dwd_merchantwords_measure.py 20.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
import os
import sys
import re


sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from pyspark.sql.types import IntegerType, DoubleType
from utils.templates import Templates
from pyspark.sql import functions as F
from pyspark.sql.window import Window
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from pyspark.storagelevel import StorageLevel
from yswg_utils.common_udf import udf_parse_amazon_orders, udf_get_package_quantity


class DwdMerchantwordsMeasure(Templates):

    def __init__(self, site_name='us', date_type='day', date_info='2024-01-01', batch='2024-0'):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.batch = batch
        self.db_save = 'dwd_merchantwords_measure_v2'
        self.spark = self.create_spark_object(
            app_name=f"DwdMerchantwordsMeasure: {self.site_name}, {self.date_type}, {self.date_info}, {self.batch}")
        self.partitions_num = 5
        self.partitions_by = ['site_name', 'batch']
        self.df_merchantwords_detail = self.spark.sql(f"select 1+1;")
        self.df_products_num = self.spark.sql(f"select 1+1;")
        self.df_search_term_type = self.spark.sql(f"select 1+1;")
        self.df_self_asin = self.spark.sql(f"select 1+1;")
        self.df_asin_detail = self.spark.sql(f"select 1+1;")
        self.df_asin_buy_data = self.spark.sql(f"select 1+1;")
        self.df_asin_count = self.spark.sql(f"select 1+1;")
        self.df_st_count = self.spark.sql(f"select 1+1;")
        self.df_st_buy_data = self.spark.sql(f"select 1+1;")
        self.df_st_detail = self.spark.sql(f"select 1+1;")
        self.df_save = self.spark.sql(f"select 1+1;")
        self.data_type_list = ['zr', 'sp', 'sb1', 'sb2', 'sb3', 'hr', 'bs', 'ac']
        # 引入公用udf
        self.u_parse_amazon_orders = self.spark.udf.register('u_parse_amazon_orders', udf_parse_amazon_orders, IntegerType())
        self.u_get_package_quantity = self.spark.udf.register('u_get_package_quantity', udf_get_package_quantity, IntegerType())
        # 自定义udf
        self.u_parse_asin_price = self.spark.udf.register('u_parse_asin_price', self.udf_parse_asin_price, DoubleType())
        self.u_parse_asin_rating = self.spark.udf.register('u_parse_asin_rating', self.udf_parse_asin_rating, DoubleType())
        self.u_parse_asin_reviews = self.spark.udf.register('u_parse_asin_reviews', self.udf_parse_asin_reviews, IntegerType())
        hdfs_path = f"/home/{SparkUtil.DEF_USE_DB}/dwd/{self.db_save}/site_name={self.site_name}/batch={self.batch}"
        print(f"清除hdfs目录中.....{hdfs_path}")
        HdfsUtils.delete_hdfs_file(hdfs_path)

    @staticmethod
    def udf_parse_asin_price(price):
        if price:
            try:
                match_us = re.search(r'\$([\d,]+(?:\.\d+)?)', price)
                if match_us:
                    number_str = match_us.group(1).replace(',', '')
                    return float(number_str)
                match_de = re.search(r'([\d.]+),(\d+)\s*€', price)
                if match_de:
                    integer_part = match_de.group(1).replace('.', '')
                    decimal_part = match_de.group(2)
                    number_str = f"{integer_part}.{decimal_part}"
                    return float(number_str)
                else:
                    return None
            except ValueError:
                return None
        return None

    @staticmethod
    def udf_parse_asin_rating(site, rating):
        """
        解析asin详情页面的rating
        """
        if rating:
            if site == 'de':
                rating = re.findall(r"(.*) von", rating)[0]
            elif site == 'fr':
                rating = re.findall(r"(.*) sur", rating)[0]
            elif site == 'it':
                rating = re.findall(r"(.*) su", rating)[0]
            elif site == 'es':
                rating = re.findall(r"(.*) de", rating)[0]
            else:
                rating = re.findall(r"(.*) out", rating)[0]
            rating = rating.replace(',', '.')
            return float(rating)
        return None

    @staticmethod
    def udf_parse_asin_reviews(reviews):
        if reviews:
            try:
                match = re.search(r'\b(\d{1,3}(?:[,.]\d{3})*)(?:\s+\w+)?\b', reviews)
                if match:
                    number_str = match.group(1).replace(',', '').replace('.', '')
                    return int(number_str)
                else:
                    return None
            except ValueError:
                return None
        else:
            return None

    def read_data(self):
        print("1.读取dwt_merchantwords_st_detail")
        sql = f"""
        select 
            keyword, 
            volume, 
            avg_3m, 
            avg_12m, 
            depth, 
            results_count, 
            sponsored_ads_count, 
            page_1_reviews, 
            appearance, 
            last_seen, 
            update_time, 
            lang, 
            last_batch 
        from dwt_merchantwords_st_detail_merge 
        where site_name = '{self.site_name}'
        and batch = '2024-1';
        """
        self.df_merchantwords_detail = self.spark.sql(sqlQuery=sql)
        self.df_merchantwords_detail = self.df_merchantwords_detail.repartition(80).persist(StorageLevel.MEMORY_ONLY)
        self.df_merchantwords_detail.show(10, truncate=True)

        print("2.读取ods_merchantwords_brand_analytics,得到产品总数")
        sql = f"""
        select 
            search_term as keyword, 
            quantity_being_sold as asin_total_num, 
            updated_time 
        from ods_merchantwords_brand_analytics 
        where site_name = '{self.site_name}'
        and date_type = '{self.date_type}'
        and date_info = '{self.date_info}';
        """
        self.df_products_num = self.spark.sql(sqlQuery=sql)
        self.df_products_num = self.df_products_num.repartition(80).persist(StorageLevel.MEMORY_ONLY)
        self.df_products_num.show(10, truncate=True)

        print("3.读取ods_merchantwords_search_term_type,得到搜索词、asin、类型")
        for data_type in self.data_type_list:
            if data_type in ['zr', 'sp']:
                sql = f"""
                select 
                    search_term as keyword, 
                    asin, 
                    page, 
                    page_row, 
                    '{data_type}' as data_type, 
                    created_time, 
                    updated_time
                from ods_merchantwords_search_term_{data_type} 
                where site_name = '{self.site_name}'
                and date_type = '{self.date_type}'
                and date_info = '{self.date_info}';
                """
                df = self.spark.sql(sqlQuery=sql)
                df = df.repartition(80)
            elif data_type in ['sb1', 'sb2', 'sb3']:
                data_type_int = int(data_type[-1])
                sql = f"""
                select 
                    search_term as keyword, 
                    asin, 
                    page, 
                    '{data_type}' as data_type, 
                    created_time, 
                    updated_time
                from ods_merchantwords_search_term_sb 
                where site_name = '{self.site_name}'
                and date_type = '{self.date_type}'
                and date_info = '{self.date_info}'
                and data_type = {data_type_int};
                """
                df = self.spark.sql(sqlQuery=sql)
                df = df.repartition(80)
            else:
                sql = f"""
                select 
                    search_term as keyword, 
                    asin, 
                    page, 
                    '{data_type}' as data_type, 
                    created_time, 
                    updated_time
                from ods_merchantwords_search_term_{data_type} 
                where site_name = '{self.site_name}'
                and date_type = '{self.date_type}'
                and date_info = '{self.date_info}';
                """
                df = self.spark.sql(sqlQuery=sql)
                df = df.repartition(80)
            self.df_search_term_type = self.df_search_term_type.unionByName(df, allowMissingColumns=True)
        self.df_search_term_type = self.df_search_term_type.persist(StorageLevel.MEMORY_AND_DISK)
        self.df_search_term_type.show(10, truncate=True)

        print("4.读取ods_self_asin,得到公司内部产品")
        sql = f"""
        select 
            asin, 
            1 as is_self_asin 
        from ods_self_asin 
        where site_name = '{self.site_name}' 
        group by asin;
        """
        df_self_asin = self.spark.sql(sqlQuery=sql)
        self.df_self_asin = F.broadcast(df_self_asin)
        self.df_self_asin.show(10, truncate=True)

        print("5.读取ods_merchantwords_asin_detail,得到asin数据")
        sql = f"""
        select 
            asin, 
            title, 
            img, 
            price, 
            rating, 
            reviews, 
            updated_time 
        from ods_merchantwords_asin_detail 
        where site_name = '{self.site_name}'
        and date_type = '{self.date_type}'
        and date_info = '{self.date_info}';
        """
        self.df_asin_detail = self.spark.sql(sqlQuery=sql)
        self.df_asin_detail = self.df_asin_detail.repartition(80).persist(StorageLevel.MEMORY_ONLY)
        self.df_asin_detail.show(10, truncate=True)

        print("6.读取ods_merchantwords_other_search_term_data,得到asin月销")
        sql = f"""
        select 
            search_term as keyword, 
            asin, 
            buy_data, 
            page, 
            created_time, 
            updated_time
        from ods_merchantwords_other_search_term_data 
        where site_name = '{self.site_name}'
        and date_type = '{self.date_type}'
        and date_info = '{self.date_info}';
        """
        self.df_asin_buy_data = self.spark.sql(sqlQuery=sql)
        self.df_asin_buy_data = self.df_asin_buy_data.repartition(80).persist(StorageLevel.MEMORY_ONLY)
        self.df_asin_buy_data.show(10, truncate=True)

    def handle_data(self):
        # 处理产品总数
        self.handle_products_num()
        # df_search_term_type去重处理
        self.handle_search_term_asin_type()
        # 处理asin维度下类型词count
        self.df_asin_count = self.handle_st_asin_counts(cal_type="asin")
        # 处理st维度下asin_count + 内部asin_count
        self.df_st_count = self.handle_st_asin_counts(cal_type="st")
        # 处理ao值和zr流量占比
        self.handle_ao_and_zr_flow_proportion()
        # 处理月销
        self.handle_monthly_sales()
        # 处理asin_detail:价格、rating等
        self.handle_asin_detail()
        # 保存前字段处理
        self.handle_save()

    def handle_products_num(self):
        print("处理产品总数:")
        # 1.去重处理
        products_num_window = Window.partitionBy('keyword').orderBy(
            F.desc_nulls_last('updated_time')
        )
        self.df_products_num = self.df_products_num.withColumn(
            "u_rank",
            F.row_number().over(window=products_num_window)
        )
        self.df_products_num = self.df_products_num.filter('u_rank=1').drop('u_rank', 'updated_time')
        # 过滤出asin_total_num大于0的词
        self.df_products_num = self.df_products_num.filter('asin_total_num > 0')
        # 2.关联回df_save
        self.df_save = self.df_merchantwords_detail.join(
            self.df_products_num, on=['keyword'], how='inner'
        ).persist(StorageLevel.MEMORY_ONLY)
        # 3.释放资源
        self.df_merchantwords_detail.unpersist()
        self.df_products_num.unpersist()

    def handle_search_term_asin_type(self):
        print("df_search_term_type去重处理:")
        # 1.去重处理,防止爬虫重复抓取
        st_asin_window = Window.partitionBy(['data_type', 'keyword', 'page']).orderBy(
            F.desc_nulls_last('created_time'), F.desc_nulls_last('updated_time')
        )
        self.df_search_term_type = self.df_search_term_type.withColumn(
            "u_rank",
            F.rank().over(window=st_asin_window)
        )
        self.df_search_term_type = self.df_search_term_type.filter('u_rank=1')\
            .drop('u_rank', 'created_time', 'updated_time')

    def handle_st_asin_counts(self, cal_type="asin"):
        print(f"计算{cal_type}_counts")
        cal_type_complete = "keyword" if cal_type == "st" else cal_type
        self.df_search_term_type = self.df_search_term_type.withColumn(
            f"{cal_type}_data_type",
            F.concat(F.lit(f"{cal_type}_"), self.df_search_term_type.data_type, F.lit(f"_counts"))
        )
        df = self.df_search_term_type.groupby([f'{cal_type_complete}'])\
            .pivot(f"{cal_type}_data_type").count()
        df = df.fillna(0)
        df = df.withColumn(
            f"{cal_type}_sb_counts",
            df[f"{cal_type}_sb1_counts"] + df[f"{cal_type}_sb2_counts"] + df[f"{cal_type}_sb3_counts"]
        )
        df = df.withColumn(
            f"{cal_type}_adv_counts",
            df[f"{cal_type}_sb_counts"] + df[f"{cal_type}_sp_counts"]
        )
        df = df.repartition(80)
        if cal_type == "asin":
            df_asin_agg = self.df_search_term_type.groupby(['asin']).agg(
                F.count('keyword').alias("asin_st_counts")
            )
            df = df.join(
                df_asin_agg, on=['asin'], how='left'
            )
        if cal_type == "st":
            # 计算asin数量、内部asin数量及占比
            df_st_agg = self.df_search_term_type\
                 .select("keyword", "asin")\
                 .join(self.df_self_asin, on=['asin'], how='left')\
                 .withColumn("is_self_asin", F.when(F.col("is_self_asin").isNotNull(), F.lit(1)).otherwise(F.lit(0)))\
                 .groupby(['keyword'])\
                 .agg(F.sum('is_self_asin').alias("self_asin_num"),
                      F.count('asin').alias("asin_num"))
            df = df.join(
                df_st_agg, on=['keyword'], how='left'
            ).withColumn(
                "self_asin_proportion",
                F.round(F.col('self_asin_num')/F.col('asin_num'), 4)
            )
        df = df.persist(StorageLevel.MEMORY_AND_DISK)
        return df

    def handle_ao_and_zr_flow_proportion(self):
        print("计算ao+zr流量占比:")
        # 1.计算asin的ao值和zr流量占比
        self.df_asin_count = self.df_asin_count.withColumn(
            "asin_ao_val", F.round(self.df_asin_count.asin_adv_counts / self.df_asin_count.asin_zr_counts, 3)
        ).withColumn(
            "asin_zr_flow_proportion",
            F.when(F.col("asin_st_counts").isNotNull(), F.round(F.col("asin_zr_counts") / F.col("asin_st_counts"), 3))
        )
        # 2.计算st的ao值和zr流量占比--首页zr位asin的平均值
        df_asin_ao_and_zr_flow_proportion = self.df_asin_count.select("asin", "asin_ao_val", "asin_zr_flow_proportion")
        df_st_ao_and_zr_flow_proportion = self.df_search_term_type.filter("data_type='zr' and page=1").select("keyword", "asin").join(
            df_asin_ao_and_zr_flow_proportion, on=['asin'], how='left'
        )
        df_st_ao = df_st_ao_and_zr_flow_proportion\
            .filter("asin_ao_val is not null")\
            .groupby(["keyword"])\
            .agg(F.round(F.mean("asin_ao_val"), 3).alias("st_ao_val"))
        df_st_ao = df_st_ao.repartition(80)
        df_st_zr_flow_proportion = df_st_ao_and_zr_flow_proportion\
            .filter("asin_zr_flow_proportion is not null")\
            .groupby(["keyword"])\
            .agg(F.round(F.mean("asin_zr_flow_proportion"), 3).alias("st_zr_flow_proportion"))
        df_st_zr_flow_proportion = df_st_zr_flow_proportion.repartition(80)
        self.df_st_count = self.df_st_count.join(
            df_st_ao, on=['keyword'], how='left'
        ).join(
            df_st_zr_flow_proportion, on=['keyword'], how='left'
        )
        # 3.关联回df_save
        self.df_save = self.df_save.join(
            self.df_st_count, on=['keyword'], how='left'
        ).persist(StorageLevel.MEMORY_ONLY)
        # 4.释放资源
        self.df_asin_count.unpersist()
        self.df_st_count.unpersist()

    def handle_monthly_sales(self):
        print("计算st月销:")
        # 去重处理
        asin_buy_data_window = Window.partitionBy(['keyword', 'page']).orderBy(
            F.desc_nulls_last('created_time'), F.desc_nulls_last('updated_time')
        )
        self.df_asin_buy_data = self.df_asin_buy_data.withColumn(
            "u_rank",
            F.rank().over(window=asin_buy_data_window)
        )
        self.df_asin_buy_data = self.df_asin_buy_data.filter('u_rank=1')\
            .drop('u_rank', 'created_time', 'updated_time', 'page')
        # 计算月销
        self.df_st_buy_data = self.df_asin_buy_data.withColumn(
            'asin_monthly_sales',
            self.u_parse_amazon_orders('buy_data')
        ).groupby(['keyword']).agg(
            F.sum('asin_monthly_sales').alias("st_monthly_sales")
        )
        # 关联回df_save
        self.df_save = self.df_save.join(
            self.df_st_buy_data, on=['keyword'], how='left'
        ).persist(StorageLevel.MEMORY_ONLY)
        # 释放资源
        self.df_asin_buy_data.unpersist()

    def handle_asin_detail(self):
        print("处理asin_detail:")
        # 1.去重取最新记录
        asin_detail_window = Window.partitionBy('asin').orderBy(
            F.desc_nulls_last('updated_time')
        )
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "u_rank",
            F.row_number().over(window=asin_detail_window)
        )
        self.df_asin_detail = self.df_asin_detail.filter('u_rank=1').drop('u_rank', 'updated_time')
        # 2.字段清洗解析
        self.df_asin_detail = self.df_asin_detail.withColumn(
            'site',
            F.lit(self.site_name)
        ).withColumn(
            'price',
            self.u_parse_asin_price('price')
        ).withColumn(
            'rating',
            self.u_parse_asin_rating('site', 'rating')
        ).withColumn(
            'reviews',
            self.u_parse_asin_reviews('reviews')
        ).withColumn(
            'package_quantity',
            F.when(
                F.col('title').isNotNull(), self.u_get_package_quantity('title')
            ).otherwise(1)
        )
        df_st_asin_detail = self.df_search_term_type.select("keyword", "asin").join(
            self.df_asin_detail, on=['asin'], how='left'
        )
        self.df_st_detail = df_st_asin_detail.groupby(['keyword']).agg(
            F.round(F.avg('rating'), 2).alias("rating_avg"),
            F.round(F.avg('price'), 2).alias("price_avg"),
            F.round(F.avg('reviews'), 0).alias("reviews_avg"),
            F.round(F.count(F.col('package_quantity') > 1)/F.count('asin'), 4).alias("package_quantity"),
        )
        # 3.关联回df_save
        self.df_save = self.df_save.join(
            self.df_st_detail, on=['keyword'], how='left'
        ).persist(StorageLevel.MEMORY_ONLY)
        # 4.释放资源
        self.df_asin_detail.unpersist()
        self.df_search_term_type.unpersist()

    def handle_save(self):
        # 存储前补充字段
        self.df_save = self.df_save.withColumn(
            'listing_sales_avg',
            F.round(F.col("st_monthly_sales")/F.col("asin_num"), 0)
        ).withColumn(
            'site_name',
            F.lit(self.site_name)
        ).withColumn(
            'batch',
            F.lit(self.batch)
        )
        # 空值处理
        self.df_save = self.df_save.na.fill({
            "st_ao_val": -1,
            "st_zr_flow_proportion": -1,
            "asin_total_num": -1,
            "asin_num": -1,
            "self_asin_num": -1,
            "self_asin_proportion": -1,
            "st_sp_counts": -1,
            "st_zr_counts": -1,
            "st_monthly_sales": -1,
            "listing_sales_avg": -1,
            "reviews_avg": -1,
            "rating_avg": -1,
            "price_avg": -1,
            "package_quantity": -1
        })
        self.df_save = self.df_save.select(
            "keyword", "lang", "st_ao_val", "st_zr_flow_proportion", "volume", "avg_3m", "avg_12m", "asin_total_num",
            "asin_num", "self_asin_num", "self_asin_proportion", "st_sp_counts", "st_zr_counts", "st_monthly_sales",
            "listing_sales_avg", "reviews_avg", "rating_avg", "price_avg", "depth", "results_count",
            "sponsored_ads_count", "page_1_reviews", "appearance", "last_seen", "update_time", "last_batch",
            "package_quantity", "site_name", "batch"
        )


if __name__ == '__main__':
    site_name = sys.argv[1]
    date_type = sys.argv[2]
    date_info = sys.argv[3]
    batch = sys.argv[4]
    handle_obj = DwdMerchantwordsMeasure(site_name=site_name, date_type=date_type, date_info=date_info, batch=batch)
    handle_obj.run()