page_one_flag",
F.when((F.col("page") == 1) & (F.col("asin_title_len") > 0.0),
F.lit(1)).otherwise(F.lit(0)))
# 计算 售价、分数、星级、重量、体积、标题 统计分母(为保证不扩大误差,匹配上以上数据且数值>0的方为计数分母)
df_st_asin_agg = df_st_asin_agg.withColumn("price_flag",
F.when(F.col("asin_price") > 0.0, F.lit(1)).otherwise(F.lit(0)))
df_st_asin_agg = df_st_asin_agg.withColumn("rating_flag",
F.when(F.col("asin_rating") > 0.0, F.lit(1)).otherwise(F.lit(0)))
df_st_asin_agg = df_st_asin_agg.withColumn("weight_flag",
F.when(F.col("asin_weight") > 0.0, F.lit(1)).otherwise(F.lit(0)))
df_st_asin_agg = df_st_asin_agg.withColumn("comments_flag",
F.when(F.col("asin_total_comments") > 0.0, F.lit(1)).otherwise(
F.lit(0)))
df_st_asin_agg = df_st_asin_agg.withColumn("volume_flag",
F.when(F.col("asin_volume_val") > 0.0, F.lit(1)).otherwise(F.lit(0)))
# 统计有asin标题标签
df_st_asin_agg = df_st_asin_agg.withColumn("title_flag",
F.when(F.col("asin_title_len") > 0.0, F.lit(1)).otherwise(F.lit(0)))
return df_st_asin_agg
def handle_asin_group_agg(self, df_st_asin_agg):
# 将统计好的flag聚合得到计算聚合总数和数量
df_st_asin_agg = df_st_asin_agg.groupby(['search_term']) \
.agg(
F.count("asin").alias("total_asin_num"),
F.sum("asin_title_len").alias("asin_title_len_total"),
F.sum("asin_total_comments").alias("asin_comment_total"),
F.sum("asin_price").alias("asin_price_total"),
F.sum("asin_rating").alias("asin_rating_total"),
F.sum("asin_volume_val").alias("asin_volume_total"),
F.sum("asin_weight").alias("asin_weight_total"),
F.sum("is_A_flag").alias("is_A_num"),
F.sum("is_video_flag").alias("is_video_num"),
F.sum("is_FBM_flag").alias("is_FBM_num"),
F.sum("is_Amazon_flag").alias("is_Amazon_num"),
F.sum("is_CN_flag").alias("is_CN_num"),
F.sum("title_st_one_flag").alias("title_st_one_num"),
F.sum("asin_is_new_flag").alias("new_asin_num"),
F.sum("title_page_one_flag").alias("title_page_one_total"),
F.sum("price_flag").alias("having_price_num"),
F.sum("rating_flag").alias("having_rating_num"),
F.sum("weight_flag").alias("having_weight_num"),
F.sum("comments_flag").alias("having_comment_num"),
F.sum("volume_flag").alias("having_volume_num"),
F.sum("title_flag").alias("having_title_num")
)
return df_st_asin_agg
def handle_asin_agg_brand_seller(self, df_st_asin_agg):
# 品牌数量
df_brand_count = self.df_st_asin_join.select("search_term", "asin_brand_name")
df_brand_count = df_brand_count.filter(" asin_brand_name is not null or asin_brand_name != 'null' ")
df_brand_count = df_brand_count.groupby(['search_term']) \
.agg(F.count_distinct("asin_brand_name").alias("asin_brand_num"))
# 卖家数量
df_account_count = self.df_st_asin_join.select("search_term", "account_name")
df_account_count = df_account_count.filter(" account_name is not null or account_name != 'null' ")
df_account_count = df_account_count.groupby(['search_term']) \
.agg(F.count_distinct("account_name").alias("asin_account_num"))
# 关联补入到聚合df_st_asin_agg
df_st_asin_agg = df_st_asin_agg. \
join(df_brand_count, on=['search_term'], how='left'). \
join(df_account_count, on=['search_term'], how='left')
return df_st_asin_agg
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季, 比如: 2022-1
handle_obj = DwsAbaStAnalyticsDay(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()