1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import os
import re
import sys
os.environ["PYARROW_IGNORE_TIMEZONE"] = "1"
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
from pyspark.sql.types import StringType, BooleanType, StructType, StructField, DoubleType, FloatType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from yswg_utils.common_udf import parse_weight_str
class DimAsinStableInfo(Templates):
def __init__(self, site_name='us'):
super().__init__()
self.site_name = site_name
self.db_save = f'dim_asin_stable_info'
self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}")
self.df_asin_detail = self.spark.sql(f"select 1+1;")
self.df_theme = self.spark.sql(f"select 1+1;")
self.df_asin_img_url = self.spark.sql(f"select 1+1;")
self.df_asin_title = self.spark.sql(f"select 1+1;")
self.df_asin_weight = self.spark.sql(f"select 1+1;")
self.df_asin_weight_new = self.spark.sql(f"select 1+1;")
self.df_asin_weight_old = self.spark.sql(f"select 1+1;")
self.df_asin_volume = self.spark.sql(f"select 1+1;")
self.df_save = self.spark.sql(f"select 1+1;")
self.df_save_std = self.spark.sql(f"select * from ods_search_term_zr limit 0;")
self.partitions_by = ['site_name']
self.reset_partitions(100)
self.window = Window.partitionBy(['asin']).orderBy(F.desc("date_info")) # 按照 date_info 列进行分区,并按照 date 列进行排序
# self.window = Window.partitionBy(['asin']).orderBy(F.desc("created_time")) # 按照 date_info 列进行分区,并按照 date 列进行排序
schema = StructType([
StructField('weight', FloatType(), True),
StructField('weight_type', StringType(), True),
])
self.u_get_weight = F.udf(parse_weight_str, schema)
self.weight_type = 'pounds' if site_name == 'us' else 'grams'
self.db_save_vertical = f'dim_asin_title_info_vertical' # 主题竖表
# 注册自定义函数 (UDF)
self.u_contains_digit_udf = F.udf(self.udf_contains_digit, BooleanType())
self.u_asin_volume_type = F.udf(self.udf_asin_volume_type, StringType())
# 定义 UDF 的返回类型,即一个包含三个 DoubleType 字段的 StructType
schema = StructType([
StructField('length', DoubleType(), True),
StructField('width', DoubleType(), True),
StructField('height', DoubleType(), True)
])
self.u_extract_dimensions = F.udf(self.udf_extract_dimensions, schema)
self.u_extract_dimensions_others = F.udf(self.udf_extract_dimensions_others, schema)
schema = StructType([
StructField('asin_length', StringType(), True),
StructField('asin_width', StringType(), True),
StructField('asin_height', StringType(), True)
])
self.u_volume_sorted = F.udf(self.udf_volume_sorted, schema)
# 注册自定义函数 (UDF)
self.u_theme_pattern = F.udf(self.udf_theme_pattern, StringType())
# 其他变量
# self.pattern = str() # 正则匹配
self.theme_list_str = str() # 正则匹配
@staticmethod
def udf_theme_pattern(title, theme_list_str):
found_themes = [theme.strip() for theme in eval(theme_list_str) if theme in title]
if found_themes:
return ','.join(set(found_themes))
else:
return None
# 定义一个函数,检查字符串中是否包含数字
@staticmethod
def udf_contains_digit(s):
# return any(char.isdigit() for char in s)
if s is None:
return False
return any(char.isdigit() for char in s)
# 定义一个函数,将asin_volume进行分类
@staticmethod
def udf_asin_volume_type(x):
# pattern = r'\b\w+\b'
pattern = r'[a-z]+'
matches = re.findall(pattern, x)
# 使用集合存储匹配的单词
type_set = set()
for word in matches:
if word in ['inches', 'inch']:
type_set.add('inches')
elif word in ['cm', 'centímetros', 'centimetres']:
type_set.add('cm')
elif word in ['milímetros', 'millimeter', 'mm']:
type_set.add('mm')
elif word in ['metros']:
type_set.add('m')
# 根据集合的长度返回结果
if len(type_set) == 1:
return list(type_set)[0]
elif len(type_set) >= 2:
return ','.join(type_set)
else:
return 'none'
@staticmethod
def udf_extract_dimensions(volume_str, asin_volume_type):
length, width, height = None, None, None
dimensions = []
if asin_volume_type == 'cm,inches':
num_inches = volume_str.find('inch')
num_cm = volume_str.find('cm')
volume_str = volume_str[:num_inches] if num_cm > num_inches else volume_str[num_cm:num_inches]
dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str)
dimensions = [float(dim[0]) for dim in dimensions]
# if asin_volume_type == 'inches':
# dimensions = volume_str.split(' x ')
# dimensions = [dim.split()[0] for dim in dimensions]
# dimensions = [float(dim) if dim.replace('.', '', 1).isdigit() else None for dim in dimensions]
# else:
# if asin_volume_type == 'cm,inches':
# # 保留inches
# num_inches = volume_str.find('inch')
# num_cm = volume_str.find('cm')
# volume_str = volume_str[:num_inches] if num_cm > num_inches else volume_str[num_cm:num_inches]
#
# dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str)
# dimensions = [float(dim[0]) for dim in dimensions]
if len(dimensions) == 1:
length = dimensions[0]
elif len(dimensions) == 2:
if asin_volume_type == 'none':
if "l" in volume_str and "w" in volume_str:
length, width = dimensions
elif "w" in volume_str and "h" in volume_str:
width, height = dimensions
elif "l" in volume_str and "h" in volume_str:
length, height = dimensions
elif "d" in volume_str and "w" in volume_str:
length, width = dimensions
elif "d" in volume_str and "h" in volume_str:
length, height = dimensions
else:
length, width = dimensions
elif len(dimensions) == 3:
length, width, height = dimensions
elif len(dimensions) >= 4:
length, width, height = dimensions[:3]
return (length, width, height)
@staticmethod
def udf_extract_dimensions_others(volume_str, asin_volume_type):
length, width, height = None, None, None
if asin_volume_type == 'cm':
dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str)
dimensions = [float(dim[0]) for dim in dimensions]
if len(dimensions) == 1:
length = dimensions[0]
elif len(dimensions) == 2:
length = dimensions[0]
width = dimensions[1]
elif len(dimensions) >= 3:
length, width, height = dimensions[:3]
return (length, width, height)
@staticmethod
def udf_volume_sorted(asin_length, asin_weight, asin_height):
# 如果输入数据中有None,替换为0
dimensions = [0 if x is None else x for x in [asin_length, asin_weight, asin_height]]
# 对数据进行排序
dimensions.sort(reverse=True)
return tuple(dimensions)
def sort_by_latest(self, df):
df = df.withColumn('row_number', F.row_number().over(self.window)) # 使用窗口函数为每个分区的行编号
df = df.filter(df.row_number == 1).drop('row_number') # 只保留每个分区中 row_number 最大的行,并删除 row_number 列
return df
def read_data(self):
if self.site_name == 'us':
params = f" and (date_type='week' or (date_type='month' and date_info='2023-10') or (date_type in ('month_week', 'month') and date_info>='2023-11'))"
else:
params = f" and (date_type='week' or (date_type in ('month_week', 'month') and date_info>='2023-05'))"
sql = f"select asin, img_url as asin_img_url, title as asin_title, weight, weight_str, volume as asin_volume, date_type, date_info, site_name, created_at as created_time " \
f"from ods_asin_detail where site_name='{self.site_name}' {params}" # and date_info='2023-27' limit 100000
print("sql:", sql)
self.df_asin_detail = self.spark.sql(sql).cache()
self.df_asin_detail.show(10, truncate=False)
params = "" if self.site_name == 'us' else " limit 10"
sql = f"select id as theme_id, theme_type_en, theme_en, theme_en_lower, theme_ch from ods_theme where site_name='us' {params};"
print("sql:", sql)
self.df_theme = self.spark.sql(sql).cache()
self.df_theme.show(10, truncate=False)
def handle_data(self):
# 根据created_time时间来去重保留最新
window = Window.partitionBy(['asin']).orderBy(F.desc("created_time")) # 按照 date_info 列进行分区,并按照 date 列进行排序
self.df_asin_detail = self.df_asin_detail.withColumn('row_number', F.row_number().over(window)) # 使用窗口函数为每个分区的行编号
self.df_asin_detail = self.df_asin_detail.filter(self.df_asin_detail.row_number == 1).drop('row_number', 'created_time') # 只保留每个分区中 row_number 最大的行,并删除 row_number 列
self.handle_img_url()
if self.site_name == 'usx':
self.handle_title()
else:
sql = f"select asin, asin_title, asin_title_lower, crowd_counts, crowd_ids, element_counts, element_ids, festival_counts, festival_ids, sports_counts, sports_ids, style_counts, style_ids, " \
f"theme_counts, theme_ids, material_counts, material_ids, date_info_title from {self.db_save} limit 0"
self.df_asin_title = self.spark.sql(sql).cache()
self.handle_weight()
self.handle_volume()
self.df_save = self.df_asin_detail.select("asin", "date_info", "site_name")
self.df_save = self.sort_by_latest(df=self.df_save)
self.df_save = self.df_save.join(
self.df_asin_img_url, on='asin', how='left'
).join(
self.df_asin_title, on='asin', how='left'
).join(
self.df_asin_weight, on='asin', how='left'
).join(
self.df_asin_volume, on='asin', how='left'
)
# if self.site_name != 'us':
# # 由于其他站点没有这些主题数据
# self.df_save = self.df_save_std.unionByName(self.df_save, allowMissingColumns=True)
# self.df_save = self.df_save.drop("created_time")
print("self.df_save.columns:", self.df_save.columns)
# self.df_save.show(10, truncate=False)
def handle_img_url(self):
self.df_asin_img_url = self.df_asin_detail.select("asin", "asin_img_url", "date_info").filter("asin_img_url is not null")
self.df_asin_img_url = self.df_asin_img_url.filter(self.df_asin_img_url.asin_img_url.contains('amazon')) # 保留包含amazon的字符串记录
self.df_asin_img_url = self.sort_by_latest(df=self.df_asin_img_url)
for i in range(1, 10, 1):
self.df_asin_img_url = self.df_asin_img_url.withColumn(f"asin_trun_{i}", F.substring(self.df_asin_img_url.asin, 1, i))
self.df_asin_img_url = self.df_asin_img_url.withColumn(
"asin_img_path",
F.concat(
F.lit("/"), self.df_asin_img_url.asin_trun_1,
F.lit("/"), self.df_asin_img_url.asin_trun_2,
F.lit("/"), self.df_asin_img_url.asin_trun_3,
F.lit("/"), self.df_asin_img_url.asin_trun_4,
F.lit("/"), self.df_asin_img_url.asin_trun_5,
F.lit("/"), self.df_asin_img_url.asin_trun_6,
F.lit("/")
)
)
self.df_asin_img_url = self.df_asin_img_url.withColumnRenamed("date_info", "date_info_img_url")
print("self.df_asin_img_url.columns:", self.df_asin_img_url.columns)
# self.df_asin_img_url.show(10, truncate=False)
def handle_title(self):
# 过滤null和none字符串
self.df_asin_title = self.df_asin_detail.select("asin", "asin_title", "date_info").filter("asin_title is not null and asin_title not in ('none', 'null', 'nan')")
# 小写
self.df_asin_title = self.df_asin_title.withColumn("asin_title_lower", F.lower(self.df_asin_title["asin_title"])) # 小写
# self.df_asin_title.show(10, truncate=False)
# 取最新的date_info对应的title
self.df_asin_title = self.sort_by_latest(df=self.df_asin_title)
# self.df_asin_title.show(10, truncate=False)
# 匹配主题数据
self.handle_title_theme()
# 存储一份主题竖表数据
self.reset_partitions(partitions_num=100)
self.save_data_common(
df_save=self.df_save_vertical,
db_save=self.db_save_vertical,
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
def handle_title_theme(self):
pdf_theme = self.df_theme.toPandas()
theme_list = list(set(pdf_theme.theme_en_lower))
self.theme_list_str = str([f" {theme} " for theme in theme_list])
print("self.theme_list_str:", self.theme_list_str[:100])
# 匹配宽表时用到
df_asin_title = self.df_asin_title.cache() # 后面用作匹配asin_title
self.df_asin_title = self.df_asin_title.withColumn("asin_title_lower", F.concat(F.lit(" "), "asin_title_lower", F.lit(" "))) # 标题两头加空字符串用来匹配整个词
self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", self.u_theme_pattern('asin_title_lower', F.lit(self.theme_list_str)))
# 将列拆分为数组多列
self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.split(self.df_asin_title["theme_en_lower"], ","))
# 将数组合并到多行
self.df_asin_title = self.df_asin_title.withColumn("theme_en_lower", F.explode(self.df_asin_title["theme_en_lower"]))
self.df_asin_title = self.df_asin_title.join(
self.df_theme, on=['theme_en_lower'], how='left' # 改成inner, 这样避免正则匹配结果不准
)
# 1. 竖表
self.df_save_vertical = self.df_asin_title.cache()
self.df_save_vertical = self.df_save_vertical.withColumn("site_name", F.lit(self.site_name))
print("self.df_save_vertical.columns:", self.df_save_vertical.columns)
# print("self.df_save_vertical.count():", self.df_save_vertical.count())
# self.df_save_vertical.show(30, truncate=False)
# self.df_save_vertical.filter("theme_en_lower is not null").show(30, truncate=False)
# 2. 宽表
self.df_asin_title = self.df_asin_title.drop_duplicates(['asin', 'theme_type_en', 'theme_ch'])
self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_counts", F.concat("theme_type_en", F.lit("_counts")))
self.df_asin_title = self.df_asin_title.withColumn("theme_type_en_ids", F.concat("theme_type_en", F.lit("_ids")))
# self.df_asin_title.filter('theme_type_en_counts is null').show(20, truncate=False) # 没有记录
self.df_asin_title = self.df_asin_title.filter('theme_type_en_counts is not null')
pivot_df1 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_counts").agg(
F.expr("IFNULL(count(*), 0) AS value"))
pivot_df1 = pivot_df1.na.fill(0)
pivot_df2 = self.df_asin_title.groupBy("asin").pivot("theme_type_en_ids").agg(
F.concat_ws(",", F.collect_list("theme_id")))
# pivot_df1.show(30, truncate=False)
# pivot_df2.show(30, truncate=False)
# self.df_save_wide = df_asin_title.join(
self.df_asin_title = df_asin_title.join(
pivot_df1, on='asin', how='left'
).join(
pivot_df2, on='asin', how='left'
)
# self.df_save_wide.show(30, truncate=False)
self.df_asin_title = self.df_asin_title.withColumnRenamed("date_info", "date_info_title")
self.df_asin_title = self.df_asin_title.drop("site_name")
print("self.df_asin_title.columns:", self.df_asin_title.columns)
# self.df_asin_title.show(30, truncate=False)
def handle_weight(self):
self.df_asin_weight_new = self.df_asin_detail.filter("(date_info >= '2023-18' and date_type='week') or (date_type in ('month', 'month_week'))").select("asin", "weight", "weight_str", "date_info", "site_name").cache()
self.df_asin_weight_old = self.df_asin_detail.filter("date_info < '2023-18' and date_type='week'").select("asin", "weight", "weight_str", "date_info", "site_name").cache()
self.handle_weight_new()
self.handle_weight_old()
print("self.df_asin_weight.columns:", self.df_asin_weight.columns)
print("self.df_asin_weight_old.columns:", self.df_asin_weight_old.columns)
self.df_asin_weight = self.df_asin_weight_new.unionByName(self.df_asin_weight_old, allowMissingColumns=True)
self.df_asin_weight = self.sort_by_latest(df=self.df_asin_weight)
# 将weight列中的'none'转为null,并转为浮点数类型
self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") == 'none', None).otherwise(
F.col("weight").cast(FloatType())))
# weight列中小于等于0.001的值设为0.001
self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") <= 0.001, 0.001).otherwise(F.col("weight")))
# 保留4位小数
self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.round(self.df_asin_weight["weight"], 4))
# self.df_asin_weight.show(20, truncate=False)
self.df_asin_weight = self.df_asin_weight.withColumnRenamed(
"weight_str", "asin_weight_str"
).withColumnRenamed(
"weight", "asin_weight"
).withColumnRenamed(
"weight_type", "asin_weight_type"
)
self.df_asin_weight = self.df_asin_weight.withColumnRenamed("date_info", "date_info_weight")
self.df_asin_weight = self.df_asin_weight.drop("site_name")
print("self.df_asin_weight.columns:", self.df_asin_weight.columns)
# self.df_asin_title.show(30, truncate=False)
def handle_weight_new(self):
print("开始处理重量数据: 2023-18周之后")
# 将列类型转为字符串并转为小写
self.df_asin_weight_new = self.df_asin_weight_new.withColumn("weight_str", F.lower(F.col("weight_str").cast(StringType())))
# 提取体积字符串中的weight_info, weight_type
self.df_asin_weight_new = self.df_asin_weight_new.withColumn('weight_detail', self.u_get_weight('weight_str', 'site_name'))
self.df_asin_weight_new = self.df_asin_weight_new \
.withColumn('weight', self.df_asin_weight_new.weight_detail.getField('weight')) \
.withColumn('weight_type', self.df_asin_weight_new.weight_detail.getField('weight_type')) \
.drop('weight_detail')
# # 将weight列中的'none'转为null,并转为浮点数类型
# self.df_asin_weight_new = self.df_asin_weight_new.withColumn("weight", F.when(F.col("weight") == 'none', None).otherwise(
# F.col("weight").cast(FloatType())))
#
# # weight列中小于等于0.001的值设为0.001
# self.df_asin_weight = self.df_asin_weight.withColumn("weight", F.when(F.col("weight") <= 0.001, 0.001).otherwise(F.col("weight")))
# # 将weight_str列中的'none'转为null
# self.df_asin_weight = self.df_asin_weight.withColumn("weight_str", F.when(F.col("weight_str") == 'none', None).otherwise(F.col("weight_str")))
def handle_weight_old(self):
print("开始处理重量数据: 2023-18周之前")
self.df_asin_weight_old = self.df_asin_weight_old.withColumn("weight_type", F.lit(self.weight_type))
window = Window.partitionBy(['asin']).orderBy(self.df_asin_weight_old.date_info.desc())
self.df_asin_weight_old = self.df_asin_weight_old.withColumn(
"row_number", F.row_number().over(window)
)
self.df_asin_weight_old = self.df_asin_weight_old.withColumn('row_number',
F.row_number().over(window)) # 使用窗口函数为每个分区的行编号
self.df_asin_weight_old = self.df_asin_weight_old.filter(self.df_asin_weight_old.row_number == 1).drop(
'row_number') # 只保留每个分区中 row_number 最大的行,并删除 row_number 列
def handle_volume(self):
self.df_asin_volume = self.df_asin_detail.select("asin", "asin_volume", "date_info")
if self.site_name == 'us':
self.handle_volume_us()
else:
self.handle_volume_others()
self.df_asin_volume = self.df_asin_volume.withColumnRenamed("date_info", "date_info_volume")
self.df_asin_volume = self.df_asin_volume.drop("site_name")
self.handle_volume_sorted()
print("self.df_asin_volume.columns:", self.df_asin_volume.columns)
# self.df_asin_volume.show(30, truncate=False)
def handle_volume_us(self):
self.handle_filter_dirty_data()
# self.handle_type_inches()
# self.handle_type_cm()
df_inches = self.handle_asin_volume_types_to_dimensions(asin_volume_type='inches')
df_cm = self.handle_asin_volume_types_to_dimensions(asin_volume_type='cm')
df_cm_inches = self.handle_asin_volume_types_to_dimensions(asin_volume_type='cm,inches')
df_none = self.handle_asin_volume_types_to_dimensions(asin_volume_type='none')
df_none_not_null = df_none.filter(~(df_none.length.isNull() & df_none.width.isNull() & df_none.height.isNull()))
df_none_null = df_none.filter(df_none.length.isNull() & df_none.width.isNull() & df_none.height.isNull())
df_none_not_null = df_none_not_null.withColumn("asin_volume_type", F.lit("inches"))
print("df_none_not_null, df_none_null:", df_none_not_null.count(), df_none_null.count())
# self.df_save = pd.concat([df_inches, df_cm, df_cm_inches, df_none])
# 假设 df_inches、df_cm、df_cm_inches 和 df_none 都是 PySpark DataFrame
self.df_asin_volume = df_inches.union(df_cm).union(df_cm_inches).union(df_none_not_null).union(df_none_null)
self.df_asin_volume = self.df_asin_volume.drop("asin_volume_flag")
self.df_asin_volume = self.df_asin_volume.withColumnRenamed("length", "asin_length"). \
withColumnRenamed("width", "asin_width"). \
withColumnRenamed("height", "asin_height")
def handle_filter_dirty_data(self):
# 将 asin_volume 列转换为小写
self.df_asin_volume = self.df_asin_volume.withColumn("asin_volume", F.lower(self.df_asin_volume["asin_volume"]))
# 使用自定义函数创建新列 asin_volume_flag
self.df_asin_volume = self.df_asin_volume.withColumn("asin_volume_flag", self.u_contains_digit_udf(self.df_asin_volume["asin_volume"]))
# 假设 df 是一个 PySpark DataFrame,asin_volume_flag 是 DataFrame 中的一列
# self.df_asin_volume.groupBy('asin_volume_flag').agg(F.count('asin_volume_flag')).show()
# self.df_asin_volume.show()
self.df_asin_volume = self.df_asin_volume.filter('asin_volume_flag is True')
# self.df_asin_volume.groupBy('asin_volume_flag').agg(F.count('asin_volume_flag')).show()
# self.df_asin_volume.show()
self.df_asin_volume = self.df_asin_volume.withColumn("asin_volume_type", self.u_asin_volume_type(self.df_asin_volume["asin_volume"]))
self.df_asin_volume.groupBy('asin_volume_type').agg(F.count('asin_volume_type')).show()
self.df_asin_volume.show()
# 假设 df 是一个 PySpark DataFrame,date_info 是 DataFrame 中的一列
window = Window.partitionBy('asin').orderBy(F.desc('date_info')) # 按照 date_info 列进行分区,并按照 date 列进行排序
self.df_asin_volume = self.df_asin_volume.withColumn('row_number', F.row_number().over(window)) # 使用窗口函数为每个分区的行编号
self.df_asin_volume = self.df_asin_volume.filter(self.df_asin_volume.row_number == 1).drop('row_number') # 只保留每个分区中 row_number 最大的行,并删除 row_number 列
self.df_asin_volume.groupBy('asin_volume_type').agg(F.count('asin_volume_type')).show()
self.df_asin_volume.show()
def handle_asin_volume_types_to_dimensions(self, asin_volume_type='inches'):
df = self.df_asin_volume.filter(f'asin_volume_type="{asin_volume_type}"').cache()
# 使用 UDF 提取长宽高并添加新的列
df = df.withColumn('dimensions', self.u_extract_dimensions('asin_volume', F.lit(asin_volume_type)))
# 将新的列拆分成三个列并删除 dimensions 列
df = df \
.withColumn('length', df.dimensions.getField('length')) \
.withColumn('width', df.dimensions.getField('width')) \
.withColumn('height', df.dimensions.getField('height')) \
.drop('dimensions')
df.show(10, truncate=False)
# # 假设 df_asin_none 是一个 PySpark DataFrame,length、width 和 height 是 DataFrame 中的列
# df_null = df.filter(df.length.isNull() & df.width.isNull() & df.height.isNull())
# print("asin_volume_type, df_null:", asin_volume_type, df_null.count())
# df_null.show(50, truncate=False)
return df
def handle_volume_others(self):
self.handle_filter_dirty_data()
# 提取体积字符串中的length, width, height
self.df_asin_volume = self.df_asin_volume.withColumn('dimensions', self.u_extract_dimensions_others('asin_volume', 'asin_volume_type'))
self.df_asin_volume = self.df_asin_volume \
.withColumn('asin_length', self.df_asin_volume.dimensions.getField('length')) \
.withColumn('asin_width', self.df_asin_volume.dimensions.getField('width')) \
.withColumn('asin_height', self.df_asin_volume.dimensions.getField('height')) \
.drop('dimensions')
self.df_asin_volume = self.df_asin_volume.drop("asin_volume_flag")
def handle_volume_sorted(self):
self.df_asin_volume = self.df_asin_volume.withColumn('dimensions', self.u_volume_sorted('asin_length', 'asin_width', 'asin_height'))
# 将新的列拆分成三个列并删除 dimensions 列
self.df_asin_volume = self.df_asin_volume \
.withColumn('asin_length_sorted', self.df_asin_volume.dimensions.getField('asin_length')) \
.withColumn('asin_width_sorted', self.df_asin_volume.dimensions.getField('asin_width')) \
.withColumn('asin_height_sorted', self.df_asin_volume.dimensions.getField('asin_height')) \
.drop('dimensions')
# self.df_asin_volume.show(10, truncate=False)
self.df_asin_volume = self.df_asin_volume.replace({'0': None})
self.df_asin_volume = self.df_asin_volume.withColumn('asin_length_sorted', F.col('asin_length_sorted').cast('double')) \
.withColumn('asin_width_sorted', F.col('asin_width_sorted').cast('double')) \
.withColumn('asin_height_sorted', F.col('asin_height_sorted').cast('double'))
self.df_asin_volume.show(10, truncate=False)
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
handle_obj = DimAsinStableInfo(site_name=site_name)
handle_obj.run()