dws_aba_st_analytics_day.py 22.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
"""
   @Author      : HuangJian
   @Description : ABA—关键词与Asin-Asin维度预聚合中间表
   @SourceTable :
                  ①dwd_st_asin_info
                  ②dim_st_asin_info
                  ③dim_asin_detail
                  ④dim_seller_asin_info

   @SinkTable   : dws_aba_st_analytics_day
   @CreateTime  : 2022/11/21 15:56
   @UpdateTime  : 2022/11/21 15:56
"""

import os
import sys
from datetime import date, timedelta
import re
from functools import reduce

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
from pyspark.sql.types import IntegerType
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, IntegerType, DoubleType


class DwsAbaStAnalyticsDay(Templates):
    def __init__(self, site_name="us", date_type="week", date_info="2022-1"):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.db_save = f"dws_aba_st_analytics_day"
        self.spark = self.create_spark_object(app_name=f"{self.db_save} {self.site_name}, {self.date_info}")
        self.df_date = self.get_year_week_tuple()
        self.year_week = self.get_year_week()

        # 写入、分区初始化
        self.df_save = self.spark.sql(f"select 1+1;")
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        self.reset_partitions(partitions_num=10)

        # 初始化全局df
        self.df_aba_st_analytics = self.spark.sql(f"select 1+1;")
        self.df_st_asin_info = self.spark.sql(f"select 1+1;")
        self.df_asin_detail = self.spark.sql(f"select 1+1;")
        self.df_seller_asin_info = self.spark.sql(f"select 1+1;")
        self.df_st_asin_join = self.spark.sql(f"select 1+1;")
        self.df_st_asin_orders_info = self.spark.sql(f"select 1+1;")

        # 注册自定义udf函数
        self.u_year_week = self.spark.udf.register('u_year_week', self.udf_year_week, StringType())
        self.u_get_volume = self.spark.udf.register('u_get_volume', self.udf_get_volume, DoubleType())
        self.u_get_image_type = self.spark.udf.register('u_get_image_type', self.udf_get_image_type, IntegerType())
        self.u_title_contains = self.spark.udf.register('u_title_contains', self.udf_title_contains, IntegerType())

    def get_year_week(self):
        # 根据日期获取当前周
        if self.date_type == "day":
            sql = f"select year_week from dim_date_20_to_30 where `date`='{self.date_info}'"
            df = self.spark.sql(sqlQuery=sql).toPandas()
            # print(list(df.year_week)[0])
            return list(df.year_week)[0]

    @staticmethod
    def udf_year_week(dt):
        year, week = dt.split("-")[0], dt.split("-")[1]
        if int(week) < 10:
            return f"{year}-0{week}"
        else:
            return f"{year}-{week}"

    @staticmethod
    def udf_get_volume(volume):
        # print("get_volume", volume)
        volume = str(volume)
        if volume == "null":
            return 0.0
        else:
            pattern = r"\d+\.?\d*"
            volumeList = re.findall(pattern, volume)
            if len(volumeList):
                volumeList = list(map(float, volumeList))
                result = reduce((lambda x, y: x * y), volumeList)
                return result
            else:
                return 0.0

    @staticmethod
    def udf_get_image_type(type_flag, image_type):
        str_type = str(image_type)
        type_flag = str(type_flag)
        if type_flag in str_type:
            return 1
        else:
            return 0

    @staticmethod
    def udf_title_contains(search_term, title):
        if str(search_term).lower() in str(title).lower():
            return 1
        else:
            return 0

    def read_data(self):
        # 1. 获取st 销量相关dwd表
        sql = f"select search_term, asin, 2 as st_asin_zr_orders, 10 as st_asin_bs_orders from dwd_st_asin_info " \
              f" where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}' " \
              f"and st_asin_zr_page is not null"
        self.df_st_asin_orders_info = self.spark.sql(sqlQuery=sql).cache()

        # 2. 获取dwd_st_asin_info表
        sql = f"select search_term, asin,page,page_row,page_rank,data_type from dim_st_asin_info " \
              f" where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}'"
        self.df_st_asin_info = self.spark.sql(sqlQuery=sql).cache()
        # print("self.df_st_asin_info", self.df_st_asin_info.show(10, truncate=False))

        # 3. 获取asin详情基表dim_asin_detail
        sql = f"select asin,asin_title,asin_title_len,asin_total_comments,asin_price,asin_rating,asin_buy_box_seller_type," \
              f"asin_volume,asin_weight,asin_img_type,asin_brand_name,asin_is_new,asin_is_sale,asin_rank  from dim_asin_detail " \
              f" where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}'"
        self.df_asin_detail = self.spark.sql(sqlQuery=sql).cache()

        # 4. 获取商家相关信息dim_seller_asin_info
        sql = f" select asin,account_name,country_name  from dim_seller_asin_info " \
              f" where site_name = '{self.site_name}' and date_type = 'week' and date_info = '{self.year_week}' "
        self.df_seller_asin_info = self.spark.sql(sqlQuery=sql)
        self.df_seller_asin_info = self.df_seller_asin_info.drop_duplicates(['asin']).cache()
        # print("self.df_seller_asin_info", self.df_seller_asin_info.show(10, truncate=False))

    def handle_data(self):
        # 初始化表join,获取目标合并表
        self.handle_st_asin_join()

        # 将asin相关得原子指标聚合得到派生指标
        self.handle_asin_agg()


        # 处理销量、预估销量原子指标聚合
        self.handle_st_orders_agg()

        # 数据入库前的字段处理
        self.handle_column()

        print(self.df_save.columns)

    def handle_st_asin_join(self):
        self.df_st_asin_info = self.df_st_asin_info.drop_duplicates(['search_term', 'asin'])
        self.df_st_asin_join = self.df_st_asin_info.join(
            self.df_asin_detail, on='asin', how='left'
        ).join(
            self.df_seller_asin_info, on='asin', how='left'
        ).join(
            self.df_st_asin_orders_info, on=['search_term', 'asin'], how='left'
        )
        self.df_st_asin_join.cache()
        # print("df_st_asin_join", self.df_st_asin_join.show(10, truncate=False))

    def handle_asin_agg(self):
        # 加载需要参与计算的字段
        df_st_asin_agg = self.df_st_asin_join.select(
            "search_term", "asin", "page", "asin_title", "asin_title_len",
            "asin_total_comments", "asin_price", "asin_rating", "asin_volume",
            "asin_weight", "asin_buy_box_seller_type", "asin_img_type",
            "country_name", "asin_is_new", "asin_is_sale"
        )

        # 为计算指标打上统计标签,方便统计
        df_st_asin_agg = self.handle_asin_agg_flag(df_st_asin_agg)

        # 多列聚合-并更名
        df_st_asin_agg = self.handle_asin_group_agg(df_st_asin_agg)

        # 品牌,卖家数量统计
        df_st_asin_agg = self.handle_asin_agg_brand_seller(df_st_asin_agg)

        self.df_aba_st_analytics = df_st_asin_agg
        # print("df_aba_st_analytics", self.df_aba_st_analytics.show(10, truncate=False))

    def handle_st_orders_agg(self):
        # 获取计算销量所需要使用到的字段
        df_st_orders_data = self.df_st_asin_join.select(
            "search_term", "asin", "asin_is_new", "asin_brand_name", "account_name", "st_asin_zr_orders",
            "st_asin_bs_orders"
        ).cache()

        # 总销量 + 预估销量
        df_asin_bs_orders = df_st_orders_data.groupby(['search_term']).agg(
            F.sum("st_asin_bs_orders").alias("bsr_orders"))
        df_asin_zr_orders = df_st_orders_data.groupby(['search_term']).agg(F.sum("st_asin_zr_orders").alias("orders"))

        # 新品bs销量 + 预估销量
        df_asin_new_bs_orders = df_st_orders_data.filter("asin_is_new=1").groupby(['search_term']).agg(
            F.sum("st_asin_bs_orders").alias("new_asin_bsr_orders"))
        df_asin_new_zr_orders = df_st_orders_data.filter("asin_is_new=1").groupby(['search_term']).agg(
            F.sum("st_asin_zr_orders").alias("new_asin_orders"))

        # 品牌销量 + 预估销量
        df_asin_brand_bs_orders = df_st_orders_data.filter(
            "asin_brand_name != 'null' or asin_brand_name is not null").groupby(
            ['search_term', 'asin_brand_name']).agg(F.sum("st_asin_bs_orders").alias("asin_brand_bs_orders"))
        df_asin_brand_zr_orders = df_st_orders_data.filter(
            "asin_brand_name != 'null' or asin_brand_name is not null").groupby(
            ['search_term', 'asin_brand_name']).agg(F.sum("st_asin_zr_orders").alias("asin_brand_zr_orders"))

        # 品牌top3 bs销量+预估销量
        window = Window.partitionBy(["search_term"]).orderBy(
            df_asin_brand_bs_orders.asin_brand_bs_orders.asc_nulls_last()
        )
        df_asin_brand_bs_orders = df_asin_brand_bs_orders.withColumn("brand_rank", F.row_number().over(window=window))
        df_asin_brand_bs_orders = df_asin_brand_bs_orders.filter("brand_rank<=3")
        df_top3_brand_bs_total = df_asin_brand_bs_orders.groupby(["search_term"]).agg(
            F.sum("asin_brand_bs_orders").alias("top3_brand_bsr_orders"))

        window = Window.partitionBy(["search_term"]).orderBy(
            df_asin_brand_zr_orders.asin_brand_zr_orders.asc_nulls_last()
        )
        df_asin_brand_zr_orders = df_asin_brand_zr_orders.withColumn("brand_rank", F.row_number().over(window=window))
        df_asin_brand_zr_orders = df_asin_brand_zr_orders.filter("brand_rank<=3")
        df_top3_brand_zr_total = df_asin_brand_zr_orders.groupby(["search_term"]).agg(
            F.sum("asin_brand_zr_orders").alias("top3_brand_orders"))

        # 卖家销量 + 预估销量
        df_asin_seller_bs_orders = df_st_orders_data.groupby(['search_term', 'account_name']).agg(
            F.sum("st_asin_bs_orders").alias("asin_seller_bs_orders"))
        df_asin_seller_zr_orders = df_st_orders_data.groupby(['search_term', 'account_name']).agg(
            F.sum("st_asin_zr_orders").alias("asin_seller_zr_orders"))

        # 卖家top3 bs销量+预估销量
        window = Window.partitionBy(["search_term"]).orderBy(
            df_asin_seller_bs_orders.asin_seller_bs_orders.asc_nulls_last()
        )
        df_asin_seller_bs_orders = df_asin_seller_bs_orders.withColumn("seller_rank",
                                                                       F.row_number().over(window=window))
        df_asin_seller_bs_orders = df_asin_seller_bs_orders.filter("seller_rank<=3")
        df_top3_seller_bs_total = df_asin_seller_bs_orders.groupby(["search_term"]).agg(
            F.sum("asin_seller_bs_orders").alias("top3_seller_bsr_orders"))
        window = Window.partitionBy(["search_term"]).orderBy(
            df_asin_seller_zr_orders.asin_seller_zr_orders.asc_nulls_last()
        )
        df_asin_seller_zr_orders = df_asin_seller_zr_orders.withColumn("seller_rank",
                                                                       F.row_number().over(window=window))
        df_asin_seller_zr_orders = df_asin_seller_zr_orders.filter("seller_rank<=3")
        df_top3_seller_zr_total = df_asin_seller_zr_orders.groupby(["search_term"]).agg(
            F.sum("asin_seller_zr_orders").alias("top3_seller_orders"))

        # 关联销量各项指标
        self.df_aba_st_analytics = self.df_aba_st_analytics. \
            join(df_asin_bs_orders, on=['search_term'], how='left'). \
            join(df_asin_zr_orders, on=['search_term'], how='left'). \
            join(df_asin_new_bs_orders, on=['search_term'], how='left'). \
            join(df_asin_new_zr_orders, on=['search_term'], how='left'). \
            join(df_top3_brand_bs_total, on=['search_term'], how='left'). \
            join(df_top3_brand_zr_total, on=['search_term'], how='left'). \
            join(df_top3_seller_bs_total, on=['search_term'], how='left'). \
            join(df_top3_seller_zr_total, on=['search_term'], how='left')

    def handle_column(self):
        # 测试用字段填充
        self.df_aba_st_analytics = self.df_aba_st_analytics.withColumn("st_num", F.lit(1))
        self.df_aba_st_analytics = self.df_aba_st_analytics.withColumn("quantity_being_sold", F.lit(999))
        self.df_aba_st_analytics = self.df_aba_st_analytics.withColumn("search_volume", F.lit(999))
        self.df_aba_st_analytics = self.df_aba_st_analytics.withColumn("st_adv_num", F.lit(999))
        self.df_aba_st_analytics = self.df_aba_st_analytics.withColumn("st_zr_num", F.lit(999))

        # 列选择
        self.df_save = self.df_aba_st_analytics.select(
             "search_term", "st_num", "orders", "bsr_orders", "search_volume", "quantity_being_sold",
             "new_asin_num", "total_asin_num", "new_asin_orders", "new_asin_bsr_orders", "st_adv_num",
             "st_zr_num", "title_st_one_num", "title_page_one_total", "asin_price_total", "having_price_num",
             "asin_comment_total", "having_comment_num", "asin_rating_total", "having_rating_num", "asin_weight_total",
             "having_weight_num", "asin_volume_total", "having_volume_num", "asin_title_len_total", "having_title_num",
             "is_A_num", "is_video_num", "is_FBM_num", "is_CN_num", "is_Amazon_num", "asin_brand_num",
             "asin_account_num", "top3_seller_orders", "top3_seller_bsr_orders", "top3_brand_orders",
             "top3_brand_bsr_orders"
             )

        # 空值处理
        self.df_save = self.df_save.na.fill(
            {
                "search_term": 0, "st_num": 0, "orders": 0, "bsr_orders": 0, "search_volume": 0,
                "quantity_being_sold": 0, "new_asin_num": 0, "total_asin_num": 0, "new_asin_orders": 0,
                "new_asin_bsr_orders": 0, "st_adv_num": 0, "st_zr_num": 0, "title_st_one_num": 0,
                "title_page_one_total": 0, "asin_price_total": 0, "having_price_num": 0, "asin_comment_total": 0,
                "having_comment_num": 0, "asin_rating_total": 0, "having_rating_num": 0, "asin_weight_total": 0,
                "having_weight_num": 0, "asin_volume_total": 0, "having_volume_num": 0, "asin_title_len_total": 0,
                "having_title_num": 0, "is_A_num": 0, "is_video_num": 0, "is_FBM_num": 0, "is_CN_num": 0,
                "is_Amazon_num": 0, "asin_brand_num": 0, "asin_account_num": 0, "top3_seller_orders": 0,
                "top3_seller_bsr_orders": 0, "top3_brand_orders": 0, "top3_brand_bsr_orders": 0

            })

        # 预留字段补全
        self.df_save = self.df_save.withColumn("re_double_field1", F.lit(0.0))
        self.df_save = self.df_save.withColumn("re_double_field2", F.lit(0.0))
        self.df_save = self.df_save.withColumn("re_double_field3", F.lit(0.0))
        self.df_save = self.df_save.withColumn("re_int_field1", F.lit(0))
        self.df_save = self.df_save.withColumn("re_int_field2", F.lit(0))
        self.df_save = self.df_save.withColumn("re_int_field3", F.lit(0))

        # 分区字段补全
        self.df_save = self.df_save.withColumn("site_name", F.lit(self.site_name))
        self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
        self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info))

    def handle_asin_agg_flag(self, df_st_asin_agg):
        # 为统计指标打上标签方便计算
        # asin标题在关键词第一页数量
        df_st_asin_agg = df_st_asin_agg.withColumn("title_st_one_flag", F.when(F.col("page") == 1,
                                                                               self.u_title_contains(
                                                                                   F.col("search_term"),
                                                                                   F.col("asin_title"))).
                                                   otherwise(F.lit(0)))

        # A+产品标签
        df_st_asin_agg = df_st_asin_agg.withColumn("is_A_flag",
                                                   self.u_get_image_type(F.lit('3'), F.col("asin_img_type")))
        # 视频产品标签
        df_st_asin_agg = df_st_asin_agg.withColumn("is_video_flag",
                                                   self.u_get_image_type(F.lit('2'), F.col("asin_img_type")))
        # FBM产品标签
        df_st_asin_agg = df_st_asin_agg.withColumn("is_FBM_flag",
                                                   F.when(F.col("asin_buy_box_seller_type") == 3, F.lit(1)).otherwise(
                                                       F.lit(0)))
        # Amazon自营产品标签
        df_st_asin_agg = df_st_asin_agg.withColumn("is_Amazon_flag",
                                                   F.when(F.col("asin_buy_box_seller_type") == 1, F.lit(1)).otherwise(
                                                       F.lit(0)))
        # 中国卖家标签
        df_st_asin_agg = df_st_asin_agg.withColumn("is_CN_flag",
                                                   F.when(F.col("country_name") == 'CN', F.lit(1)).otherwise(F.lit(0)))
        # asin体积从5.12"D x 6.69"W x 1.38"H中提取并计算计算
        df_st_asin_agg = df_st_asin_agg.withColumn("asin_volume_val", self.u_get_volume(F.col("asin_volume")))
        # 是否新品统计标签
        df_st_asin_agg = df_st_asin_agg.withColumn("asin_is_new_flag",
                                                   F.when(F.col("asin_is_new") == 1, F.lit(1)).otherwise(F.lit(0)))
        # 第一页标题得统计标签
        df_st_asin_agg = df_st_asin_agg.withColumn("title_page_one_flag",
                                                   F.when((F.col("page") == 1) & (F.col("asin_title_len") > 0.0),
                                                          F.lit(1)).otherwise(F.lit(0)))
        # 计算 售价、分数、星级、重量、体积、标题 统计分母(为保证不扩大误差,匹配上以上数据且数值>0的方为计数分母)
        df_st_asin_agg = df_st_asin_agg.withColumn("price_flag",
                                                   F.when(F.col("asin_price") > 0.0, F.lit(1)).otherwise(F.lit(0)))
        df_st_asin_agg = df_st_asin_agg.withColumn("rating_flag",
                                                   F.when(F.col("asin_rating") > 0.0, F.lit(1)).otherwise(F.lit(0)))
        df_st_asin_agg = df_st_asin_agg.withColumn("weight_flag",
                                                   F.when(F.col("asin_weight") > 0.0, F.lit(1)).otherwise(F.lit(0)))
        df_st_asin_agg = df_st_asin_agg.withColumn("comments_flag",
                                                   F.when(F.col("asin_total_comments") > 0.0, F.lit(1)).otherwise(
                                                       F.lit(0)))
        df_st_asin_agg = df_st_asin_agg.withColumn("volume_flag",
                                                   F.when(F.col("asin_volume_val") > 0.0, F.lit(1)).otherwise(F.lit(0)))
        # 统计有asin标题标签
        df_st_asin_agg = df_st_asin_agg.withColumn("title_flag",
                                                   F.when(F.col("asin_title_len") > 0.0, F.lit(1)).otherwise(F.lit(0)))

        return df_st_asin_agg

    def handle_asin_group_agg(self, df_st_asin_agg):
        # 将统计好的flag聚合得到计算聚合总数和数量
        df_st_asin_agg = df_st_asin_agg.groupby(['search_term']) \
            .agg(
            F.count("asin").alias("total_asin_num"),
            F.sum("asin_title_len").alias("asin_title_len_total"),
            F.sum("asin_total_comments").alias("asin_comment_total"),
            F.sum("asin_price").alias("asin_price_total"),
            F.sum("asin_rating").alias("asin_rating_total"),
            F.sum("asin_volume_val").alias("asin_volume_total"),
            F.sum("asin_weight").alias("asin_weight_total"),
            F.sum("is_A_flag").alias("is_A_num"),
            F.sum("is_video_flag").alias("is_video_num"),
            F.sum("is_FBM_flag").alias("is_FBM_num"),
            F.sum("is_Amazon_flag").alias("is_Amazon_num"),
            F.sum("is_CN_flag").alias("is_CN_num"),
            F.sum("title_st_one_flag").alias("title_st_one_num"),
            F.sum("asin_is_new_flag").alias("new_asin_num"),
            F.sum("title_page_one_flag").alias("title_page_one_total"),
            F.sum("price_flag").alias("having_price_num"),
            F.sum("rating_flag").alias("having_rating_num"),
            F.sum("weight_flag").alias("having_weight_num"),
            F.sum("comments_flag").alias("having_comment_num"),
            F.sum("volume_flag").alias("having_volume_num"),
            F.sum("title_flag").alias("having_title_num")
        )
        return df_st_asin_agg

    def handle_asin_agg_brand_seller(self, df_st_asin_agg):
        # 品牌数量
        df_brand_count = self.df_st_asin_join.select("search_term", "asin_brand_name")
        df_brand_count = df_brand_count.filter(" asin_brand_name is not null or asin_brand_name != 'null' ")
        df_brand_count = df_brand_count.groupby(['search_term']) \
            .agg(F.count_distinct("asin_brand_name").alias("asin_brand_num"))

        # 卖家数量
        df_account_count = self.df_st_asin_join.select("search_term", "account_name")
        df_account_count = df_account_count.filter(" account_name is not null or account_name != 'null' ")
        df_account_count = df_account_count.groupby(['search_term']) \
            .agg(F.count_distinct("account_name").alias("asin_account_num"))
        # 关联补入到聚合df_st_asin_agg
        df_st_asin_agg = df_st_asin_agg. \
            join(df_brand_count, on=['search_term'], how='left'). \
            join(df_account_count, on=['search_term'], how='left')
        return df_st_asin_agg


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季, 比如: 2022-1
    handle_obj = DwsAbaStAnalyticsDay(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()