dws_st_brand_info.py 6.09 KB
import os
import sys
import re
from functools import reduce

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.hdfs_utils import HdfsUtils
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, IntegerType, DoubleType, MapType
from utils.spark_util import SparkUtil
from utils.common_util import CommonUtil, DateTypes

class DwsStBrandInfo(object):
    def __init__(self, site_name, date_type, date_info):
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        app_name = f"{self.__class__.__name__}:{site_name}:{date_type}:{date_info}"
        self.spark = SparkUtil.get_spark_session(app_name)
        self.hive_table = f"dws_st_brand_info"
        self.hdfs_path = f"/home/{SparkUtil.DEF_USE_DB}/dws/{self.hive_table}/site_name={self.site_name}/date_type={self.date_type}/date_info={self.date_info}"
        self.partitions_num = CommonUtil.reset_partitions(site_name, 10)

        self.year_month = self.get_year_month()
        self.last_year_month = CommonUtil.get_month_offset(self.year_month, -1)

    # # 解析品牌词
    # def st_brand_label(self,brand_list):
    #     def udf_st_brand_label(search_term):
    #         match_brand = None
    #         label_type = 0
    #         for brand in brand_list:
    #             pattern = re.compile(r'\b(?:{})\b'.format(re.escape(str(brand))), flags=re.IGNORECASE)
    #             if bool(pattern.search(search_term)):
    #                 match_brand = str(brand)
    #                 label_type = 1
    #                 break
    #         return {"match_brand": match_brand, "label_type": label_type}
    #     return F.udf(udf_st_brand_label, MapType(StringType(), StringType(), True))

    # 解析品牌词
    def st_brand_label(self, brand_list):
        pattern = re.compile(r'\b(?:{})\b'.format('|'.join([re.escape(x) for x in brand_list])), flags=re.IGNORECASE)
        def udf_st_brand_label(search_term):
            match_brand = None
            label_type = 0
            if len(brand_list) > 0:
                result = pattern.search(search_term)
                if bool(result):
                    match_brand = str(result.group())
                    label_type = 1
            return {"match_brand": match_brand, "label_type": label_type}
        return F.udf(udf_st_brand_label, MapType(StringType(), StringType(), True))

    def get_year_month(self):
        # 根据日期获取当前周
        if self.date_type == DateTypes.week.name:
            sql = f"select year_month from dim_date_20_to_30 where year_week='{self.date_info}'"
            df = self.spark.sql(sqlQuery=sql).toPandas()
            print(list(df.year_month)[0])
            return list(df.year_month)[0]
        elif self.date_type == DateTypes.month.name or date_type == DateTypes.month_week.name:
            return self.date_info

    def run(self):
        sql = f"""
            select 
                search_term 
            from dim_st_detail 
            where site_name = '{self.site_name}' 
              and date_type = '{self.date_type}' 
              and date_info = '{self.date_info}'
        """
        df_st_detail = self.spark.sql(sqlQuery=sql)
        print("sql:", sql)
        # 重分区增加并行度
        df_st_detail = df_st_detail.repartition(80, 'search_term')

        if self.date_type == DateTypes.week.name:
            # 获取品牌词库
            sql = f"""
                select 
                    st_brand_name_lower as brand_name
                from dim_st_brand_info
                where site_name = '{self.site_name}'
                  and date_type = 'month'
                  and date_info in ('{self.last_year_month}','{self.year_month}')
                  and length(st_brand_name_lower) > 1
                  and black_flag = 0
            """
        elif self.date_type == DateTypes.month.name or date_type == DateTypes.month_week.name:
            sql = f"""
                select 
                    st_brand_name_lower as brand_name
                from dim_st_brand_info
                where site_name = '{self.site_name}'
                  and date_type = '{self.date_type}'
                  and date_info = '{self.date_info}'
                  and length(st_brand_name_lower) > 1
                  and black_flag = 0
            """
        df_st_brand = self.spark.sql(sqlQuery=sql)
        df_st_brand = df_st_brand.dropDuplicates(['brand_name'])
        print("sql:", sql)
        # 将数据转换成pandas_df
        pd_df = df_st_brand.toPandas()
        # 提取品牌词库list
        brand_list = pd_df["brand_name"].values.tolist()

        df_st_map = self.st_brand_label(brand_list)(df_st_detail.search_term)
        df_st_detail = df_st_detail.withColumn("first_match_brand", df_st_map["match_brand"])
        df_st_detail = df_st_detail.withColumn("st_brand_label", df_st_map["label_type"])

        # 补全分区字段
        df_save = df_st_detail.select(
            F.col('search_term'),
            F.col('first_match_brand'),
            F.col('st_brand_label').cast('int').alias('st_brand_label'),
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('created_time'),
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('updated_time'),
            F.lit(self.site_name).alias("site_name"),
            F.lit(self.date_type).alias("date_type"),
            F.lit(self.date_info).alias("date_info")
        )

        df_save = df_save.repartition(self.partitions_num)
        partition_by = ["site_name", "date_type", "date_info"]
        print(f"清除hdfs目录中.....{self.hdfs_path}")
        HdfsUtils.delete_file_in_folder(self.hdfs_path)
        print(f"当前存储的表名为:{self.hive_table},分区为{partition_by}")
        df_save.write.saveAsTable(name=self.hive_table, format='hive', mode='append', partitionBy=partition_by)
        print("success")


if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)
    date_type = CommonUtil.get_sys_arg(2, None)
    date_info = CommonUtil.get_sys_arg(3, None)
    obj = DwsStBrandInfo(site_name, date_type, date_info)
    obj.run()