1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import os
import sys
import re
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from pyspark.sql.types import IntegerType, DoubleType
from utils.templates import Templates
from pyspark.sql import functions as F
from pyspark.sql.window import Window
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from pyspark.storagelevel import StorageLevel
from yswg_utils.common_udf import udf_parse_amazon_orders, udf_get_package_quantity
class DwdMerchantwordsMeasure(Templates):
def __init__(self, site_name='us', date_type='day', date_info='2024-01-01', batch='2024-0'):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.batch = batch
self.db_save = 'dwd_merchantwords_measure_v2'
self.spark = self.create_spark_object(
app_name=f"DwdMerchantwordsMeasure: {self.site_name}, {self.date_type}, {self.date_info}, {self.batch}")
self.partitions_num = 5
self.partitions_by = ['site_name', 'batch']
self.df_merchantwords_detail = self.spark.sql(f"select 1+1;")
self.df_products_num = self.spark.sql(f"select 1+1;")
self.df_search_term_type = self.spark.sql(f"select 1+1;")
self.df_self_asin = self.spark.sql(f"select 1+1;")
self.df_asin_detail = self.spark.sql(f"select 1+1;")
self.df_asin_buy_data = self.spark.sql(f"select 1+1;")
self.df_asin_count = self.spark.sql(f"select 1+1;")
self.df_st_count = self.spark.sql(f"select 1+1;")
self.df_st_buy_data = self.spark.sql(f"select 1+1;")
self.df_st_detail = self.spark.sql(f"select 1+1;")
self.df_save = self.spark.sql(f"select 1+1;")
self.data_type_list = ['zr', 'sp', 'sb1', 'sb2', 'sb3', 'hr', 'bs', 'ac']
# 引入公用udf
self.u_parse_amazon_orders = self.spark.udf.register('u_parse_amazon_orders', udf_parse_amazon_orders, IntegerType())
self.u_get_package_quantity = self.spark.udf.register('u_get_package_quantity', udf_get_package_quantity, IntegerType())
# 自定义udf
self.u_parse_asin_price = self.spark.udf.register('u_parse_asin_price', self.udf_parse_asin_price, DoubleType())
self.u_parse_asin_rating = self.spark.udf.register('u_parse_asin_rating', self.udf_parse_asin_rating, DoubleType())
self.u_parse_asin_reviews = self.spark.udf.register('u_parse_asin_reviews', self.udf_parse_asin_reviews, IntegerType())
hdfs_path = f"/home/{SparkUtil.DEF_USE_DB}/dwd/{self.db_save}/site_name={self.site_name}/batch={self.batch}"
print(f"清除hdfs目录中.....{hdfs_path}")
HdfsUtils.delete_hdfs_file(hdfs_path)
@staticmethod
def udf_parse_asin_price(price):
if price:
try:
match_us = re.search(r'\$([\d,]+(?:\.\d+)?)', price)
if match_us:
number_str = match_us.group(1).replace(',', '')
return float(number_str)
match_de = re.search(r'([\d.]+),(\d+)\s*€', price)
if match_de:
integer_part = match_de.group(1).replace('.', '')
decimal_part = match_de.group(2)
number_str = f"{integer_part}.{decimal_part}"
return float(number_str)
else:
return None
except ValueError:
return None
return None
@staticmethod
def udf_parse_asin_rating(site, rating):
"""
解析asin详情页面的rating
"""
if rating:
if site == 'de':
rating = re.findall(r"(.*) von", rating)[0]
elif site == 'fr':
rating = re.findall(r"(.*) sur", rating)[0]
elif site == 'it':
rating = re.findall(r"(.*) su", rating)[0]
elif site == 'es':
rating = re.findall(r"(.*) de", rating)[0]
else:
rating = re.findall(r"(.*) out", rating)[0]
rating = rating.replace(',', '.')
return float(rating)
return None
@staticmethod
def udf_parse_asin_reviews(reviews):
if reviews:
try:
match = re.search(r'\b(\d{1,3}(?:[,.]\d{3})*)(?:\s+\w+)?\b', reviews)
if match:
number_str = match.group(1).replace(',', '').replace('.', '')
return int(number_str)
else:
return None
except ValueError:
return None
else:
return None
def read_data(self):
print("1.读取dwt_merchantwords_st_detail")
sql = f"""
select
keyword,
volume,
avg_3m,
avg_12m,
depth,
results_count,
sponsored_ads_count,
page_1_reviews,
appearance,
last_seen,
update_time,
lang,
last_batch
from dwt_merchantwords_st_detail_merge
where site_name = '{self.site_name}'
and batch = '2024-1';
"""
self.df_merchantwords_detail = self.spark.sql(sqlQuery=sql)
self.df_merchantwords_detail = self.df_merchantwords_detail.repartition(80).persist(StorageLevel.MEMORY_ONLY)
self.df_merchantwords_detail.show(10, truncate=True)
print("2.读取ods_merchantwords_brand_analytics,得到产品总数")
sql = f"""
select
search_term as keyword,
quantity_being_sold as asin_total_num,
updated_time
from ods_merchantwords_brand_analytics
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}';
"""
self.df_products_num = self.spark.sql(sqlQuery=sql)
self.df_products_num = self.df_products_num.repartition(80).persist(StorageLevel.MEMORY_ONLY)
self.df_products_num.show(10, truncate=True)
print("3.读取ods_merchantwords_search_term_type,得到搜索词、asin、类型")
for data_type in self.data_type_list:
if data_type in ['zr', 'sp']:
sql = f"""
select
search_term as keyword,
asin,
page,
page_row,
'{data_type}' as data_type,
created_time,
updated_time
from ods_merchantwords_search_term_{data_type}
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}';
"""
df = self.spark.sql(sqlQuery=sql)
df = df.repartition(80)
elif data_type in ['sb1', 'sb2', 'sb3']:
data_type_int = int(data_type[-1])
sql = f"""
select
search_term as keyword,
asin,
page,
'{data_type}' as data_type,
created_time,
updated_time
from ods_merchantwords_search_term_sb
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}'
and data_type = {data_type_int};
"""
df = self.spark.sql(sqlQuery=sql)
df = df.repartition(80)
else:
sql = f"""
select
search_term as keyword,
asin,
page,
'{data_type}' as data_type,
created_time,
updated_time
from ods_merchantwords_search_term_{data_type}
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}';
"""
df = self.spark.sql(sqlQuery=sql)
df = df.repartition(80)
self.df_search_term_type = self.df_search_term_type.unionByName(df, allowMissingColumns=True)
self.df_search_term_type = self.df_search_term_type.persist(StorageLevel.MEMORY_AND_DISK)
self.df_search_term_type.show(10, truncate=True)
print("4.读取ods_self_asin,得到公司内部产品")
sql = f"""
select
asin,
1 as is_self_asin
from ods_self_asin
where site_name = '{self.site_name}'
group by asin;
"""
df_self_asin = self.spark.sql(sqlQuery=sql)
self.df_self_asin = F.broadcast(df_self_asin)
self.df_self_asin.show(10, truncate=True)
print("5.读取ods_merchantwords_asin_detail,得到asin数据")
sql = f"""
select
asin,
title,
img,
price,
rating,
reviews,
updated_time
from ods_merchantwords_asin_detail
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}';
"""
self.df_asin_detail = self.spark.sql(sqlQuery=sql)
self.df_asin_detail = self.df_asin_detail.repartition(80).persist(StorageLevel.MEMORY_ONLY)
self.df_asin_detail.show(10, truncate=True)
print("6.读取ods_merchantwords_other_search_term_data,得到asin月销")
sql = f"""
select
search_term as keyword,
asin,
buy_data,
page,
created_time,
updated_time
from ods_merchantwords_other_search_term_data
where site_name = '{self.site_name}'
and date_type = '{self.date_type}'
and date_info = '{self.date_info}';
"""
self.df_asin_buy_data = self.spark.sql(sqlQuery=sql)
self.df_asin_buy_data = self.df_asin_buy_data.repartition(80).persist(StorageLevel.MEMORY_ONLY)
self.df_asin_buy_data.show(10, truncate=True)
def handle_data(self):
# 处理产品总数
self.handle_products_num()
# df_search_term_type去重处理
self.handle_search_term_asin_type()
# 处理asin维度下类型词count
self.df_asin_count = self.handle_st_asin_counts(cal_type="asin")
# 处理st维度下asin_count + 内部asin_count
self.df_st_count = self.handle_st_asin_counts(cal_type="st")
# 处理ao值和zr流量占比
self.handle_ao_and_zr_flow_proportion()
# 处理月销
self.handle_monthly_sales()
# 处理asin_detail:价格、rating等
self.handle_asin_detail()
# 保存前字段处理
self.handle_save()
def handle_products_num(self):
print("处理产品总数:")
# 1.去重处理
products_num_window = Window.partitionBy('keyword').orderBy(
F.desc_nulls_last('updated_time')
)
self.df_products_num = self.df_products_num.withColumn(
"u_rank",
F.row_number().over(window=products_num_window)
)
self.df_products_num = self.df_products_num.filter('u_rank=1').drop('u_rank', 'updated_time')
# 过滤出asin_total_num大于0的词
self.df_products_num = self.df_products_num.filter('asin_total_num > 0')
# 2.关联回df_save
self.df_save = self.df_merchantwords_detail.join(
self.df_products_num, on=['keyword'], how='inner'
).persist(StorageLevel.MEMORY_ONLY)
# 3.释放资源
self.df_merchantwords_detail.unpersist()
self.df_products_num.unpersist()
def handle_search_term_asin_type(self):
print("df_search_term_type去重处理:")
# 1.去重处理,防止爬虫重复抓取
st_asin_window = Window.partitionBy(['data_type', 'keyword', 'page']).orderBy(
F.desc_nulls_last('created_time'), F.desc_nulls_last('updated_time')
)
self.df_search_term_type = self.df_search_term_type.withColumn(
"u_rank",
F.rank().over(window=st_asin_window)
)
self.df_search_term_type = self.df_search_term_type.filter('u_rank=1')\
.drop('u_rank', 'created_time', 'updated_time')
def handle_st_asin_counts(self, cal_type="asin"):
print(f"计算{cal_type}_counts")
cal_type_complete = "keyword" if cal_type == "st" else cal_type
self.df_search_term_type = self.df_search_term_type.withColumn(
f"{cal_type}_data_type",
F.concat(F.lit(f"{cal_type}_"), self.df_search_term_type.data_type, F.lit(f"_counts"))
)
df = self.df_search_term_type.groupby([f'{cal_type_complete}'])\
.pivot(f"{cal_type}_data_type").count()
df = df.fillna(0)
df = df.withColumn(
f"{cal_type}_sb_counts",
df[f"{cal_type}_sb1_counts"] + df[f"{cal_type}_sb2_counts"] + df[f"{cal_type}_sb3_counts"]
)
df = df.withColumn(
f"{cal_type}_adv_counts",
df[f"{cal_type}_sb_counts"] + df[f"{cal_type}_sp_counts"]
)
df = df.repartition(80)
if cal_type == "asin":
df_asin_agg = self.df_search_term_type.groupby(['asin']).agg(
F.count('keyword').alias("asin_st_counts")
)
df = df.join(
df_asin_agg, on=['asin'], how='left'
)
if cal_type == "st":
# 计算asin数量、内部asin数量及占比
df_st_agg = self.df_search_term_type\
.select("keyword", "asin")\
.join(self.df_self_asin, on=['asin'], how='left')\
.withColumn("is_self_asin", F.when(F.col("is_self_asin").isNotNull(), F.lit(1)).otherwise(F.lit(0)))\
.groupby(['keyword'])\
.agg(F.sum('is_self_asin').alias("self_asin_num"),
F.count('asin').alias("asin_num"))
df = df.join(
df_st_agg, on=['keyword'], how='left'
).withColumn(
"self_asin_proportion",
F.round(F.col('self_asin_num')/F.col('asin_num'), 4)
)
df = df.persist(StorageLevel.MEMORY_AND_DISK)
return df
def handle_ao_and_zr_flow_proportion(self):
print("计算ao+zr流量占比:")
# 1.计算asin的ao值和zr流量占比
self.df_asin_count = self.df_asin_count.withColumn(
"asin_ao_val", F.round(self.df_asin_count.asin_adv_counts / self.df_asin_count.asin_zr_counts, 3)
).withColumn(
"asin_zr_flow_proportion",
F.when(F.col("asin_st_counts").isNotNull(), F.round(F.col("asin_zr_counts") / F.col("asin_st_counts"), 3))
)
# 2.计算st的ao值和zr流量占比--首页zr位asin的平均值
df_asin_ao_and_zr_flow_proportion = self.df_asin_count.select("asin", "asin_ao_val", "asin_zr_flow_proportion")
df_st_ao_and_zr_flow_proportion = self.df_search_term_type.filter("data_type='zr' and page=1").select("keyword", "asin").join(
df_asin_ao_and_zr_flow_proportion, on=['asin'], how='left'
)
df_st_ao = df_st_ao_and_zr_flow_proportion\
.filter("asin_ao_val is not null")\
.groupby(["keyword"])\
.agg(F.round(F.mean("asin_ao_val"), 3).alias("st_ao_val"))
df_st_ao = df_st_ao.repartition(80)
df_st_zr_flow_proportion = df_st_ao_and_zr_flow_proportion\
.filter("asin_zr_flow_proportion is not null")\
.groupby(["keyword"])\
.agg(F.round(F.mean("asin_zr_flow_proportion"), 3).alias("st_zr_flow_proportion"))
df_st_zr_flow_proportion = df_st_zr_flow_proportion.repartition(80)
self.df_st_count = self.df_st_count.join(
df_st_ao, on=['keyword'], how='left'
).join(
df_st_zr_flow_proportion, on=['keyword'], how='left'
)
# 3.关联回df_save
self.df_save = self.df_save.join(
self.df_st_count, on=['keyword'], how='left'
).persist(StorageLevel.MEMORY_ONLY)
# 4.释放资源
self.df_asin_count.unpersist()
self.df_st_count.unpersist()
def handle_monthly_sales(self):
print("计算st月销:")
# 去重处理
asin_buy_data_window = Window.partitionBy(['keyword', 'page']).orderBy(
F.desc_nulls_last('created_time'), F.desc_nulls_last('updated_time')
)
self.df_asin_buy_data = self.df_asin_buy_data.withColumn(
"u_rank",
F.rank().over(window=asin_buy_data_window)
)
self.df_asin_buy_data = self.df_asin_buy_data.filter('u_rank=1')\
.drop('u_rank', 'created_time', 'updated_time', 'page')
# 计算月销
self.df_st_buy_data = self.df_asin_buy_data.withColumn(
'asin_monthly_sales',
self.u_parse_amazon_orders('buy_data')
).groupby(['keyword']).agg(
F.sum('asin_monthly_sales').alias("st_monthly_sales")
)
# 关联回df_save
self.df_save = self.df_save.join(
self.df_st_buy_data, on=['keyword'], how='left'
).persist(StorageLevel.MEMORY_ONLY)
# 释放资源
self.df_asin_buy_data.unpersist()
def handle_asin_detail(self):
print("处理asin_detail:")
# 1.去重取最新记录
asin_detail_window = Window.partitionBy('asin').orderBy(
F.desc_nulls_last('updated_time')
)
self.df_asin_detail = self.df_asin_detail.withColumn(
"u_rank",
F.row_number().over(window=asin_detail_window)
)
self.df_asin_detail = self.df_asin_detail.filter('u_rank=1').drop('u_rank', 'updated_time')
# 2.字段清洗解析
self.df_asin_detail = self.df_asin_detail.withColumn(
'site',
F.lit(self.site_name)
).withColumn(
'price',
self.u_parse_asin_price('price')
).withColumn(
'rating',
self.u_parse_asin_rating('site', 'rating')
).withColumn(
'reviews',
self.u_parse_asin_reviews('reviews')
).withColumn(
'package_quantity',
F.when(
F.col('title').isNotNull(), self.u_get_package_quantity('title')
).otherwise(1)
)
df_st_asin_detail = self.df_search_term_type.select("keyword", "asin").join(
self.df_asin_detail, on=['asin'], how='left'
)
self.df_st_detail = df_st_asin_detail.groupby(['keyword']).agg(
F.round(F.avg('rating'), 2).alias("rating_avg"),
F.round(F.avg('price'), 2).alias("price_avg"),
F.round(F.avg('reviews'), 0).alias("reviews_avg"),
F.round(F.count(F.col('package_quantity') > 1)/F.count('asin'), 4).alias("package_quantity"),
)
# 3.关联回df_save
self.df_save = self.df_save.join(
self.df_st_detail, on=['keyword'], how='left'
).persist(StorageLevel.MEMORY_ONLY)
# 4.释放资源
self.df_asin_detail.unpersist()
self.df_search_term_type.unpersist()
def handle_save(self):
# 存储前补充字段
self.df_save = self.df_save.withColumn(
'listing_sales_avg',
F.round(F.col("st_monthly_sales")/F.col("asin_num"), 0)
).withColumn(
'site_name',
F.lit(self.site_name)
).withColumn(
'batch',
F.lit(self.batch)
)
# 空值处理
self.df_save = self.df_save.na.fill({
"st_ao_val": -1,
"st_zr_flow_proportion": -1,
"asin_total_num": -1,
"asin_num": -1,
"self_asin_num": -1,
"self_asin_proportion": -1,
"st_sp_counts": -1,
"st_zr_counts": -1,
"st_monthly_sales": -1,
"listing_sales_avg": -1,
"reviews_avg": -1,
"rating_avg": -1,
"price_avg": -1,
"package_quantity": -1
})
self.df_save = self.df_save.select(
"keyword", "lang", "st_ao_val", "st_zr_flow_proportion", "volume", "avg_3m", "avg_12m", "asin_total_num",
"asin_num", "self_asin_num", "self_asin_proportion", "st_sp_counts", "st_zr_counts", "st_monthly_sales",
"listing_sales_avg", "reviews_avg", "rating_avg", "price_avg", "depth", "results_count",
"sponsored_ads_count", "page_1_reviews", "appearance", "last_seen", "update_time", "last_batch",
"package_quantity", "site_name", "batch"
)
if __name__ == '__main__':
site_name = sys.argv[1]
date_type = sys.argv[2]
date_info = sys.argv[3]
batch = sys.argv[4]
handle_obj = DwdMerchantwordsMeasure(site_name=site_name, date_type=date_type, date_info=date_info, batch=batch)
handle_obj.run()