1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
"""
@Author : wangrui
@Description : 流量选品
@SourceTable :
dwd_asin_measure
dim_asin_detail
ods_bsr_end
dim_asin_bs_category
dim_fd_asin_info
dim_asin_volume
@SinkTable : dwt_flow_asin
@CreateTime : 2023/01/10 07:55
@UpdateTime : 2023/01/10 07:55
"""
import os
import sys
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from datetime import datetime, timedelta
from pyspark.sql import functions as F
from utils.db_util import DBUtil
from utils.spark_util import SparkUtil
from utils.common_util import CommonUtil
from utils.hdfs_utils import HdfsUtils
from pyspark.storagelevel import StorageLevel
from pyspark.sql.types import *
from utils.DorisHelper import DorisHelper
class DwtFlowAsin(Templates):
def __init__(self, site_name="us", date_type="week", date_info="2022-1"):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.hive_tb = f"dwt_flow_asin"
self.partition_dict = {
"site_name": site_name,
"date_type": date_type,
"date_info": date_info
}
self.hdfs_path = CommonUtil.build_hdfs_path(self.hive_tb, partition_dict=self.partition_dict)
self.spark = self.create_spark_object(
app_name=f"{self.hive_tb}: {self.site_name}, {self.date_type}, {self.date_info}")
self.previous_date = self.udf_get_previous_last_30_day(self)
self.current_date = self.udf_get_current_time(self)
# doris相关配置
self.doris_db = "test" if self.test_flag == "test" else "selection"
self.asin_latest_detail_table = f"{self.site_name}_asin_latest_detail"
# 写入、分区初始化
self.df_save = self.spark.sql(f"select 1+1;")
self.partitions_by = ['site_name', 'date_type', 'date_info']
self.reset_partitions(60)
self.launch_time_interval_dict = self.get_launch_time_interval_dict()
# 初始化全局df
self.df_asin_detail = self.spark.sql(f"select 1+1;")
self.df_asin_measure = self.spark.sql(f"select 1+1;")
self.df_bsr_end = self.spark.sql(f"select 1+1;")
self.df_asin_bs_category = self.spark.sql(f"select 1+1;")
self.df_fd_asin_info = self.spark.sql(f"select 1+1;")
self.df_flow_asin_last = self.spark.sql(f"select 1+1;")
self.df_title_matching_degree = self.spark.sql(f"select 1+1;")
@staticmethod
def udf_get_previous_last_30_day(self):
self.df_date = self.spark.sql(f"select * from dim_date_20_to_30 ;")
df = self.df_date.toPandas()
if self.date_type == 'last30day':
df_loc = df.loc[df.date == f'{self.date_info}']
current_date_id = list(df_loc.id)[0]
original_date_id = int(current_date_id) - 30
df_loc = df.loc[df.id == original_date_id]
original_year_month = list(df_loc.year_month)[0]
df_loc = df.loc[(df.year_month == original_year_month) & (df.day == 1)]
original_year_month_id = list(df_loc.id)[0]
previous_year_month_id = int(original_year_month_id) - 1
df_loc = df.loc[df.id == previous_year_month_id]
previous_date = list(df_loc.year_month)[0]
return previous_date
elif self.date_type in ['month', 'month_week']:
df_loc = df.loc[(df.year_month == f'{self.date_info}') & (df.day == 1)]
current_month_id = list(df_loc.id)[0]
previous_month_id = int(current_month_id) - 1
df_loc = df.loc[df.id == previous_month_id]
previous_date = list(df_loc.year_month)[0]
return previous_date
elif self.date_type == '4_week':
df_loc = df.loc[(df.year_week == f'{self.date_info}') & (df.week_day == 1)]
current_4_week_id = list(df_loc.id)[0]
df_loc = df.loc[df.id == int(current_4_week_id) - 21]
current_4_week_month = list(df_loc.year_month)[0]
df_loc = df.loc[(df.year_month == current_4_week_month) & (df.day == 1)]
current_4_week_month_id = list(df_loc.id)[0]
previous_4_week_month_id = int(current_4_week_month_id) - 1
df_loc = df.loc[df.id == previous_4_week_month_id]
previous_date = list(df_loc.year_month)[0]
return previous_date
@staticmethod
def udf_get_current_time(self):
self.df_date = self.spark.sql(f"select * from dim_date_20_to_30 ;")
df = self.df_date.toPandas()
if self.date_type == 'month':
df_loc = df.loc[(df.year_month == f'{self.date_info}') & (df.day == 25)]
current_id = list(df_loc.id)[0]
df_loc = df.loc[df.id == current_id]
current_date = list(df_loc.date)[0]
return current_date
elif self.date_type in ['week', '4_week']:
df_loc = df.loc[(df.year_week == f'{self.date_info}') & (df.week_day == 7)]
current_id = list(df_loc.id)[0]
df_loc = df.loc[df.id == current_id]
current_date = list(df_loc.date)[0]
return current_date
elif self.date_type in ['last30day', 'day']:
return self.date_info
elif self.date_type in ['month_week']:
return str(datetime.now().date())
@staticmethod
def get_launch_time_interval_dict():
cur_date = datetime.now().date()
return {
"one_month": (cur_date + timedelta(days=-30)).strftime('%Y-%m-%d'),
"three_month": (cur_date + timedelta(days=-90)).strftime('%Y-%m-%d'),
"six_month": (cur_date + timedelta(days=-180)).strftime('%Y-%m-%d'),
"twelve_month": (cur_date + timedelta(days=-360)).strftime('%Y-%m-%d'),
"twenty_four_month": (cur_date + timedelta(days=-720)).strftime('%Y-%m-%d'),
"thirty_six_month": (cur_date + timedelta(days=-1080)).strftime('%Y-%m-%d')
}
@staticmethod
def calculate_change(current_col, previous_col):
rise_col = F.col(current_col) - F.col(previous_col)
change_col = F.when((F.col(previous_col).isNotNull()) & (F.col(previous_col) != 0),
F.round((F.col(current_col) - F.col(previous_col)) / F.col(previous_col), 4)
).otherwise(None)
return rise_col, change_col
def read_data(self):
print("1.获取dwd_asin_measure,得到各种类型的统计、ao值、自然流量占比、月销信息、bsr销量信息")
sql = f"""
select asin, round(asin_ao_val, 3) as asin_ao_val, round(asin_ao_val_matrix, 3) as matrix_ao_val,
asin_zr_counts, asin_sp_counts, (asin_sb1_counts + asin_sb2_counts) as asin_sb_counts,
asin_sb3_counts as asin_vi_counts, asin_bs_counts, asin_ac_counts, asin_tr_counts, asin_er_counts, asin_st_counts,
asin_bsr_orders as bsr_orders, asin_amazon_orders, round(asin_zr_flow_proportion, 3) as zr_flow_proportion,
round(asin_flow_proportion_matrix, 3) as matrix_flow_proportion
from dwd_asin_measure where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}'"""
print("sql:" + sql)
self.df_asin_measure = self.spark.sql(sqlQuery=sql)
self.df_asin_measure = self.df_asin_measure.repartition(60).persist(StorageLevel.DISK_ONLY)
self.df_asin_measure.show(10, truncate=False)
print("2.获取dim_asin_detail,得到asin详情")
sql = f"""
select asin, asin_img_url, lower(asin_title) as asin_title, asin_title_len, asin_price, asin_rating, asin_total_comments,
asin_buy_box_seller_type, seller_json, asin_page_inventory, asin_category_desc, asin_volume, asin_weight, asin_length, asin_width, asin_height,
asin_color, asin_size, asin_style, asin_is_sale, asin_launch_time, asin_is_new, asin_img_num, asin_img_type, asin_material,
lower(asin_brand_name) as asin_brand_name, asin_activity_type, act_one_two_val, act_three_four_val, act_five_six_val, act_eight_val,
one_star,two_star, three_star, four_star, five_star, low_star, together_asin, ac_name, variation_num, account_name, account_id, parent_asin,
asin_lob_info, is_contains_lob_info, is_package_quantity_abnormal, asin_quantity_variation_type, package_quantity,
asin_is_movie as is_movie_label, asin_is_brand as is_brand_label, asin_is_alarm as is_alarm_brand, asin_is_self,
date_format(created_time, 'yyyy-MM-dd HH:mm:ss') as asin_crawl_date, asin_bought_month, asin_image_view,
case when product_description is not null then 1 else 0 end as is_with_product_description, asin_describe,
category_id as top_category_id, category_first_id as top_category_first_id, customer_reviews_json, img_list as img_info,
asin_follow_sellers as follow_sellers_count
from dim_asin_detail where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"""
print("sql:" + sql)
self.df_asin_detail = self.spark.sql(sqlQuery=sql)
self.df_asin_detail = self.df_asin_detail.repartition(60).persist(StorageLevel.DISK_ONLY)
self.df_asin_detail.show(10, truncate=False)
print("3.获取ods_bsr_end,获取有效rank信息")
sql = f"""select rank as limit_rank, category_id as category_first_id from ods_bsr_end where site_name='{self.site_name}'"""
print("sql:" + sql)
df_bsr_end = self.spark.sql(sqlQuery=sql)
self.df_bsr_end = F.broadcast(df_bsr_end)
self.df_bsr_end.show(10, truncate=False)
print("4.获取dim_asin_bs_category,获取分类名称")
sql = f"""
select asin, asin_bs_cate_1_rank as first_category_rank, asin_bs_cate_current_rank as current_category_rank,
asin_bs_cate_1_id as category_first_id, asin_bs_cate_current_id as category_id
from dim_asin_bs_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}'"""
print("sql:" + sql)
self.df_asin_bs_category = self.spark.sql(sqlQuery=sql)
self.df_asin_bs_category = self.df_asin_bs_category.repartition(60).persist(StorageLevel.DISK_ONLY)
self.df_asin_bs_category.show(10, truncate=False)
print("5.获取dim_fd_asin_info,得到卖家相关信息")
if (self.date_type in ['month', 'month_week'] and self.date_info >= '2024-05') or (self.date_type == '4_week' and self.date_info >= '2024-21'):
sql = f"""
select fd_unique as account_id, upper(fd_country_name) as seller_country_name from dim_fd_asin_info
where site_name='{self.site_name}' and fd_unique is not null group by fd_unique, fd_country_name"""
else:
sql = f"""
select account_id, account_name, seller_country_name, asin
from (select fd_unique as account_id, fd_account_name as account_name, upper(fd_country_name) as seller_country_name, asin,
ROW_NUMBER() OVER (PARTITION BY asin ORDER BY updated_at DESC) AS t_rank
from dim_fd_asin_info where site_name = '{self.site_name}' and fd_unique is not null) tmp
where tmp.t_rank = 1
"""
self.df_fd_asin_info = self.spark.sql(sqlQuery=sql)
self.df_fd_asin_info = self.df_fd_asin_info.repartition(60).persist(StorageLevel.DISK_ONLY)
self.df_fd_asin_info.show(10, truncate=False)
print("6.获取上一个最近30天的整合结果")
sql = f"""
select asin, round(asin_ao_val, 3) as previous_asin_ao_val, asin_price as previous_asin_price,
sales as pervious_sales, variation_num as previous_variation_num, asin_rating as previous_asin_rating,
bsr_orders as previous_bsr_orders, asin_total_comments as previous_asin_total_comments,
first_category_rank as previous_first_category_rank from dwt_flow_asin
where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.previous_date}'
"""
print("sql:" + sql)
self.df_flow_asin_last = self.spark.sql(sqlQuery=sql)
self.df_flow_asin_last = self.df_flow_asin_last.repartition(60).persist(StorageLevel.DISK_ONLY)
self.df_flow_asin_last.show(10, truncate=False)
print("7.获取asin的标题匹配度")
sql = f"""
select asin, contains_flag from dwd_title_matching_degree where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}'
"""
print("sql:" + sql)
self.df_title_matching_degree = self.spark.sql(sqlQuery=sql)
self.df_title_matching_degree = self.df_title_matching_degree.repartition(60).persist(StorageLevel.DISK_ONLY)
self.df_title_matching_degree.show(10, truncate=False)
# 处理asin基础属性信息(体积重量相关)及bsr销售额相关信息
def handle_asin_basic_attribute(self):
# 处理重量类型
self.df_asin_detail = self.df_asin_detail.withColumn("asin_weight_type", F.expr("""CASE
WHEN asin_weight BETWEEN 0 AND 0.2 THEN 1
WHEN asin_weight BETWEEN 0.2 AND 0.4 THEN 2
WHEN asin_weight BETWEEN 0.4 AND 0.6 THEN 3
WHEN asin_weight BETWEEN 0.6 AND 1 THEN 4
WHEN asin_weight BETWEEN 1 AND 2 THEN 5
WHEN asin_weight >= 2 THEN 6
ELSE 0 END"""))
# 处理体积重/毛重相关信息
self.df_asin_detail = self.df_asin_detail.withColumn(
"asin_weight_ratio",
F.when(
F.col("asin_length").isNotNull() & (F.col("asin_width").isNotNull()) & (F.col("asin_height").isNotNull()) & (F.col("asin_weight") > 0),
F.round(F.col("asin_length") * F.col("asin_width") * F.col("asin_height") * 3.2774128 / (F.col("asin_weight") * 453.59), 4)
).otherwise(F.lit(-1))
)
# 处理尺寸类型
if self.site_name == 'us':
expr_str = f"""
CASE WHEN asin_weight > 0 AND asin_weight * 16 <= 16 AND asin_length > 0 AND asin_length <= 15 AND asin_width > 0 AND asin_width <= 12 AND asin_height > 0 AND asin_height <= 0.75 THEN 1
WHEN asin_weight > 0 AND asin_weight <= 20 AND asin_length > 0 AND asin_length <= 18 AND asin_width > 0 AND asin_width <= 14 AND asin_height > 0 AND asin_height <= 8 THEN 2
WHEN asin_weight > 0 AND asin_weight <= 70 AND asin_length > 0 AND asin_length <= 60 AND asin_width > 0 AND asin_width <= 30 AND asin_length + asin_length + (asin_width + asin_height) * 2 <= 130 THEN 3
WHEN asin_weight > 0 AND asin_weight <= 150 AND asin_length > 0 AND asin_length <= 108 AND asin_length + asin_length + (asin_width + asin_height) * 2 <= 130 THEN 4
WHEN asin_weight > 0 AND asin_weight <= 150 AND asin_length > 0 AND asin_length <= 108 AND asin_length + asin_length + (asin_width + asin_height) * 2 <= 165 THEN 5
WHEN asin_weight > 150 AND asin_length > 108 AND asin_length + asin_length + (asin_width + asin_height) * 2 > 165 THEN 6 ELSE 0 END"""
else:
expr_str = f"""
CASE
WHEN asin_weight > 0 AND asin_weight <= 100 AND asin_length > 0 AND asin_length <= 20 AND asin_width > 0 AND asin_width <= 15 AND asin_height > 0 AND asin_height <= 1 THEN 1
WHEN asin_weight > 0 AND asin_weight <= 500 AND asin_length > 0 AND asin_length <= 33 AND asin_width > 0 AND asin_width <= 23 AND asin_height > 0 AND asin_height <= 2.5 THEN 2
WHEN asin_weight > 0 AND asin_weight <= 1000 AND asin_length > 0 AND asin_length <= 33 AND asin_width > 0 AND asin_width <= 23 AND asin_height > 0 AND asin_height <= 5 THEN 3
WHEN asin_weight > 0 AND asin_weight <= 12000 AND asin_length > 0 AND asin_length <= 45 AND asin_width > 0 AND asin_width <= 34 AND asin_height > 0 AND asin_height <= 26 THEN 4
WHEN asin_weight > 0 AND asin_weight <= 2000 AND asin_length > 0 AND asin_length <= 61 AND asin_width > 0 AND asin_width <= 46 AND asin_height > 0 AND asin_height <= 46 THEN 5
WHEN asin_length > 0 AND asin_length <= 150 AND asin_length + asin_length + (asin_width + asin_height) <= 300 THEN 6
WHEN asin_length > 150 AND asin_length + asin_length + (asin_width + asin_height) > 300 THEN 7
ELSE 0 END"""
self.df_asin_detail = self.df_asin_detail.withColumn("asin_size_type", F.expr(expr_str)).drop("asin_length", "asin_width", "asin_height")
# 通过ASIN页面信息处理(评分类型、上架时间类型、价格类型)
def handle_asin_detail_all_type(self):
# 评分类型
self.df_asin_detail = self.df_asin_detail.withColumn(
"asin_rating_type", F.expr("""CASE WHEN asin_rating >= 4.5 THEN 1 WHEN asin_rating >= 4 AND asin_rating < 4.5 THEN 2 WHEN asin_rating >= 3.5 AND asin_rating < 4 THEN 3
WHEN asin_rating >= 3 AND asin_rating < 3.5 THEN 4 WHEN asin_rating < 3 AND asin_rating >= 0 THEN 5 ELSE 0 END"""))
# 上架时间类型
one_month = self.launch_time_interval_dict['one_month']
three_month = self.launch_time_interval_dict['three_month']
six_month = self.launch_time_interval_dict['six_month']
twelve_month = self.launch_time_interval_dict['twelve_month']
twenty_four_month = self.launch_time_interval_dict['twenty_four_month']
thirty_six_month = self.launch_time_interval_dict['thirty_six_month']
expr_str = f"""CASE WHEN asin_launch_time >= '{one_month}' THEN 1
WHEN asin_launch_time >= '{three_month}' AND asin_launch_time < '{one_month}' THEN 2
WHEN asin_launch_time >= '{six_month}' AND asin_launch_time < '{three_month}' THEN 3
WHEN asin_launch_time >= '{twelve_month}' AND asin_launch_time < '{six_month}' THEN 4
WHEN asin_launch_time >= '{twenty_four_month}' AND asin_launch_time < '{twelve_month}' THEN 5
WHEN asin_launch_time >= '{thirty_six_month}' AND asin_launch_time < '{twenty_four_month}' THEN 6
WHEN asin_launch_time < '{thirty_six_month}' THEN 7 ELSE 0 END"""
self.df_asin_detail = self.df_asin_detail.withColumn("asin_launch_time_type", F.expr(expr_str))
# 价格类型
self.df_asin_detail = self.df_asin_detail.withColumn(
"asin_price_type", F.expr("""
CASE WHEN asin_price IS NOT NULL AND asin_price > 0 AND asin_price < 10 THEN 1
WHEN asin_price >= 10 AND asin_price < 15 THEN 2
WHEN asin_price >= 15 AND asin_price < 20 THEN 3
WHEN asin_price >= 20 AND asin_price < 30 THEN 4
WHEN asin_price >= 30 AND asin_price < 50 THEN 5
WHEN asin_price >= 50 THEN 6 ELSE 0 END"""))
# 处理asin分类、排名、排名类型字段、是否有效排名信息
def handle_asin_category_info(self):
self.df_asin_detail = self.df_asin_detail.join(self.df_asin_bs_category, on=['asin'], how='left')
self.df_asin_detail = self.df_asin_detail.withColumn(
"category_id", F.coalesce(F.col("category_id"), F.col("top_category_id"))
).withColumn(
"category_first_id", F.coalesce(F.col("category_first_id"), F.col("top_category_first_id"))
).drop("top_category_id", "top_categoty_first_id")
self.df_asin_detail = self.df_asin_detail.withColumn(
"asin_rank_type", F.expr("""
CASE WHEN first_category_rank IS NOT NULL AND first_category_rank BETWEEN 0 AND 1000 THEN 1
WHEN first_category_rank BETWEEN 1000 AND 5000 THEN 2
WHEN first_category_rank BETWEEN 5000 AND 10000 THEN 3
WHEN first_category_rank BETWEEN 10000 AND 20000 THEN 4
WHEN first_category_rank BETWEEN 20000 AND 30000 THEN 5
WHEN first_category_rank BETWEEN 30000 AND 50000 THEN 6
WHEN first_category_rank BETWEEN 50000 AND 70000 THEN 7
WHEN first_category_rank >= 70000 THEN 8 ELSE 0 END"""))
self.df_asin_detail = self.df_asin_detail.join(self.df_bsr_end, on=['category_first_id'], how='left')
self.df_asin_detail = self.df_asin_detail.withColumn(
"bsr_type", F.expr("""CASE WHEN limit_rank is null and category_first_id <= 500000 THEN 1 WHEN limit_rank is not null and category_first_id <= limit_rank THEN 1 ELSE 0 END""")).drop("limit_rank")
self.df_asin_bs_category.unpersist()
# 处理asin的bsr销量、亚马逊月销信息、ao值、母体ao、自然流量占比、母体自然流量占比、ao值类型
def handle_asin_measure(self):
self.df_asin_detail = self.df_asin_detail.join(self.df_asin_measure, on=['asin'], how='left')
self.df_asin_detail = self.df_asin_detail.withColumn(
"sales", F.round(F.col("bsr_orders") * F.col("asin_price"), 2)
).withColumn(
"asin_bought_month", F.coalesce(F.col("asin_bought_month"), F.col("asin_amazon_orders"))
).withColumn("asin_ao_val_type", F.expr("""CASE WHEN asin_ao_val BETWEEN 0 AND 0.1 THEN 1
WHEN asin_ao_val BETWEEN 0.1 AND 0.2 THEN 2 WHEN asin_ao_val BETWEEN 0.2 AND 0.4 THEN 3
WHEN asin_ao_val BETWEEN 0.4 AND 0.8 THEN 4 WHEN asin_ao_val BETWEEN 0.8 AND 1.2 THEN 5
WHEN asin_ao_val BETWEEN 1.2 AND 2 THEN 6 WHEN asin_ao_val >= 2 THEN 7 ELSE 0 END""")).drop("asin_amazon_orders")
self.df_asin_measure.unpersist()
# 处理配送方式、卖家所在地以及卖家所在地类型
def handle_seller_country(self):
if (self.date_type in ['month', 'month_week'] and self.date_info >= '2024-05') or (self.date_type == '4_week' and self.date_info >= '2024-21'):
self.df_asin_detail = self.df_asin_detail.join(self.df_fd_asin_info, on=['account_id'], how='left')
else:
self.df_asin_detail = self.df_asin_detail.drop("account_id", "account_name")
self.df_asin_detail = self.df_asin_detail.join(self.df_fd_asin_info, on=['asin'], how='left')
self.df_asin_detail = self.df_asin_detail.withColumn("asin_site_name_type", F.expr("""
CASE WHEN asin_buy_box_seller_type = 1 THEN 4
WHEN asin_buy_box_seller_type != 1 AND seller_country_name is not null AND seller_country_name like '%US%' THEN 1
WHEN asin_buy_box_seller_type != 1 AND seller_country_name is not null AND seller_country_name like '%CN%' THEN 2 ELSE 3 END"""))
self.df_fd_asin_info.unpersist()
# 处理asin的lqs评分
def handle_asin_lqs_rating(self):
self.df_asin_detail = self.df_asin_detail.withColumn(
"category_node_rating", F.when(F.col("category_id").isNotNull(), F.lit(1)).otherwise(F.lit(0))
).withColumn(
"zr_rating", F.when(F.col("asin_zr_counts") > 0, F.lit(0.5)).otherwise(F.lit(0))
).withColumn(
"sp_rating", F.when(F.col("asin_sp_counts") > 0, F.lit(1)).otherwise(F.lit(0))
).withColumn(
"a_add_rating", F.when(F.col("asin_img_type").contains("3"), F.lit(1)).otherwise(F.lit(0))
).withColumn(
"video_rating", F.when(F.col("asin_img_type").contains("2"), F.lit(0.5)).otherwise(F.lit(0))
).withColumn(
"brand_rating", F.when(F.col("is_brand_label") == 1, F.lit(0.2)).otherwise(F.lit(0))
).withColumn(
"product_describe_rating", F.when(F.col("is_with_product_description") == 1, F.lit(0.2)).otherwise(F.lit(0))
).withColumn(
"highlight_rating",
F.when((F.col("asin_describe").isNotNull()) & (F.size(F.split(F.col("asin_describe"), '\\|-\\|')) <= 4),
F.size(F.split(F.col("asin_describe"), '\\|-\\|')) * 0.4)
.when((F.col("asin_describe").isNotNull()) & (F.size(F.split(F.col("asin_describe"), '\\|-\\|')) > 4),
F.lit(1.6))
.otherwise(F.lit(0))
).withColumn(
"title_len_rating",
F.when((F.col("asin_title_len") >= 50) & (F.col("asin_title_len") <= 200), F.lit(0.5)).otherwise(F.lit(0))
).withColumn(
"title_brand_rating",
F.expr(f"""CASE WHEN asin_brand_name is not null AND lower(regexp_replace(asin_title, '[^a-zA-Z0-9\\s]', '')) LIKE lower(regexp_replace(asin_brand_name, '[^a-zA-Z0-9\\s]', '')) || '%' THEN 0.5 ELSE 0 END""")
).withColumn(
"img_num_rating", F.when(F.col("asin_img_num") <= 4, F.col("asin_img_num") * 0.5).when(F.col("asin_img_num") > 4, F.lit(2)).otherwise(F.lit(0))
).withColumn(
"img_enlarge_rating", F.when(F.col("asin_image_view") == 1, F.lit(0.5)).otherwise(F.lit(0))
)
self.df_asin_detail = self.df_asin_detail.withColumn(
"asin_lqs_rating_detail",
F.to_json(F.struct(F.col("category_node_rating"), F.col("zr_rating"), F.col("sp_rating"),
F.col("a_add_rating"), F.col("video_rating"), F.col("brand_rating"),
F.col("product_describe_rating"), F.col("highlight_rating"), F.col("title_len_rating"),
F.col("title_brand_rating"), F.col("img_num_rating"), F.col("img_enlarge_rating"))
)
)
self.df_asin_detail = self.df_asin_detail.withColumn(
"asin_lqs_rating",
F.col("category_node_rating") + F.col("zr_rating") + F.col("sp_rating") + F.col("a_add_rating") + F.col(
"video_rating") + F.col("brand_rating") + F.col("product_describe_rating") + F.col(
"highlight_rating") + F.col("title_len_rating") + F.col("title_brand_rating") + F.col(
"img_num_rating") + F.col("img_enlarge_rating")
)
self.df_asin_detail = self.df_asin_detail.\
drop("is_with_product_description", "asin_describe", "asin_image_view", "category_node_rating", "zr_rating",
"sp_rating", "a_add_rating", "video_rating", "brand_rating", "product_describe_rating",
"highlight_rating", "title_len_rating", "title_brand_rating", "img_num_rating", "img_enlarge_rating")
# 处理asin是否隐藏分类信息(US/UK/DE站点通用)以及asin_type信息
def handle_asin_is_hide(self):
mysql_con = DBUtil.get_connection_info("mysql", "us")
sql = f"""
select category_id_base as category_id, 1 as hide_flag from us_bs_category_hide group by category_id_base
"""
df_hide_category = SparkUtil.read_jdbc_query(session=self.spark, url=mysql_con['url'], pwd=mysql_con['pwd'],
username=mysql_con['username'], query=sql)
self.df_asin_detail = self.df_asin_detail.join(df_hide_category, on=['category_id'], how='left')
self.df_asin_detail = self.df_asin_detail.withColumn("asin_is_hide", F.expr("""
CASE WHEN hide_flag = 1 THEN 1 WHEN category_first_id = 'grocery' and category_id != '6492272011' THEN 1
WHEN category_id in ('21393128011', '21377129011', '21377127011', '21377130011', '21388218011', '21377132011') THEN 1
ELSE 0 END""")).drop("hide_flag")
self.df_asin_detail = self.df_asin_detail.withColumn("asin_is_need", F.expr("""
CASE WHEN category_first_id in ('mobile-apps', 'audible', 'books', 'music', 'dmusic', 'digital-text', 'magazines', 'movies-tv', 'software', 'videogames', 'amazon-devices', 'boost', 'us-live-explorations', 'amazon-renewed') THEN 1
WHEN asin NOT LIKE 'B0%' THEN 1
ELSE 0 END"""))
self.df_asin_detail = self.df_asin_detail.withColumn("asin_type", F.expr("""
CASE WHEN asin_is_self=1 THEN 1 WHEN asin_is_need=1 THEN 2 WHEN asin_is_hide=1 THEN 3 ELSE 0 END"""
)).drop("asin_is_self", "asin_is_need", "asin_is_hide")
# 处理匹配度
def handle_title_matching_degree(self):
window = Window.partitionBy("asin")
self.df_title_matching_degree = self.df_title_matching_degree.withColumn(
"asin_count", F.count("asin").over(window))
# 统计每个asin中,flag为1的数量
self.df_title_matching_degree = self.df_title_matching_degree.withColumn(
"contains_count", F.sum("contains_flag").over(window))
self.df_title_matching_degree = self.df_title_matching_degree.withColumn(
"title_matching_degree", F.round(F.col("contains_count") / F.col("asin_count"), 4))
self.df_title_matching_degree = self.df_title_matching_degree.drop("asin_count", "contains_count", "contains_flag")
self.df_title_matching_degree = self.df_title_matching_degree.drop_duplicates(['asin'])
self.df_asin_detail = self.df_asin_detail.join(self.df_title_matching_degree, on=['asin'], how='left')
self.df_title_matching_degree.unpersist()
# 处理变体ASIN属性(asin维度)的变化率相关信息
def handle_asin_attribute_change(self):
self.df_asin_detail = self.df_asin_detail.join(self.df_flow_asin_last, on=['asin'], how='left')
columns_to_change = [
("first_category_rank", "previous_first_category_rank", "asin_rank"),
("bsr_orders", "previous_bsr_orders", "asin_bsr_orders"),
("asin_rating", "previous_asin_rating", "asin_rating"),
("asin_total_comments", "previous_asin_total_comments", "asin_comments"),
("variation_num", "previous_variation_num", "asin_variation"),
("asin_ao_val", "previous_asin_ao_val", "asin_ao"),
("asin_price", "previous_asin_price", "asin_price"),
("sales", "pervious_sales", "asin_sales")
]
for current_col, previous_col, suffix in columns_to_change:
rise_col, change_col = self.calculate_change(current_col, previous_col)
if suffix == 'asin_ao':
self.df_asin_detail = self.df_asin_detail.withColumn(f"{suffix}_rise", F.round(rise_col, 3))
elif suffix in ['asin_price', 'sales']:
self.df_asin_detail = self.df_asin_detail.withColumn(f"{suffix}_rise", F.round(rise_col, 2))
elif suffix == 'asin_rating':
self.df_asin_detail = self.df_asin_detail.withColumn(f"{suffix}_rise", F.round(rise_col, 1))
else:
self.df_asin_detail = self.df_asin_detail.withColumn(f"{suffix}_rise", rise_col.cast(IntegerType()))
self.df_asin_detail = self.df_asin_detail.withColumn(f"{suffix}_change", F.round(change_col, 4))
self.df_asin_detail.drop(previous_col)
self.df_flow_asin_last.unpersist()
# 字段标准化
def handle_column(self):
self.df_save = self.df_asin_detail.\
select("asin", "asin_ao_val", "asin_zr_counts", "asin_sp_counts", "asin_sb_counts", "asin_vi_counts",
"asin_bs_counts", "asin_ac_counts", "asin_tr_counts", "asin_er_counts", "bsr_orders",
F.lit(None).alias("orders"), "sales", F.lit(None).alias("cate_current_id"),
F.lit(None).alias("cate_1_id"), "asin_img_url", "asin_title", "asin_title_len", "asin_price",
"asin_rating", "asin_total_comments", "asin_buy_box_seller_type", "asin_page_inventory",
"asin_category_desc", "asin_volume", "asin_weight", "asin_color", "asin_size", "asin_style",
"asin_is_sale", F.lit(None).alias("asin_rank"), "asin_launch_time", "asin_is_new", "asin_img_num",
"asin_img_type", "asin_material", "asin_brand_name", "asin_activity_type", "act_one_two_val",
"act_three_four_val", "act_five_six_val", "act_eight_val", F.lit(None).alias("qa_num"), "one_star",
"two_star", "three_star", "four_star", "five_star", "low_star", "together_asin", "ac_name",
"variation_num", "account_name", "account_id", "seller_country_name", "bsr_type",
F.lit(-1).alias("bsr_best_orders_type"), F.lit(None).alias("zr_best_orders_type"), "parent_asin", "asin_rank_rise",
"asin_rank_change", "asin_ao_rise", "asin_ao_change", "asin_price_rise", "asin_price_change",
F.lit(None).alias("asin_orders_rise"), F.lit(None).alias("asin_orders_change"), "asin_rating_rise",
"asin_rating_change", "asin_comments_rise", "asin_comments_change", "asin_bsr_orders_rise",
"asin_bsr_orders_change", "asin_sales_rise", "asin_sales_change", "asin_variation_rise",
"asin_variation_change", "asin_size_type", "asin_rating_type", "asin_site_name_type",
"asin_weight_type", "asin_launch_time_type", "asin_ao_val_type", "asin_rank_type", "asin_price_type",
F.lit(None).alias("created_time"), F.lit(None).alias("updated_time"), "asin_lob_info",
"customer_reviews_json", "img_info", "is_contains_lob_info", "is_package_quantity_abnormal",
"asin_st_counts", "asin_quantity_variation_type", "package_quantity",
F.lit(None).alias("sp_type1"), F.lit(None).alias("sp_type2"), F.lit(None).alias("sp_type3"),
"is_movie_label", "is_brand_label", "is_alarm_brand", "asin_type", F.lit(None).alias("asin_cost_fee"),
F.lit(None).alias("asin_refund_fee"), F.lit(None).alias("asin_adv_fee"),
F.lit(None).alias("asin_commission_fee"), F.lit(None).alias("asin_fba_fee"),
F.lit(None).alias("asin_freight_air_fee"), F.lit(None).alias("asin_freight_ocean_fee"),
F.lit(None).alias("asin_operate_fee"), F.lit(None).alias("asin_air_freight_gross_margin"),
F.lit(None).alias("asin_ocean_freight_gross_margin"), "asin_crawl_date",
F.lit(None).alias("asin_package_quantity"), F.lit(None).alias("asin_pattern_name"),
"category_first_id", "category_id", "first_category_rank", "current_category_rank",
"asin_weight_ratio", "asin_bought_month", F.lit(None).alias("buy_data_bought_week"),
F.lit(None).alias("buy_data_viewed_month"), F.lit(None).alias("buy_data_viewed_week"),
F.lit(None).alias("theme_en"), F.lit(None).alias("theme_label_en"), "asin_lqs_rating",
"asin_lqs_rating_detail", "title_matching_degree", "zr_flow_proportion", "matrix_flow_proportion",
"matrix_ao_val", "follow_sellers_count", "seller_json",
F.lit(self.site_name).alias("site_name"), F.lit(self.date_type).alias("date_type"),
F.lit(self.date_info).alias("date_info"))
self.df_save = self.df_save.na.fill(
{"asin_zr_counts": 0, "asin_sp_counts": 0, "asin_sb_counts": 0, "asin_vi_counts": 0, "asin_bs_counts": 0,
"asin_ac_counts": 0, "asin_tr_counts": 0, "asin_er_counts": 0, "asin_title_len": 0,
"asin_total_comments": 0, "variation_num": 0, "asin_img_num": 0, "act_one_two_val": 0.0,
"act_three_four_val": 0.0, "act_five_six_val": 0.0, "act_eight_val": 0.0, "one_star": 0,
"two_star": 0, "three_star": 0, "four_star": 0, "five_star": 0, "low_star": 0, "asin_size_type": 0,
"asin_rating_type": 0, "asin_site_name_type": 0, "asin_weight_type": 0, "asin_launch_time_type": 0,
"asin_ao_val_type": 0, "asin_rank_type": 0, "asin_price_type": 0, "asin_quantity_variation_type": 0,
"package_quantity": 1, "is_movie_label": 0, "is_brand_label": 0, "is_alarm_brand": 0,
"title_matching_degree": 0.0, "asin_lqs_rating": 0.0, "follow_sellers_count": -1})
self.df_save = self.df_save.repartition(60).persist(StorageLevel.DISK_ONLY)
self.df_save = self.df_save.drop_duplicates(['asin']).filter(F.length(F.col("asin"))<=10)
print("数据量为:", self.df_save.count())
self.df_save.show(10, truncate=False)
# 保存数据
def save_data(self):
print(f"清除hdfs目录中:{self.hdfs_path}")
HdfsUtils.delete_file_in_folder(self.hdfs_path)
partition_by = ["site_name", "date_type", "date_info"]
print(f"当前存储的表名为:{self.hive_tb},分区为{partition_by}", )
df_save = self.df_save
df_save = df_save.drop("seller_json")
df_save.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=self.partitions_by)
print("save asin_detail success")
if self.date_type in ['month', 'month_week'] and self.date_info >= '2024-06':
max_report_sql = f"""
select max(report_date) as completed_date_info from workflow_everyday where site_name='us' and date_type='month' and page='流量选品' and status_val=14
"""
mysql_con = DBUtil.get_connection_info("mysql", "us")
df_date_info = SparkUtil.read_jdbc_query(session=self.spark, url=mysql_con['url'], pwd=mysql_con['pwd'],
username=mysql_con['username'], query=max_report_sql)
completed_date_info = df_date_info.take(1)[0]['completed_date_info']
if self.date_info > completed_date_info:
print("往doris存储最新asin详情信息:")
df_doris = self.df_save.\
select("asin", "asin_ao_val", "asin_title", "asin_title_len", "asin_category_desc", "asin_volume",
"asin_weight", "asin_launch_time", "asin_brand_name", "one_star", "two_star", "three_star",
"four_star", "five_star", "low_star", "account_name", "account_id", "seller_country_name",
"category_first_id", "parent_asin", "variation_num", "img_info", "asin_crawl_date", "asin_price",
"asin_rating", "asin_total_comments", "matrix_ao_val", "zr_flow_proportion",
"matrix_flow_proportion", "date_info", F.col("asin_img_url").alias("img_url"),
F.col("category_id").alias("category_current_id"),
F.col("first_category_rank").alias("category_first_rank"),
F.col("current_category_rank").alias("category_current_rank"), "asin_type",
"bsr_orders", F.col("sales").alias("bsr_orders_sale"),
F.col("asin_page_inventory").alias("page_inventory"), "asin_bought_month", "seller_json",
F.col("asin_buy_box_seller_type").alias("buy_box_seller_type")
)
table_columns = """asin, asin_ao_val, asin_title, asin_title_len, asin_category_desc, asin_volume,
asin_weight, asin_launch_time, asin_brand_name, one_star, two_star, three_star, four_star, five_star, low_star,
account_name, account_id, seller_country_name, category_first_id, parent_asin, variation_num, img_info,
asin_crawl_date, asin_price, asin_rating, asin_total_comments, matrix_ao_val, zr_flow_proportion, matrix_flow_proportion,
date_info, img_url, category_current_id, category_first_rank, category_current_rank, asin_type, bsr_orders, bsr_orders_sale,
page_inventory, asin_bought_month, seller_json, buy_box_seller_type"""
DorisHelper.spark_export_with_columns(df_save=df_doris, db_name=self.doris_db, table_name=self.asin_latest_detail_table, table_columns=table_columns)
print("save asin_latest_detail success")
else:
print("不用导出旧数据到doris中")
pass
def handle_data(self):
self.handle_asin_basic_attribute()
self.handle_asin_detail_all_type()
self.handle_asin_category_info()
self.handle_asin_measure()
self.handle_seller_country()
self.handle_asin_lqs_rating()
self.handle_asin_is_hide()
self.handle_title_matching_degree()
self.handle_asin_attribute_change()
self.handle_column()
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季, 比如: 2022-1
handle_obj = DwtFlowAsin(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()