dim_asin_stable_info.py 27.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
import os
import re
import sys

os.environ["PYARROW_IGNORE_TIMEZONE"] = "1"
sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
from pyspark.sql.types import StringType, BooleanType, StructType, StructField, DoubleType, FloatType

# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from yswg_utils.common_udf import parse_weight_str


class DimAsinStableInfo(Templates):

    def __init__(self, site_name='us'):
        super().__init__()
        self.site_name = site_name
        self.db_save = f'dim_asin_stable_info'
        self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}")
        self.df_asin_detail = self.spark.sql(f"select 1+1;")
        self.df_theme = self.spark.sql(f"select 1+1;")
        self.df_asin_img_url = self.spark.sql(f"select 1+1;")
        self.df_asin_title = self.spark.sql(f"select 1+1;")
        self.df_asin_weight = self.spark.sql(f"select 1+1;")
        self.df_asin_weight_new = self.spark.sql(f"select 1+1;")
        self.df_asin_weight_old = self.spark.sql(f"select 1+1;")
        self.df_asin_volume = self.spark.sql(f"select 1+1;")
        self.df_save = self.spark.sql(f"select 1+1;")
        self.df_save_std = self.spark.sql(f"select * from ods_search_term_zr limit 0;")
        self.partitions_by = ['site_name']
        self.reset_partitions(100)
        self.window = Window.partitionBy(['asin']).orderBy(F.desc("date_info"))  # 按照 date_info 列进行分区,并按照 date 列进行排序
        # self.window = Window.partitionBy(['asin']).orderBy(F.desc("created_time"))  # 按照 date_info 列进行分区,并按照 date 列进行排序

        schema = StructType([
            StructField('weight', FloatType(), True),
            StructField('weight_type', StringType(), True),
        ])
        self.u_get_weight = F.udf(parse_weight_str, schema)
        self.weight_type = 'pounds' if site_name == 'us' else 'grams'

        self.db_save_vertical = f'dim_asin_title_info_vertical'  # 主题竖表

        # 注册自定义函数 (UDF)
        self.u_contains_digit_udf = F.udf(self.udf_contains_digit, BooleanType())
        self.u_asin_volume_type = F.udf(self.udf_asin_volume_type, StringType())
        # 定义 UDF 的返回类型,即一个包含三个 DoubleType 字段的 StructType
        schema = StructType([
            StructField('length', DoubleType(), True),
            StructField('width', DoubleType(), True),
            StructField('height', DoubleType(), True)
        ])
        self.u_extract_dimensions = F.udf(self.udf_extract_dimensions, schema)
        self.u_extract_dimensions_others = F.udf(self.udf_extract_dimensions_others, schema)
        schema = StructType([
            StructField('asin_length', StringType(), True),
            StructField('asin_width', StringType(), True),
            StructField('asin_height', StringType(), True)
        ])
        self.u_volume_sorted = F.udf(self.udf_volume_sorted, schema)

        # 注册自定义函数 (UDF)
        self.u_theme_pattern = F.udf(self.udf_theme_pattern, StringType())
        # 其他变量
        # self.pattern = str()  # 正则匹配
        self.theme_list_str = str()  # 正则匹配

    @staticmethod
    def udf_theme_pattern(title, theme_list_str):
        found_themes = [theme.strip() for theme in eval(theme_list_str) if theme in title]
        if found_themes:
            return ','.join(set(found_themes))
        else:
            return None

    # 定义一个函数,检查字符串中是否包含数字
    @staticmethod
    def udf_contains_digit(s):
        # return any(char.isdigit() for char in s)

        if s is None:
            return False
        return any(char.isdigit() for char in s)

    # 定义一个函数,将asin_volume进行分类
    @staticmethod
    def udf_asin_volume_type(x):
        # pattern = r'\b\w+\b'
        pattern = r'[a-z]+'
        matches = re.findall(pattern, x)

        # 使用集合存储匹配的单词
        type_set = set()
        for word in matches:
            if word in ['inches', 'inch']:
                type_set.add('inches')
            elif word in ['cm', 'centímetros', 'centimetres']:
                type_set.add('cm')
            elif word in ['milímetros', 'millimeter', 'mm']:
                type_set.add('mm')
            elif word in ['metros']:
                type_set.add('m')

        # 根据集合的长度返回结果
        if len(type_set) == 1:
            return list(type_set)[0]
        elif len(type_set) >= 2:
            return ','.join(type_set)
        else:
            return 'none'

    @staticmethod
    def udf_extract_dimensions(volume_str, asin_volume_type):
        length, width, height = None, None, None
        dimensions = []
        if asin_volume_type == 'cm,inches':
            num_inches = volume_str.find('inch')
            num_cm = volume_str.find('cm')
            volume_str = volume_str[:num_inches] if num_cm > num_inches else volume_str[num_cm:num_inches]
        dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str)
        dimensions = [float(dim[0]) for dim in dimensions]
        # if asin_volume_type == 'inches':
        #     dimensions = volume_str.split(' x ')
        #     dimensions = [dim.split()[0] for dim in dimensions]
        #     dimensions = [float(dim) if dim.replace('.', '', 1).isdigit() else None for dim in dimensions]
        # else:
        #     if asin_volume_type == 'cm,inches':
        #         # 保留inches
        #         num_inches = volume_str.find('inch')
        #         num_cm = volume_str.find('cm')
        #         volume_str = volume_str[:num_inches] if num_cm > num_inches else volume_str[num_cm:num_inches]
        #
        #     dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str)
        #     dimensions = [float(dim[0]) for dim in dimensions]

        if len(dimensions) == 1:
            length = dimensions[0]
        elif len(dimensions) == 2:
            if asin_volume_type == 'none':
                if "l" in volume_str and "w" in volume_str:
                    length, width = dimensions
                elif "w" in volume_str and "h" in volume_str:
                    width, height = dimensions
                elif "l" in volume_str and "h" in volume_str:
                    length, height = dimensions
                elif "d" in volume_str and "w" in volume_str:
                    length, width = dimensions
                elif "d" in volume_str and "h" in volume_str:
                    length, height = dimensions
            else:
                length, width = dimensions
        elif len(dimensions) == 3:
            length, width, height = dimensions
        elif len(dimensions) >= 4:
            length, width, height = dimensions[:3]
        return (length, width, height)

    @staticmethod
    def udf_extract_dimensions_others(volume_str, asin_volume_type):
        length, width, height = None, None, None
        if asin_volume_type == 'cm':
            dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str)
            dimensions = [float(dim[0]) for dim in dimensions]
            if len(dimensions) == 1:
                length = dimensions[0]
            elif len(dimensions) == 2:
                length = dimensions[0]
                width = dimensions[1]
            elif len(dimensions) >= 3:
                length, width, height = dimensions[:3]
        return (length, width, height)

    @staticmethod
    def udf_volume_sorted(asin_length, asin_weight, asin_height):
        # 如果输入数据中有None,替换为0
        dimensions = [0 if x is None else x for x in [asin_length, asin_weight, asin_height]]
        # 对数据进行排序
        dimensions.sort(reverse=True)
        return tuple(dimensions)

    def sort_by_latest(self, df):
        df = df.withColumn('row_number', F.row_number().over(self.window))  # 使用窗口函数为每个分区的行编号
        df = df.filter(df.row_number == 1).drop('row_number')  # 只保留每个分区中 row_number 最大的行,并删除 row_number 列
        return df

    def read_data(self):
        if self.site_name == 'us':
            params = f" and (date_type='week' or (date_type='month' and date_info='2023-10') or (date_type in ('month_week', 'month') and date_info>='2023-11'))"
        else:
            params = f" and (date_type='week' or (date_type in ('month_week', 'month') and date_info>='2023-05'))"

        sql = f"select asin, img_url as asin_img_url, title as asin_title, weight, weight_str, volume as asin_volume, date_type, date_info, site_name, created_at as created_time " \
              f"from ods_asin_detail where site_name='{self.site_name}' {params}"  #  and date_info='2023-27' limit 100000
        print("sql:", sql)
        self.df_asin_detail = self.spark.sql(sql).cache()
        self.df_asin_detail.show(10, truncate=False)
        params = "" if self.site_name == 'us' else " limit 10"
        sql = f"select id as theme_id, theme_type_en, theme_en, theme_en_lower, theme_ch from ods_theme where site_name='us' {params};"
        print("sql:", sql)
        self.df_theme = self.spark.sql(sql).cache()
        self.df_theme.show(10, truncate=False)

    def handle_data(self):
        # 根据created_time时间来去重保留最新
        window = Window.partitionBy(['asin']).orderBy(F.desc("created_time"))  # 按照 date_info 列进行分区,并按照 date 列进行排序
        self.df_asin_detail = self.df_asin_detail.withColumn('row_number', F.row_number().over(window))  # 使用窗口函数为每个分区的行编号
        self.df_asin_detail = self.df_asin_detail.filter(self.df_asin_detail.row_number == 1).drop('row_number', 'created_time')  # 只保留每个分区中 row_number 最大的行,并删除 row_number 列

        self.handle_img_url()
        if self.site_name == 'usx':
            self.handle_title()
        else:
            sql = f"select asin, asin_title, asin_title_lower, crowd_counts, crowd_ids, element_counts, element_ids, festival_counts, festival_ids, sports_counts, sports_ids, style_counts, style_ids, " \
                  f"theme_counts, theme_ids, material_counts, material_ids, date_info_title from {self.db_save} limit 0"
            self.df_asin_title = self.spark.sql(sql).cache()

        self.handle_weight()
        self.handle_volume()
        self.df_save = self.df_asin_detail.select("asin", "date_info", "site_name")
        self.df_save = self.sort_by_latest(df=self.df_save)
        self.df_save = self.df_save.join(
            self.df_asin_img_url, on='asin', how='left'
        ).join(
            self.df_asin_title, on='asin', how='left'
        ).join(
            self.df_asin_weight, on='asin', how='left'
        ).join(
            self.df_asin_volume, on='asin', how='left'
        )
        # if self.site_name != 'us':
        #     # 由于其他站点没有这些主题数据
        #     self.df_save = self.df_save_std.unionByName(self.df_save, allowMissingColumns=True)
        # self.df_save = self.df_save.drop("created_time")

        print("self.df_save.columns:", self.df_save.columns)
        # self.df_save.show(10, truncate=False)

    def handle_img_url(self):
        self.df_asin_img_url = self.df_asin_detail.select("asin", "asin_img_url", "date_info").filter("asin_img_url is not null")
        self.df_asin_img_url = self.df_asin_img_url.filter(self.df_asin_img_url.asin_img_url.contains('amazon'))  # 保留包含amazon的字符串记录
        self.df_asin_img_url = self.sort_by_latest(df=self.df_asin_img_url)
        for i in range(1, 10, 1):
            self.df_asin_img_url = self.df_asin_img_url.withColumn(f"asin_trun_{i}", F.substring(self.df_asin_img_url.asin, 1, i))
        self.df_asin_img_url = self.df_asin_img_url.withColumn(
            "asin_img_path",
            F.concat(
                F.lit("/"), self.df_asin_img_url.asin_trun_1,
                F.lit("/"), self.df_asin_img_url.asin_trun_2,
                F.lit("/"), self.df_asin_img_url.asin_trun_3,
                F.lit("/"), self.df_asin_img_url.asin_trun_4,
                F.lit("/"), self.df_asin_img_url.asin_trun_5,
                F.lit("/"), self.df_asin_img_url.asin_trun_6,
                F.lit("/")
            )
        )
        self.df_asin_img_url = self.df_asin_img_url.withColumnRenamed("date_info", "date_info_img_url")
        print("self.df_asin_img_url.columns:", self.df_asin_img_url.columns)
        # self.df_asin_img_url.show(10, truncate=False)

    def handle_title(self):
        # 过滤null和none字符串
        self.df_asin_title = self.df_asin_detail.select("asin", "asin_title", "date_info").filter("asin_title is not null and asin_title not in ('none', 'null', 'nan')")
        # 小写
        self.df_asin_title = self.df_asin_title.withColumn("asin_title_lower", F.lower(self.df_asin_title["asin_title"]))  # 小写
        # self.df_asin_title.show(10, truncate=False)
        # 取最新的date_info对应的title
        self.df_asin_title = self.sort_by_latest(df=self.df_asin_title)
        # self.df_asin_title.show(10, truncate=False)
        # 匹配主题数据
        self.handle_title_theme()
        # 存储一份主题竖表数据
        self.reset_partitions(partitions_num=100)
        self.save_data_common(
            df_save=self.df_save_vertical,
            db_save=self.db_save_vertical,
            partitions_num=self.partitions_num,
            partitions_by=self.partitions_by
        )

    def handle_title_theme(self):
        pdf_theme = self.df_theme.toPandas()
        theme_list = list(set(pdf_theme.theme_en_lower))
        self.theme_list_str = str([f" {theme} " for theme in theme_list])
        print("self.theme_list_str:", self.theme_list_str[:100])
        # 匹配宽表时用到
        df_asin_title = self.df_asin_title.cache()  # 后面用作匹配asin_title

        self.df_asin_title = self.df_asin_title.withColumn("asin_title_lower", F.concat(F.lit(" "), "asin_title_lower", F.lit(" ")))  # 标题两头加空字符串用来匹配整个词
        self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", self.u_theme_pattern('asin_title_lower', F.lit(self.theme_list_str)))
        # 将列拆分为数组多列
        self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.split(self.df_asin_title["theme_en_lower"], ","))
        # 将数组合并到多行
        self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.explode(self.df_asin_title["theme_en_lower"]))
        self.df_asin_title = self.df_asin_title.join(
            self.df_theme, on=['theme_en_lower'], how='left'  # 改成inner, 这样避免正则匹配结果不准
        )
        # 1. 竖表
        self.df_save_vertical = self.df_asin_title.cache()
        self.df_save_vertical = self.df_save_vertical.withColumn("site_name", F.lit(self.site_name))
        print("self.df_save_vertical.columns:", self.df_save_vertical.columns)
        # print("self.df_save_vertical.count():", self.df_save_vertical.count())
        # self.df_save_vertical.show(30, truncate=False)
        # self.df_save_vertical.filter("theme_en_lower is not null").show(30, truncate=False)

        # 2. 宽表
        self.df_asin_title = self.df_asin_title.drop_duplicates(['asin', 'theme_type_en', 'theme_ch'])
        self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_counts", F.concat("theme_type_en", F.lit("_counts")))
        self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_ids", F.concat("theme_type_en", F.lit("_ids")))
        # self.df_asin_title.filter('theme_type_en_counts is null').show(20, truncate=False)   # 没有记录
        self.df_asin_title = self.df_asin_title.filter('theme_type_en_counts is not null')
        pivot_df1 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_counts").agg(
            F.expr("IFNULL(count(*), 0) AS value"))
        pivot_df1 = pivot_df1.na.fill(0)
        pivot_df2 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_ids").agg(
            F.concat_ws(",", F.collect_list("theme_id")))
        # pivot_df1.show(30, truncate=False)
        # pivot_df2.show(30, truncate=False)
        # self.df_save_wide = df_asin_title.join(
        self.df_asin_title = df_asin_title.join(
            pivot_df1, on='asin', how='left'
        ).join(
            pivot_df2, on='asin', how='left'
        )
        # self.df_save_wide.show(30, truncate=False)
        self.df_asin_title = self.df_asin_title.withColumnRenamed("date_info", "date_info_title")
        self.df_asin_title = self.df_asin_title.drop("site_name")
        print("self.df_asin_title.columns:", self.df_asin_title.columns)
        # self.df_asin_title.show(30, truncate=False)

    def handle_weight(self):
        self.df_asin_weight_new = self.df_asin_detail.filter("(date_info >= '2023-18' and date_type='week') or (date_type in ('month', 'month_week'))").select("asin", "weight", "weight_str", "date_info", "site_name").cache()
        self.df_asin_weight_old = self.df_asin_detail.filter("date_info < '2023-18' and date_type='week'").select("asin", "weight", "weight_str", "date_info", "site_name").cache()
        self.handle_weight_new()
        self.handle_weight_old()
        print("self.df_asin_weight.columns:", self.df_asin_weight.columns)
        print("self.df_asin_weight_old.columns:", self.df_asin_weight_old.columns)
        self.df_asin_weight = self.df_asin_weight_new.unionByName(self.df_asin_weight_old, allowMissingColumns=True)
        self.df_asin_weight = self.sort_by_latest(df=self.df_asin_weight)
        # 将weight列中的'none'转为null,并转为浮点数类型
        self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") == 'none', None).otherwise(
                                                                 F.col("weight").cast(FloatType())))
        # weight列中小于等于0.001的值设为0.001
        self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") <= 0.001, 0.001).otherwise(F.col("weight")))
        # 保留4位小数
        self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.round(self.df_asin_weight["weight"], 4))
        # self.df_asin_weight.show(20, truncate=False)

        self.df_asin_weight = self.df_asin_weight.withColumnRenamed(
            "weight_str", "asin_weight_str"
        ).withColumnRenamed(
            "weight", "asin_weight"
        ).withColumnRenamed(
            "weight_type", "asin_weight_type"
        )
        self.df_asin_weight = self.df_asin_weight.withColumnRenamed("date_info", "date_info_weight")
        self.df_asin_weight = self.df_asin_weight.drop("site_name")
        print("self.df_asin_weight.columns:", self.df_asin_weight.columns)
        # self.df_asin_title.show(30, truncate=False)

    def handle_weight_new(self):
        print("开始处理重量数据: 2023-18周之后")
        # 将列类型转为字符串并转为小写
        self.df_asin_weight_new = self.df_asin_weight_new.withColumn("weight_str", F.lower(F.col("weight_str").cast(StringType())))
        # 提取体积字符串中的weight_info, weight_type
        self.df_asin_weight_new = self.df_asin_weight_new.withColumn('weight_detail', self.u_get_weight('weight_str', 'site_name'))
        self.df_asin_weight_new = self.df_asin_weight_new \
            .withColumn('weight', self.df_asin_weight_new.weight_detail.getField('weight')) \
            .withColumn('weight_type', self.df_asin_weight_new.weight_detail.getField('weight_type')) \
            .drop('weight_detail')

        # # 将weight列中的'none'转为null,并转为浮点数类型
        # self.df_asin_weight_new = self.df_asin_weight_new.withColumn("weight", F.when(F.col("weight") == 'none', None).otherwise(
        #                                                          F.col("weight").cast(FloatType())))
        #
        # # weight列中小于等于0.001的值设为0.001
        # self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") <= 0.001, 0.001).otherwise(F.col("weight")))

        # # 将weight_str列中的'none'转为null
        # self.df_asin_weight = self.df_asin_weight.withColumn("weight_str", F.when(F.col("weight_str") == 'none', None).otherwise(F.col("weight_str")))

    def handle_weight_old(self):
        print("开始处理重量数据: 2023-18周之前")
        self.df_asin_weight_old = self.df_asin_weight_old.withColumn("weight_type", F.lit(self.weight_type))
        window = Window.partitionBy(['asin']).orderBy(self.df_asin_weight_old.date_info.desc())
        self.df_asin_weight_old = self.df_asin_weight_old.withColumn(
            "row_number", F.row_number().over(window)
        )
        self.df_asin_weight_old = self.df_asin_weight_old.withColumn('row_number',
                                                                     F.row_number().over(window))  # 使用窗口函数为每个分区的行编号
        self.df_asin_weight_old = self.df_asin_weight_old.filter(self.df_asin_weight_old.row_number == 1).drop(
            'row_number')  # 只保留每个分区中 row_number 最大的行,并删除 row_number 列

    def handle_volume(self):
        self.df_asin_volume = self.df_asin_detail.select("asin", "asin_volume", "date_info")
        if self.site_name == 'us':
            self.handle_volume_us()
        else:
            self.handle_volume_others()
        self.df_asin_volume = self.df_asin_volume.withColumnRenamed("date_info", "date_info_volume")
        self.df_asin_volume = self.df_asin_volume.drop("site_name")
        self.handle_volume_sorted()
        print("self.df_asin_volume.columns:", self.df_asin_volume.columns)
        # self.df_asin_volume.show(30, truncate=False)

    def handle_volume_us(self):
        self.handle_filter_dirty_data()
        # self.handle_type_inches()
        # self.handle_type_cm()
        df_inches = self.handle_asin_volume_types_to_dimensions(asin_volume_type='inches')
        df_cm = self.handle_asin_volume_types_to_dimensions(asin_volume_type='cm')
        df_cm_inches = self.handle_asin_volume_types_to_dimensions(asin_volume_type='cm,inches')
        df_none = self.handle_asin_volume_types_to_dimensions(asin_volume_type='none')
        df_none_not_null = df_none.filter(~(df_none.length.isNull() & df_none.width.isNull() & df_none.height.isNull()))
        df_none_null = df_none.filter(df_none.length.isNull() & df_none.width.isNull() & df_none.height.isNull())
        df_none_not_null = df_none_not_null.withColumn("asin_volume_type", F.lit("inches"))
        print("df_none_not_null, df_none_null:", df_none_not_null.count(), df_none_null.count())
        # self.df_save = pd.concat([df_inches, df_cm, df_cm_inches, df_none])
        # 假设 df_inches、df_cm、df_cm_inches 和 df_none 都是 PySpark DataFrame
        self.df_asin_volume = df_inches.union(df_cm).union(df_cm_inches).union(df_none_not_null).union(df_none_null)
        self.df_asin_volume = self.df_asin_volume.drop("asin_volume_flag")
        self.df_asin_volume = self.df_asin_volume.withColumnRenamed("length", "asin_length"). \
            withColumnRenamed("width", "asin_width"). \
            withColumnRenamed("height", "asin_height")

    def handle_filter_dirty_data(self):
        # 将 asin_volume 列转换为小写
        self.df_asin_volume = self.df_asin_volume.withColumn("asin_volume", F.lower(self.df_asin_volume["asin_volume"]))
        # 使用自定义函数创建新列 asin_volume_flag
        self.df_asin_volume = self.df_asin_volume.withColumn("asin_volume_flag", self.u_contains_digit_udf(self.df_asin_volume["asin_volume"]))
        # 假设 df 是一个 PySpark DataFrame,asin_volume_flag 是 DataFrame 中的一列
        # self.df_asin_volume.groupBy('asin_volume_flag').agg(F.count('asin_volume_flag')).show()
        # self.df_asin_volume.show()
        self.df_asin_volume = self.df_asin_volume.filter('asin_volume_flag is True')
        # self.df_asin_volume.groupBy('asin_volume_flag').agg(F.count('asin_volume_flag')).show()
        # self.df_asin_volume.show()
        self.df_asin_volume = self.df_asin_volume.withColumn("asin_volume_type", self.u_asin_volume_type(self.df_asin_volume["asin_volume"]))
        self.df_asin_volume.groupBy('asin_volume_type').agg(F.count('asin_volume_type')).show()
        self.df_asin_volume.show()
        # 假设 df 是一个 PySpark DataFrame,date_info 是 DataFrame 中的一列
        window = Window.partitionBy('asin').orderBy(F.desc('date_info'))  # 按照 date_info 列进行分区,并按照 date 列进行排序
        self.df_asin_volume = self.df_asin_volume.withColumn('row_number', F.row_number().over(window))  # 使用窗口函数为每个分区的行编号
        self.df_asin_volume = self.df_asin_volume.filter(self.df_asin_volume.row_number == 1).drop('row_number')  # 只保留每个分区中 row_number 最大的行,并删除 row_number 列
        self.df_asin_volume.groupBy('asin_volume_type').agg(F.count('asin_volume_type')).show()
        self.df_asin_volume.show()

    def handle_asin_volume_types_to_dimensions(self, asin_volume_type='inches'):
        df = self.df_asin_volume.filter(f'asin_volume_type="{asin_volume_type}"').cache()
        # 使用 UDF 提取长宽高并添加新的列
        df = df.withColumn('dimensions', self.u_extract_dimensions('asin_volume', F.lit(asin_volume_type)))
        # 将新的列拆分成三个列并删除 dimensions 列
        df = df \
            .withColumn('length', df.dimensions.getField('length')) \
            .withColumn('width', df.dimensions.getField('width')) \
            .withColumn('height', df.dimensions.getField('height')) \
            .drop('dimensions')
        df.show(10, truncate=False)
        # # 假设 df_asin_none 是一个 PySpark DataFrame,length、width 和 height 是 DataFrame 中的列
        # df_null = df.filter(df.length.isNull() & df.width.isNull() & df.height.isNull())
        # print("asin_volume_type, df_null:", asin_volume_type, df_null.count())
        # df_null.show(50, truncate=False)
        return df

    def handle_volume_others(self):
        self.handle_filter_dirty_data()
        # 提取体积字符串中的length, width, height
        self.df_asin_volume = self.df_asin_volume.withColumn('dimensions', self.u_extract_dimensions_others('asin_volume', 'asin_volume_type'))
        self.df_asin_volume = self.df_asin_volume \
            .withColumn('asin_length', self.df_asin_volume.dimensions.getField('length')) \
            .withColumn('asin_width', self.df_asin_volume.dimensions.getField('width')) \
            .withColumn('asin_height', self.df_asin_volume.dimensions.getField('height')) \
            .drop('dimensions')
        self.df_asin_volume = self.df_asin_volume.drop("asin_volume_flag")

    def handle_volume_sorted(self):
        self.df_asin_volume = self.df_asin_volume.withColumn('dimensions', self.u_volume_sorted('asin_length', 'asin_width', 'asin_height'))
        # 将新的列拆分成三个列并删除 dimensions 列
        self.df_asin_volume = self.df_asin_volume \
            .withColumn('asin_length_sorted', self.df_asin_volume.dimensions.getField('asin_length')) \
            .withColumn('asin_width_sorted', self.df_asin_volume.dimensions.getField('asin_width')) \
            .withColumn('asin_height_sorted', self.df_asin_volume.dimensions.getField('asin_height')) \
            .drop('dimensions')
        # self.df_asin_volume.show(10, truncate=False)
        self.df_asin_volume = self.df_asin_volume.replace({'0': None})

        self.df_asin_volume = self.df_asin_volume.withColumn('asin_length_sorted', F.col('asin_length_sorted').cast('double')) \
            .withColumn('asin_width_sorted', F.col('asin_width_sorted').cast('double')) \
            .withColumn('asin_height_sorted', F.col('asin_height_sorted').cast('double'))
        self.df_asin_volume.show(10, truncate=False)


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    handle_obj = DimAsinStableInfo(site_name=site_name)
    handle_obj.run()