dws_st_theme.py 18.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
import os
import sys
import re

sys.path.append(os.path.dirname(sys.path[0]))
from pyspark.sql.types import StringType, MapType, IntegerType, ArrayType
from utils.common_util import CommonUtil
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from utils.db_util import DBUtil
from pyspark.sql import functions as F
from yswg_utils.common_udf import udf_handle_string_null_value
from utils.templates import Templates


class DwsStTheme(Templates):
    def __init__(self, site_name, date_type, date_info):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        app_name = f"{self.__class__.__name__}:{site_name},{date_type},{date_info}"
        self.spark = SparkUtil.get_spark_session(app_name)
        self.db_save = "dws_st_theme"
        self.partition_dict = {
            "site_name": site_name,
            "date_type": date_type,
            "date_info": date_info
        }
        hdfs_path = CommonUtil.build_hdfs_path(self.db_save, partition_dict=self.partition_dict)
        print(f"清除hdfs目录中:{hdfs_path}")
        HdfsUtils.delete_file_in_folder(hdfs_path)
        self.partitions_by = ["site_name", "date_type", "date_info"]
        self.reset_partitions(1)

        # 全局df初始化
        self.df_st_asin_info = self.spark.sql(f"select 1+1;")
        self.df_st_detail = self.spark.sql(f"select 1+1;")
        self.df_st_key = self.spark.sql(f"select 1+1;")
        self.df_theme = self.spark.sql(f"select 1+1;")
        self.df_st_base = self.spark.sql(f"select 1+1;")
        self.df_st_theme = self.spark.sql(f"select 1+1;")
        self.df_st_theme_vertical = self.spark.sql(f"select 1+1;")
        self.df_st_save = self.spark.sql(f"select 1+1;")
        self.df_st_topic_base = self.spark.sql(f"select 1+1;")
        self.df_st_match_topic_detail = self.spark.sql(f"select 1+1;")
        self.df_save = self.spark.sql(f"select 1+1;")
        self.topic_rules_regexp_dict = self.create_regexp_rules()

        # 注册自定义函数 (UDF)
        self.u_theme_contain_judge = F.udf(self.u_theme_contain_judge, IntegerType())
        self.u_handle_string_null_value = F.udf(udf_handle_string_null_value, StringType())

    @staticmethod
    def parse_ele_match_regexp(pattern):
        def udf_ele_mattch(match_text):
            ele_list = re.findall(pattern, match_text)
            if ele_list:
                return ','.join(set(ele_list))
            else:
                return None

        return F.udf(udf_ele_mattch, StringType())

    # 通过主题正则关系表拼接正则规范--汪瑞
    @staticmethod
    def create_regexp_rules():
        theme_rules_regexp_dict = {}
        engine = DBUtil.get_db_engine('mysql', 'us')
        rules_sql = f"""
                       select theme_ch,regular_expression_type, GROUP_CONCAT(label_en_lower) as key_list from aba_match_theme_rules group by theme_ch, regular_expression_type;
                   """
        with engine.connect() as connect:
            rules_result = connect.execute(rules_sql)
            for rules_row in rules_result:
                if rules_row.regular_expression_type == 0:
                    regexp_str = r"(?<!\+|\*|\-|\%|\.|\')\b(" + "|".join(str(rules_row.key_list).split(',')) + r")\b"
                elif rules_row.regular_expression_type == 1:
                    regexp_str = r"(\d+(?:\.\d+)?) +(" + "|".join(str(rules_row.key_list).split(',')) + r")\b"
                elif rules_row.regular_expression_type == 2:
                    regexp_str = r"\b(" + "|".join(str(rules_row.key_list).split(',')) + r") +(\d+(?:\.\d+)?)"
                elif rules_row.regular_expression_type == 3:
                    regexp_str = r"(\d+(?:\.\d+)?)(" + "|".join(str(rules_row.key_list).split(',')) + r")\b"
                elif rules_row.regular_expression_type == 4:
                    regexp_str = r"(\d+(?:\.\d+)?) *(" + "|".join(
                        str(rules_row.key_list).split(',')) + r") *(\d+(?:\.\d+)?)(?: |$)"
                elif rules_row.regular_expression_type == 5:
                    regexp_str = r"(\d+(?:\.\d+)?) *(-) *(\d+(?:\.\d+)?) *(" + "|".join(
                        str(rules_row.key_list).split(',')) + r")\b"
                else:
                    regexp_str = r"\b(" + "|".join(
                        str(rules_row.key_list).split(',')) + r") +(\d+(?:\.\d+)?) *(-) *(\d+(?:\.\d+)?)"
                if rules_row.theme_ch in theme_rules_regexp_dict:
                    rules_list = theme_rules_regexp_dict.get(rules_row.theme_ch)
                    rules_list.append(regexp_str)
                    theme_rules_regexp_dict[rules_row.theme_ch] = rules_list
                else:
                    rules_list = []
                    rules_list.append(regexp_str)
                    theme_rules_regexp_dict[rules_row.theme_ch] = rules_list
            rules_list = theme_rules_regexp_dict['尺寸']
            rules_list.append(r'\b(\d+) *(\'\')')
        connect.close()
        return theme_rules_regexp_dict

    @staticmethod
    def parse_search_term_theme(topic_rules_regexp_dict):
        def parse_theme(search_term):
            if len(topic_rules_regexp_dict) > 0:
                matches_map = {}
                for theme_rule in topic_rules_regexp_dict.keys():
                    matches_list = []
                    rules_regexp_list = topic_rules_regexp_dict[theme_rule]
                    for rules_regexp in rules_regexp_list:
                        matches = re.findall(rules_regexp, search_term, re.IGNORECASE)
                        if len(matches) > 0:
                            matches_list.append(matches[0])
                    if len(matches_list) > 0:
                        matches_map[theme_rule] = matches_list
                if len(matches_map) > 0:
                    theme_array = []
                    for theme_rule in matches_map.keys():
                        matches_list = matches_map[theme_rule]
                        for target_matches in matches_list:
                            num_info = ""
                            unit_info = ""
                            num_pattern = r'^\d+(\.\d+)?$'
                            # target_matches = max(matches_list, key=len)
                            if isinstance(target_matches, tuple):
                                match_low = [match.lower() for match in target_matches]
                            else:
                                match_low = target_matches
                            if isinstance(match_low, str):
                                unit_info = match_low
                            else:
                                if len(match_low) == 2:
                                    if re.match(num_pattern, str(match_low[0])):
                                        num_info = match_low[0]
                                        unit_info = match_low[1]
                                    else:
                                        num_info = match_low[1]
                                        unit_info = match_low[0]
                                elif len(match_low) == 3:
                                    num_info = "".join(match_low)
                                    unit_info = match_low[1]
                                elif len(match_low) == 4:
                                    if re.match(num_pattern, str(match_low[0])):
                                        num_info = "".join(match_low[0:3])
                                        unit_info = match_low[3]
                                    else:
                                        unit_info = match_low[0]
                                        num_info = "".join(match_low[1:4])
                            theme_array.append(
                                {"theme": str(theme_rule), "num_info": str(num_info), "unit_info": str(unit_info)})
                    return theme_array

        return F.udf(parse_theme, ArrayType(MapType(StringType(), StringType())))

    @staticmethod
    def u_theme_contain_judge(pattern_word, pattern_list):
        num_pattern = r'^\d'
        pattern_flag = bool(re.match(num_pattern, pattern_word))
        count = 0
        if not pattern_flag:
            count = sum(1 for word in pattern_list if re.search(r'\b{}\b'.format(re.escape(pattern_word)), word))
        # 如果匹配到的pattern_word大于1则说明有已经匹配过的单词
        return 0 if count > 1 else 1

    def read_data(self):
        sql1 = f"""
            select 
                search_term
            from dim_st_asin_info
            where site_name = '{site_name}'
            and date_type = '{date_type}'
            and date_info = '{date_info}';
        """
        print("sql:", sql1)
        self.df_st_asin_info = self.spark.sql(sql1).repartition(40, 'search_term').cache()

        sql2 = f"""
            select 
                search_term
            from dim_st_detail
            where site_name = '{site_name}'
            and date_type = '{date_type}'
            and date_info = '{date_info}';
        """
        print("sql:", sql2)
        self.df_st_detail = self.spark.sql(sql2).repartition(40, 'search_term').cache()

        sql3 = f"""
            select 
                st_key,
                search_term
            from ods_st_key
            where site_name = '{site_name}';
        """
        print("sql:", sql3)
        self.df_st_key = self.spark.sql(sql3).repartition(40, 'search_term').cache()

        # 获取主题词
        sql4 = f"""
            select 
                theme_en,
                theme_ch,
                label_ch,
                label_en_lower 
            from selection.aba_match_theme 
            where label_ch is not null
        """
        print("sql:", sql4)
        conn_info = DBUtil.get_connection_info("mysql", "us")
        self.df_theme = SparkUtil.read_jdbc_query(
            session=self.spark,
            url=conn_info["url"],
            pwd=conn_info["pwd"],
            username=conn_info["username"],
            query=sql4
        ).cache()

    def handle_data(self):
        self.handle_base()
        self.handle_st_theme()
        self.match_st_topic()
        self.match_search_term_ch_unit()
        self.handle_contains_theme()
        self.handle_save()

    # 去重处理
    def handle_base(self):
        self.df_st_base = self.df_st_asin_info.unionByName(
            self.df_st_detail
        ).drop_duplicates(['search_term'])
        self.df_st_base = self.df_st_base.join(
            self.df_st_key, on='search_term', how='inner'
        ).cache()

    # 给每个搜索词打上主题标签
    def handle_st_theme(self):
        pdf_theme = self.df_theme.toPandas()
        theme_list = list(set(pdf_theme.label_en_lower))
        pattern = re.compile(r'(?<!\+|\*|\-|\%|\.|\')\b({})\b'.format('|'.join([re.escape(x) for x in theme_list])),
                             flags=re.IGNORECASE)
        self.df_st_theme = self.df_st_base.withColumn(
            "theme_en_pattern_str",
            self.parse_ele_match_regexp(pattern)(F.col("search_term"))
        )
        # 将匹配到的字符串拆分成list
        self.df_st_theme = self.df_st_theme.withColumn(
            "label_en_lower_list",
            F.split(F.col("theme_en_pattern_str"), ",")
        )
        # 对list进行explode炸裂,转换成多行数据
        self.df_st_theme = self.df_st_theme.withColumn(
            "label_en_lower",
            F.explode(F.col("label_en_lower_list"))
        )
        self.df_st_theme = self.df_st_theme.select(
            'st_key', 'search_term', 'label_en_lower'
        )
        # 进行主题补回,根据匹配词(label_en_lower)关联
        self.df_st_theme = self.df_st_theme.join(
            self.df_theme, on=['label_en_lower'], how='left'
        )

        self.df_st_theme_vertical = self.df_st_theme.drop_duplicates(['st_key', 'search_term', 'theme_en', 'label_ch'])
        self.df_st_theme_vertical = self.df_st_theme_vertical.filter('theme_en is not null')
        self.df_st_theme_vertical = self.df_st_theme_vertical.select(
            F.col('st_key'),
            F.col('search_term'),
            F.col('theme_ch'),
            F.col('theme_en'),
            F.col('label_ch').alias('theme_label_ch'),
            F.col('label_en_lower').alias('theme_label_en'),
            F.lit(0).alias('pattern_type'),
            F.lit(None).alias('theme_label_num_info'),
            F.lit(None).alias('theme_label_unit_info')
        )

    # 通过正则规则匹配搜索词
    def match_st_topic(self):
        self.df_st_topic_base = self.df_st_base.withColumn(
            "all_theme_field",
            F.explode(self.parse_search_term_theme(self.topic_rules_regexp_dict)(F.col("search_term")))
        ).withColumn(
            "theme",
            F.col("all_theme_field").getItem("theme")
        ).withColumn(
            "num_info",
            F.col("all_theme_field").getItem("num_info")
        ).withColumn(
            "unit_info",
            F.col("all_theme_field").getItem("unit_info")
        ).drop("all_theme_field")

    # 通过正则匹配结果拿回中文单位信息
    def match_search_term_ch_unit(self):
        df_st_mate = self.df_st_topic_base.filter(
            ~(F.col("num_info").isNull() & (F.col("num_info") == "") &
              F.col("unit_info").isNull() & (F.col("unit_info") == ""))
        )
        df_st_no_num = df_st_mate.filter(F.col("num_info") == '')
        df_st_with_num = df_st_mate.exceptAll(df_st_no_num)
        key_word_in_theme_info_sql = f"""
            select
            theme_ch as theme, 
            theme_en, 
            label_en_lower as unit_info,
            label_ch 
            from aba_match_theme_rules 
            where regular_expression_type = 0
        """
        key_word_with_num_in_theme_info_sql = f"""
            select 
            theme_ch as theme, 
            theme_en, 
            label_en_lower as unit_info,
            label_ch 
            from aba_match_theme_rules 
            where regular_expression_type != 0 
            group by theme_ch, theme_en, label_en_lower, label_ch
        """
        con_info = DBUtil.get_connection_info('mysql', 'us')
        if con_info is not None:
            df_key_word_in_theme = SparkUtil.read_jdbc_query(
                session=self.spark, url=con_info['url'],
                pwd=con_info['pwd'],
                username=con_info['username'],
                query=key_word_in_theme_info_sql
            )
            df_key_word_with_num_in_theme = SparkUtil.read_jdbc_query(
                session=self.spark, url=con_info['url'],
                pwd=con_info['pwd'],
                username=con_info['username'],
                query=key_word_with_num_in_theme_info_sql
            )
            df_st_no_num = df_st_no_num.join(
                df_key_word_in_theme, how='inner', on=['theme', 'unit_info']
            )
            df_st_with_num = df_st_with_num.join(
                df_key_word_with_num_in_theme, how='inner', on=['theme', 'unit_info']
            )
            self.df_st_match_topic_detail = df_st_no_num.unionByName(df_st_with_num)

            self.df_st_match_topic_detail = self.df_st_match_topic_detail.select(
                F.col('st_key'),
                F.col('search_term'),
                F.col('theme').alias('theme_ch'),
                F.col('theme_en'),
                F.col('label_ch').alias('theme_label_ch'),
                F.when(
                    F.col('num_info') == '', F.col('unit_info')
                ).when(
                    (F.col('unit_info') == 'x') | (F.col('unit_info') == 'by'), F.col('num_info')
                ).when(
                    (F.col("num_info") != '') & (F.col("unit_info") != '') &
                    (F.col("unit_info") != 'x') & (F.col("unit_info") != 'by'),
                    F.concat_ws(' ', F.col("num_info"), F.col("unit_info"))
                ).alias('theme_label_en'),
                F.lit(1).alias('pattern_type'),
                F.col('num_info').alias('theme_label_num_info'),
                F.col('unit_info').alias('theme_label_unit_info')
            )

    def handle_contains_theme(self):
        # 处理ab词包含关系的匹配
        df_st_join = self.df_st_theme_vertical.unionByName(self.df_st_match_topic_detail)
        df_st_join = df_st_join.filter(' theme_label_en is not null ')
        # 处理AB匹配词
        df_st_pattern_list = df_st_join.groupBy(['st_key', 'search_term']).agg(
            F.collect_list("theme_label_en").alias("pattern_label_list")
        )
        df_st_join = df_st_join.join(
            df_st_pattern_list, on=['st_key', 'search_term'], how='left'
        )

        # 自定义方法判断是否包含多个匹配词,打上标记标签
        df_st_join = df_st_join.withColumn(
            'pattern_flag',
            self.u_theme_contain_judge(F.col('theme_label_en'), F.col('pattern_label_list'))
        ).drop('pattern_label_list')

        # 过滤掉为0的数据(即已经被ab词匹配过的那些a词和b词)
        self.df_save = df_st_join.filter('pattern_flag = 1')

    def handle_save(self):
        self.df_save = self.df_save.select(
            F.col('st_key'),
            F.col('search_term'),
            F.col('theme_ch'),
            F.col('theme_en'),
            F.col('theme_label_ch'),
            F.col('theme_label_en'),
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('created_time'),
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('updated_time'),
            F.col('pattern_type'),
            self.u_handle_string_null_value(F.col('theme_label_num_info')).alias('theme_label_num_info'),
            F.col('theme_label_unit_info'),
            F.lit(self.site_name).alias('site_name'),
            F.lit(self.date_type).alias('date_type'),
            F.lit(self.date_info).alias('date_info')
        )


if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)
    date_type = CommonUtil.get_sys_arg(2, None)
    date_info = CommonUtil.get_sys_arg(3, None)
    assert site_name is not None, "site_name 不能为空!"
    assert date_type is not None, "date_type 不能为空!"
    assert date_info is not None, "date_info 不能为空!"
    handle_obj = DwsStTheme(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()