1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
import sys
import pandas as pd
from pyspark.sql.window import Window
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from pyspark.storagelevel import StorageLevel
from utils.templates import Templates
# from ..utils.templates import Templates
from pyspark.sql import functions as F
from pyspark.sql.types import StructType,StructField, StringType, IntegerType
class DwdStMeasure(Templates):
def __init__(self, site_name='us', date_type="month", date_info='2022-01'):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save = f'dwd_st_rank'
self.spark = self.create_spark_object(
app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}")
# self.df_date = self.get_year_week_tuple() # pandas的df对象
self.df_st_month = self.spark.sql(f"select 1+1;")
self.df_st_week = self.spark.sql(f"select 1+1;")
def read_data(self):
pdf = pd.read_csv(f"/root/bs_category_rank.csv")
schema = StructType([
StructField("category_name", StringType(), True),
StructField("bsr_rank", StringType(), True),
StructField("category_first_id", StringType(), True),
])
self.df_bsr_rank = self.spark.createDataFrame(pdf, schema=schema).cache()
self.df_bsr_rank.show(20, truncate=False)
#
sql = f"select asin, asin_title, asin_category_desc as asin_category, asin_launch_time, created_time from dim_asin_detail WHERE site_name ='us' and date_type ='month' and date_info ='2023-11' and LOWER(asin_title) like '%halloween%';"
print("sql:", sql)
self.df_asin_detail = self.spark.sql(sql).cache()
self.df_asin_detail.show(20, truncate=False)
print("df_asin_detail:", self.df_asin_detail.count())
sql = f"SELECT asin, asin_bs_cate_1_id as category_first_id, asin_bs_cate_1_rank as asin_bsr_rank from dim_asin_bs_info WHERE site_name ='us' and date_type ='month' and date_info ='2023-11';"
print("sql:", sql)
self.df_asin_bsr = self.spark.sql(sql).cache()
self.df_asin_bsr.show(20, truncate=False)
print("df_asin_detail:", self.df_asin_detail.count())
#
# sql = f"select asin, asin_title, category_first_id, asin_launch_time, asin_rank, asin_category_desc as asin_category from dwt_flow_asin WHERE site_name ='us' and date_type ='month' and date_info ='2023-11' and LOWER(asin_title) like '%halloween%'"
# self.df_flow_asin = self.spark.sql(sql).cache()
# self.df_flow_asin.show(20, truncate=False)
# print("df_flow_asin:", self.df_flow_asin.count())
def handle_data(self):
self.df_asin_bsr = self.df_asin_bsr.join(
self.df_bsr_rank, on='category_first_id', how='inner'
)
self.df_save = self.df_asin_detail.join(
self.df_asin_bsr, on='asin', how='inner'
)
# self.df_save = self.df_flow_asin.join(
# self.df_bsr_rank, on='category_first_id', how='inner'
# )
self.df_save = self.df_save.withColumn("rank_flag", F.when(self.df_save["asin_bsr_rank"] <= self.df_save["bsr_rank"], 1).otherwise(0))
print("df_save:", self.df_save.count())
print("df_save--1:", self.df_save.filter('rank_flag=1').count())
self.df_save = self.df_save.filter('rank_flag=1')
# # 合并两个DataFrame
# df_combined = self.df_st_month.union(self.df_st_week)
#
# # 只选择 row_number 为 1 的行
# df_unique = df_combined.drop_duplicates(['asin_brand_name'])
#
# self.df_combined_unique = df_unique
# self.df_combined_unique.show(20, truncate=False)
# self.df_combined_unique = self.df_st_month.join(self.df_st_week, on='asin', how='inner')
#
# # , 'search_term'
# window = Window.partitionBy(['asin']).orderBy(
# self.df_combined_unique.st_asin_zr_page_row.asc(),
# )
# self.df_combined_unique = self.df_combined_unique. \
# withColumn("page_rank_top", F.row_number().over(window=window))
# # print("self.df_st_asin_info, 开窗去重前:", self.df_st_asin_info.count())
# self.df_combined_unique = self.df_combined_unique.filter("page_rank_top<=3")
# print("combined:", self.df_combined_unique.count())
def save_data(self):
# 转换为 Pandas DataFrame
pdf = self.df_save.toPandas()
# 根据需求将每100万行数据保存为一个CSV文件
num_rows_per_file = 1000000
num_files = (len(pdf) // num_rows_per_file) + (1 if len(pdf) % num_rows_per_file != 0 else 0)
for i in range(num_files):
start_idx = i * num_rows_per_file
end_idx = start_idx + num_rows_per_file
output_path = os.path.join("/root", f"asin_bsr_rank_{i + 1}.csv")
# 将子集保存为CSV
pdf.iloc[start_idx:end_idx].to_csv(output_path, index=False)
print(f"Data saved into {num_files} CSV files.")
if __name__ == '__main__':
handle_obj = DwdStMeasure()
handle_obj.run()