1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import sys
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
from pyspark.sql import functions as F
class DwtAbaKeywordAnalytics(Templates):
def __init__(self, site_name='us', date_type="month", date_info='2023-10'):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save = f'dwt_aba_keyword_analytics'
self.spark = self.create_spark_object(
app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}")
self.reset_partitions(partitions_num=10)
self.partitions_by = ['site_name', 'date_type', 'date_info']
self.df_aba = self.spark.sql(f"select 1+1;")
self.df_keyword = self.spark.sql(f"select 1+1;")
self.df_save = self.spark.sql(f"select 1+1;")
def read_data(self):
sql1 = f"""
select
id,
search_term,
rank,
category_id,
orders,
bsr_orders,
search_volume,
quantity_being_sold,
st_ao_avg,
st_ao_val_rate,
new_bsr_orders_proportion,
new_asin_proportion,
page1_title_proportion,
price_avg,
total_comments_avg,
rating_avg,
weight_avg,
volume_avg,
title_length_avg,
st_num,
aadd_proportion,
sp_proportion,
fbm_proportion,
cn_proportion,
amzon_proportion,
most_proportion,
max_num,
asin1,
asin2,
asin3,
click_share1,
click_share2,
click_share3,
total_click_share,
conversion_share1,
conversion_share2,
conversion_share3,
total_conversion_share,
new_asin_num,
total_asin_num,
new_asin_orders,
new_asin_bsr_orders,
is_first_text,
is_ascending_text,
is_search_text,
top3_seller_orders,
top3_seller_bsr_orders,
top3_brand_orders,
top3_brand_bsr_orders,
page3_brand_num,
page3_seller_num,
brand_monopoly,
seller_monopoly,
max_num_asin,
is_self_max_num_asin,
is_new_market_segment,
created_time,
updated_time,
color_proportion,
gross_profit_fee_air,
gross_profit_fee_sea,
re_string_field1,
re_string_field2,
re_string_field3,
category_current_id,
re_int_field2,
re_int_field3,
supply_demand,
market_cycle_type,
multi_color_proportion,
multi_size_proportion,
st_4_20_ao_avg,
st_4_20_ao_rate,
asin_aadd_count,
asin_video_count,
asin_fbm_count,
asin_cn_count,
asin_amazon_count,
asin_color_count,
asin_multi_color_count,
asin_multi_size_count,
st_word_num,
re_string_field4,
st_movie_label,
st_brand_label,
st_brand1,
st_category1,
st_brand2,
st_category2,
st_brand3,
st_category3,
st_bsr_cate_1_id_new,
st_bsr_cate_current_id_new,
st_crawl_date,
is_high_return_text,
st_zr_page123_title_appear_rate,
st_sp_page123_title_appear_rate,
st_competition_level
from
dwt_aba_st_analytics
where
site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}';
"""
print(sql1)
self.df_aba = self.spark.sql(sqlQuery=sql1).cache()
sql2 = f"""
select
keywordText as search_term,
keywordText,
matchType
from
ods_adv_keyword
where
site_name = '{self.site_name}'
group by keywordText, matchType;
"""
print(sql2)
self.df_keyword = self.spark.sql(sqlQuery=sql2).cache()
def handle_data(self):
self.df_save = self.df_aba.join(self.df_keyword, 'search_term', 'inner')
print(self.site_name, self.date_type, self.date_info)
# 填充分区字段
self.df_save = self.df_save.withColumn("site_name", F.lit(self.site_name))
self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info))
self.df_save.show(10)
if __name__ == '__main__':
site_name = sys.argv[1]
date_type = sys.argv[2]
date_info = sys.argv[3]
handle_obj = DwtAbaKeywordAnalytics(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()