dwt_flow_asin.py 40 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
"""
   @Author      : wangrui
   @Description : 流量选品
   @SourceTable :
                  dwd_asin_measure
                  dim_asin_detail
                  ods_bsr_end
                  dim_asin_bs_category
                  dim_fd_asin_info
                  dim_asin_volume


   @SinkTable   : dwt_flow_asin
   @CreateTime  : 2023/01/10 07:55
   @UpdateTime  : 2023/01/10 07:55
"""
import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from datetime import datetime, timedelta
from pyspark.sql import functions as F
from utils.db_util import DBUtil
from utils.spark_util import SparkUtil
from utils.common_util import CommonUtil
from utils.hdfs_utils import HdfsUtils
from pyspark.storagelevel import StorageLevel
from pyspark.sql.types import *
from utils.DorisHelper import DorisHelper


class DwtFlowAsin(Templates):
    def __init__(self, site_name="us", date_type="week", date_info="2022-1"):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.hive_tb = f"dwt_flow_asin"
        self.partition_dict = {
            "site_name": site_name,
            "date_type": date_type,
            "date_info": date_info
        }
        self.hdfs_path = CommonUtil.build_hdfs_path(self.hive_tb, partition_dict=self.partition_dict)
        self.spark = self.create_spark_object(
            app_name=f"{self.hive_tb}: {self.site_name}, {self.date_type}, {self.date_info}")
        self.previous_date = self.udf_get_previous_last_30_day(self)
        self.current_date = self.udf_get_current_time(self)
        # doris相关配置
        self.doris_db = "test" if self.test_flag == "test" else "selection"
        self.asin_latest_detail_table = f"{self.site_name}_asin_latest_detail"
        # 写入、分区初始化
        self.df_save = self.spark.sql(f"select 1+1;")
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        self.reset_partitions(60)
        self.launch_time_interval_dict = self.get_launch_time_interval_dict()
        # 初始化全局df
        self.df_asin_detail = self.spark.sql(f"select 1+1;")
        self.df_asin_measure = self.spark.sql(f"select 1+1;")
        self.df_bsr_end = self.spark.sql(f"select 1+1;")
        self.df_asin_bs_category = self.spark.sql(f"select 1+1;")
        self.df_fd_asin_info = self.spark.sql(f"select 1+1;")
        self.df_flow_asin_last = self.spark.sql(f"select 1+1;")
        self.df_title_matching_degree = self.spark.sql(f"select 1+1;")

    @staticmethod
    def udf_get_previous_last_30_day(self):
        self.df_date = self.spark.sql(f"select * from dim_date_20_to_30 ;")
        df = self.df_date.toPandas()
        if self.date_type == 'last30day':
            df_loc = df.loc[df.date == f'{self.date_info}']
            current_date_id = list(df_loc.id)[0]
            original_date_id = int(current_date_id) - 30
            df_loc = df.loc[df.id == original_date_id]
            original_year_month = list(df_loc.year_month)[0]
            df_loc = df.loc[(df.year_month == original_year_month) & (df.day == 1)]
            original_year_month_id = list(df_loc.id)[0]
            previous_year_month_id = int(original_year_month_id) - 1
            df_loc = df.loc[df.id == previous_year_month_id]
            previous_date = list(df_loc.year_month)[0]
            return previous_date
        elif self.date_type in ['month', 'month_week']:
            df_loc = df.loc[(df.year_month == f'{self.date_info}') & (df.day == 1)]
            current_month_id = list(df_loc.id)[0]
            previous_month_id = int(current_month_id) - 1
            df_loc = df.loc[df.id == previous_month_id]
            previous_date = list(df_loc.year_month)[0]
            return previous_date
        elif self.date_type == '4_week':
            df_loc = df.loc[(df.year_week == f'{self.date_info}') & (df.week_day == 1)]
            current_4_week_id = list(df_loc.id)[0]
            df_loc = df.loc[df.id == int(current_4_week_id) - 21]
            current_4_week_month = list(df_loc.year_month)[0]
            df_loc = df.loc[(df.year_month == current_4_week_month) & (df.day == 1)]
            current_4_week_month_id = list(df_loc.id)[0]
            previous_4_week_month_id = int(current_4_week_month_id) - 1
            df_loc = df.loc[df.id == previous_4_week_month_id]
            previous_date = list(df_loc.year_month)[0]
            return previous_date

    @staticmethod
    def udf_get_current_time(self):
        self.df_date = self.spark.sql(f"select * from dim_date_20_to_30 ;")
        df = self.df_date.toPandas()
        if self.date_type == 'month':
            df_loc = df.loc[(df.year_month == f'{self.date_info}') & (df.day == 25)]
            current_id = list(df_loc.id)[0]
            df_loc = df.loc[df.id == current_id]
            current_date = list(df_loc.date)[0]
            return current_date
        elif self.date_type in ['week', '4_week']:
            df_loc = df.loc[(df.year_week == f'{self.date_info}') & (df.week_day == 7)]
            current_id = list(df_loc.id)[0]
            df_loc = df.loc[df.id == current_id]
            current_date = list(df_loc.date)[0]
            return current_date
        elif self.date_type in ['last30day', 'day']:
            return self.date_info
        elif self.date_type in ['month_week']:
            return str(datetime.now().date())

    @staticmethod
    def get_launch_time_interval_dict():
        cur_date = datetime.now().date()
        return {
            "one_month": (cur_date + timedelta(days=-30)).strftime('%Y-%m-%d'),
            "three_month": (cur_date + timedelta(days=-90)).strftime('%Y-%m-%d'),
            "six_month": (cur_date + timedelta(days=-180)).strftime('%Y-%m-%d'),
            "twelve_month": (cur_date + timedelta(days=-360)).strftime('%Y-%m-%d'),
            "twenty_four_month": (cur_date + timedelta(days=-720)).strftime('%Y-%m-%d'),
            "thirty_six_month": (cur_date + timedelta(days=-1080)).strftime('%Y-%m-%d')
        }

    @staticmethod
    def calculate_change(current_col, previous_col):
        rise_col = F.col(current_col) - F.col(previous_col)
        change_col = F.when((F.col(previous_col).isNotNull()) & (F.col(previous_col) != 0),
                            F.round((F.col(current_col) - F.col(previous_col)) / F.col(previous_col), 4)
                            ).otherwise(None)
        return rise_col, change_col

    def read_data(self):
        print("1.获取dwd_asin_measure,得到各种类型的统计、ao值、自然流量占比、月销信息、bsr销量信息")
        sql = f"""
            select asin, round(asin_ao_val, 3) as asin_ao_val, round(asin_ao_val_matrix, 3) as matrix_ao_val, 
            asin_zr_counts, asin_sp_counts, (asin_sb1_counts + asin_sb2_counts) as asin_sb_counts, 
            asin_sb3_counts as asin_vi_counts, asin_bs_counts, asin_ac_counts, asin_tr_counts, asin_er_counts, asin_st_counts, 
            asin_bsr_orders as bsr_orders, asin_amazon_orders, round(asin_zr_flow_proportion, 3) as zr_flow_proportion, 
            round(asin_flow_proportion_matrix, 3) as matrix_flow_proportion 
            from dwd_asin_measure where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}'"""
        print("sql:" + sql)
        self.df_asin_measure = self.spark.sql(sqlQuery=sql)
        self.df_asin_measure = self.df_asin_measure.repartition(60).persist(StorageLevel.DISK_ONLY)
        self.df_asin_measure.show(10, truncate=False)
        print("2.获取dim_asin_detail,得到asin详情")
        sql = f"""
            select asin, asin_img_url, lower(asin_title) as asin_title, asin_title_len, asin_price, asin_rating, asin_total_comments, 
            asin_buy_box_seller_type, seller_json, asin_page_inventory, asin_category_desc, asin_volume, asin_weight, asin_length, asin_width, asin_height, 
            asin_color, asin_size, asin_style, asin_is_sale, asin_launch_time, asin_is_new, asin_img_num, asin_img_type, asin_material, 
            lower(asin_brand_name) as asin_brand_name, asin_activity_type, act_one_two_val, act_three_four_val, act_five_six_val, act_eight_val, 
            one_star,two_star, three_star, four_star, five_star, low_star, together_asin, ac_name, variation_num, account_name, account_id, parent_asin, 
            asin_lob_info, is_contains_lob_info, is_package_quantity_abnormal, asin_quantity_variation_type, package_quantity, 
            asin_is_movie as is_movie_label, asin_is_brand as is_brand_label, asin_is_alarm as is_alarm_brand, asin_is_self, 
            date_format(created_time, 'yyyy-MM-dd HH:mm:ss') as asin_crawl_date, asin_bought_month, asin_image_view,  
            case when product_description is not null then 1 else 0 end as is_with_product_description, asin_describe, 
            category_id as top_category_id, category_first_id as top_category_first_id, customer_reviews_json, img_list as img_info, 
            asin_follow_sellers as follow_sellers_count 
            from dim_asin_detail where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"""
        print("sql:" + sql)
        self.df_asin_detail = self.spark.sql(sqlQuery=sql)
        self.df_asin_detail = self.df_asin_detail.repartition(60).persist(StorageLevel.DISK_ONLY)
        self.df_asin_detail.show(10, truncate=False)
        print("3.获取ods_bsr_end,获取有效rank信息")
        sql = f"""select rank as limit_rank, category_id as category_first_id from ods_bsr_end where site_name='{self.site_name}'"""
        print("sql:" + sql)
        df_bsr_end = self.spark.sql(sqlQuery=sql)
        self.df_bsr_end = F.broadcast(df_bsr_end)
        self.df_bsr_end.show(10, truncate=False)
        print("4.获取dim_asin_bs_category,获取分类名称")
        sql = f"""
            select asin, asin_bs_cate_1_rank as first_category_rank, asin_bs_cate_current_rank as current_category_rank, 
            asin_bs_cate_1_id as category_first_id, asin_bs_cate_current_id as category_id 
            from dim_asin_bs_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}'"""
        print("sql:" + sql)
        self.df_asin_bs_category = self.spark.sql(sqlQuery=sql)
        self.df_asin_bs_category = self.df_asin_bs_category.repartition(60).persist(StorageLevel.DISK_ONLY)
        self.df_asin_bs_category.show(10, truncate=False)
        print("5.获取dim_fd_asin_info,得到卖家相关信息")
        if (self.date_type in ['month', 'month_week'] and self.date_info >= '2024-05') or (self.date_type == '4_week' and self.date_info >= '2024-21'):
            sql = f"""
            select fd_unique as account_id, upper(fd_country_name) as seller_country_name from dim_fd_asin_info 
            where site_name='{self.site_name}' and fd_unique is not null group by fd_unique, fd_country_name"""
        else:
            sql = f"""
            select account_id, account_name, seller_country_name, asin 
            from (select fd_unique as account_id, fd_account_name as account_name, upper(fd_country_name) as seller_country_name, asin, 
            ROW_NUMBER() OVER (PARTITION BY asin ORDER BY updated_at DESC) AS t_rank 
            from dim_fd_asin_info where site_name = '{self.site_name}' and fd_unique is not null) tmp
            where tmp.t_rank = 1
            """
        self.df_fd_asin_info = self.spark.sql(sqlQuery=sql)
        self.df_fd_asin_info = self.df_fd_asin_info.repartition(60).persist(StorageLevel.DISK_ONLY)
        self.df_fd_asin_info.show(10, truncate=False)
        print("6.获取上一个最近30天的整合结果")
        sql = f"""
            select asin, round(asin_ao_val, 3) as previous_asin_ao_val, asin_price as previous_asin_price, 
            sales as pervious_sales, variation_num as previous_variation_num, asin_rating as previous_asin_rating, 
            bsr_orders as previous_bsr_orders, asin_total_comments as previous_asin_total_comments, 
            first_category_rank as previous_first_category_rank from dwt_flow_asin 
            where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.previous_date}'
            """
        print("sql:" + sql)
        self.df_flow_asin_last = self.spark.sql(sqlQuery=sql)
        self.df_flow_asin_last = self.df_flow_asin_last.repartition(60).persist(StorageLevel.DISK_ONLY)
        self.df_flow_asin_last.show(10, truncate=False)
        print("7.获取asin的标题匹配度")
        sql = f"""
               select asin, contains_flag from dwd_title_matching_degree where site_name = '{self.site_name}' and date_type = '{self.date_type}' and date_info = '{self.date_info}'
               """
        print("sql:" + sql)
        self.df_title_matching_degree = self.spark.sql(sqlQuery=sql)
        self.df_title_matching_degree = self.df_title_matching_degree.repartition(60).persist(StorageLevel.DISK_ONLY)
        self.df_title_matching_degree.show(10, truncate=False)

    # 处理asin基础属性信息(体积重量相关)及bsr销售额相关信息
    def handle_asin_basic_attribute(self):
        # 处理重量类型
        self.df_asin_detail = self.df_asin_detail.withColumn("asin_weight_type", F.expr("""CASE 
                    WHEN asin_weight BETWEEN 0 AND 0.2 THEN 1
                    WHEN asin_weight BETWEEN 0.2 AND 0.4 THEN 2
                    WHEN asin_weight BETWEEN 0.4 AND 0.6 THEN 3
                    WHEN asin_weight BETWEEN 0.6 AND 1 THEN 4
                    WHEN asin_weight BETWEEN 1 AND 2 THEN 5
                    WHEN asin_weight >= 2 THEN 6
                    ELSE 0 END"""))
        # 处理体积重/毛重相关信息
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "asin_weight_ratio",
            F.when(
                F.col("asin_length").isNotNull() & (F.col("asin_width").isNotNull()) & (F.col("asin_height").isNotNull()) & (F.col("asin_weight") > 0),
                F.round(F.col("asin_length") * F.col("asin_width") * F.col("asin_height") * 3.2774128 / (F.col("asin_weight") * 453.59), 4)
            ).otherwise(F.lit(-1))
        )
        # 处理尺寸类型
        if self.site_name == 'us':
            expr_str = f"""
           CASE WHEN asin_weight > 0 AND asin_weight * 16 <= 16 AND asin_length > 0 AND asin_length <= 15 AND asin_width > 0 AND asin_width <= 12 AND asin_height > 0 AND asin_height <= 0.75 THEN 1 
           WHEN asin_weight > 0 AND asin_weight <= 20 AND asin_length > 0 AND asin_length <= 18 AND  asin_width > 0 AND asin_width <= 14 AND asin_height > 0 AND asin_height <= 8 THEN 2 
           WHEN asin_weight > 0 AND asin_weight <= 70 AND asin_length > 0 AND asin_length <= 60 AND asin_width > 0 AND asin_width <= 30 AND asin_length + asin_length + (asin_width + asin_height) * 2 <= 130  THEN 3 
           WHEN asin_weight > 0 AND asin_weight <= 150 AND asin_length > 0 AND asin_length <= 108 AND asin_length + asin_length + (asin_width + asin_height) * 2 <= 130  THEN 4 
           WHEN asin_weight > 0 AND asin_weight <= 150 AND asin_length > 0 AND asin_length <= 108 AND asin_length + asin_length + (asin_width + asin_height) * 2 <= 165  THEN 5 
           WHEN asin_weight > 150 AND asin_length > 108 AND asin_length + asin_length + (asin_width + asin_height) * 2 > 165  THEN 6 ELSE 0 END"""
        else:
            expr_str = f"""
           CASE
                WHEN asin_weight > 0 AND asin_weight <= 100 AND asin_length > 0 AND asin_length <= 20 AND asin_width > 0 AND asin_width <= 15 AND asin_height > 0 AND asin_height <= 1 THEN 1
                WHEN asin_weight > 0 AND asin_weight <= 500 AND asin_length > 0 AND asin_length <= 33 AND asin_width > 0 AND asin_width <= 23 AND asin_height > 0 AND asin_height <= 2.5 THEN 2
                WHEN asin_weight > 0 AND asin_weight <= 1000 AND asin_length > 0 AND asin_length <= 33 AND asin_width > 0 AND asin_width <= 23 AND asin_height > 0 AND asin_height <= 5 THEN 3
                WHEN asin_weight > 0 AND asin_weight <= 12000 AND asin_length > 0 AND asin_length <= 45 AND asin_width > 0 AND asin_width <= 34 AND asin_height > 0 AND asin_height <= 26 THEN 4
                WHEN asin_weight > 0 AND asin_weight <= 2000 AND asin_length > 0 AND asin_length <= 61 AND asin_width > 0 AND asin_width <= 46 AND asin_height > 0 AND asin_height <= 46 THEN 5
                WHEN asin_length > 0 AND asin_length <= 150 AND asin_length + asin_length + (asin_width + asin_height) <= 300 THEN 6
                WHEN asin_length > 150 AND asin_length + asin_length + (asin_width + asin_height) > 300 THEN 7
               ELSE 0 END"""
        self.df_asin_detail = self.df_asin_detail.withColumn("asin_size_type", F.expr(expr_str)).drop("asin_length", "asin_width", "asin_height")

    # 通过ASIN页面信息处理(评分类型、上架时间类型、价格类型)
    def handle_asin_detail_all_type(self):
        # 评分类型
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "asin_rating_type", F.expr("""CASE WHEN asin_rating >= 4.5 THEN 1 WHEN asin_rating >= 4 AND asin_rating < 4.5 THEN 2 WHEN asin_rating >= 3.5 AND asin_rating < 4 THEN 3
                             WHEN asin_rating >= 3 AND asin_rating < 3.5 THEN 4 WHEN asin_rating < 3 AND asin_rating >= 0 THEN 5 ELSE 0 END"""))
        # 上架时间类型
        one_month = self.launch_time_interval_dict['one_month']
        three_month = self.launch_time_interval_dict['three_month']
        six_month = self.launch_time_interval_dict['six_month']
        twelve_month = self.launch_time_interval_dict['twelve_month']
        twenty_four_month = self.launch_time_interval_dict['twenty_four_month']
        thirty_six_month = self.launch_time_interval_dict['thirty_six_month']
        expr_str = f"""CASE WHEN asin_launch_time >= '{one_month}' THEN 1 
                            WHEN asin_launch_time >= '{three_month}' AND asin_launch_time < '{one_month}' THEN 2 
                            WHEN asin_launch_time >= '{six_month}' AND asin_launch_time < '{three_month}' THEN 3 
                            WHEN asin_launch_time >= '{twelve_month}' AND asin_launch_time < '{six_month}' THEN 4 
                            WHEN asin_launch_time >= '{twenty_four_month}' AND asin_launch_time < '{twelve_month}' THEN 5 
                            WHEN asin_launch_time >= '{thirty_six_month}' AND asin_launch_time < '{twenty_four_month}' THEN 6 
                            WHEN asin_launch_time < '{thirty_six_month}' THEN 7 ELSE 0 END"""
        self.df_asin_detail = self.df_asin_detail.withColumn("asin_launch_time_type", F.expr(expr_str))
        # 价格类型
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "asin_price_type", F.expr("""
            CASE WHEN asin_price IS NOT NULL AND asin_price > 0 AND asin_price < 10 THEN 1 
            WHEN asin_price >= 10 AND asin_price < 15 THEN 2 
            WHEN asin_price >= 15 AND asin_price < 20 THEN 3 
            WHEN asin_price >= 20 AND asin_price < 30 THEN 4 
            WHEN asin_price >= 30 AND asin_price < 50 THEN 5 
            WHEN asin_price >= 50 THEN 6 ELSE 0 END"""))

    # 处理asin分类、排名、排名类型字段、是否有效排名信息
    def handle_asin_category_info(self):
        self.df_asin_detail = self.df_asin_detail.join(self.df_asin_bs_category, on=['asin'], how='left')
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "category_id", F.coalesce(F.col("category_id"), F.col("top_category_id"))
        ).withColumn(
            "category_first_id", F.coalesce(F.col("category_first_id"), F.col("top_category_first_id"))
        ).drop("top_category_id", "top_categoty_first_id")
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "asin_rank_type", F.expr("""
            CASE WHEN first_category_rank IS NOT NULL AND first_category_rank BETWEEN 0 AND 1000 THEN 1 
            WHEN first_category_rank BETWEEN 1000 AND 5000 THEN 2 
            WHEN first_category_rank BETWEEN 5000 AND 10000 THEN 3 
            WHEN first_category_rank BETWEEN 10000 AND 20000 THEN 4 
            WHEN first_category_rank BETWEEN 20000 AND 30000 THEN 5 
            WHEN first_category_rank BETWEEN 30000 AND 50000 THEN 6 
            WHEN first_category_rank BETWEEN 50000 AND 70000 THEN 7 
            WHEN first_category_rank >= 70000 THEN 8 ELSE 0 END"""))
        self.df_asin_detail = self.df_asin_detail.join(self.df_bsr_end, on=['category_first_id'], how='left')
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "bsr_type", F.expr("""CASE WHEN limit_rank is null and category_first_id <= 500000 THEN 1 WHEN limit_rank is not null and category_first_id <= limit_rank THEN 1 ELSE 0 END""")).drop("limit_rank")
        self.df_asin_bs_category.unpersist()

    # 处理asin的bsr销量、亚马逊月销信息、ao值、母体ao、自然流量占比、母体自然流量占比、ao值类型
    def handle_asin_measure(self):
        self.df_asin_detail = self.df_asin_detail.join(self.df_asin_measure, on=['asin'], how='left')
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "sales", F.round(F.col("bsr_orders") * F.col("asin_price"), 2)
        ).withColumn(
            "asin_bought_month", F.coalesce(F.col("asin_bought_month"), F.col("asin_amazon_orders"))
        ).withColumn("asin_ao_val_type", F.expr("""CASE WHEN asin_ao_val BETWEEN 0 AND 0.1 THEN 1 
        WHEN asin_ao_val BETWEEN 0.1 AND 0.2 THEN 2 WHEN asin_ao_val BETWEEN 0.2 AND 0.4 THEN 3 
        WHEN asin_ao_val BETWEEN 0.4 AND 0.8 THEN 4 WHEN asin_ao_val BETWEEN 0.8 AND 1.2 THEN 5 
        WHEN asin_ao_val BETWEEN 1.2 AND 2 THEN 6 WHEN asin_ao_val >= 2 THEN 7 ELSE 0 END""")).drop("asin_amazon_orders")
        self.df_asin_measure.unpersist()

    # 处理配送方式、卖家所在地以及卖家所在地类型
    def handle_seller_country(self):
        if (self.date_type in ['month', 'month_week'] and self.date_info >= '2024-05') or (self.date_type == '4_week' and self.date_info >= '2024-21'):
            self.df_asin_detail = self.df_asin_detail.join(self.df_fd_asin_info, on=['account_id'], how='left')
        else:
            self.df_asin_detail = self.df_asin_detail.drop("account_id", "account_name")
            self.df_asin_detail = self.df_asin_detail.join(self.df_fd_asin_info, on=['asin'], how='left')
        self.df_asin_detail = self.df_asin_detail.withColumn("asin_site_name_type", F.expr("""
        CASE WHEN asin_buy_box_seller_type = 1  THEN 4 
        WHEN asin_buy_box_seller_type != 1 AND seller_country_name is not null AND seller_country_name like '%US%' THEN 1 
        WHEN asin_buy_box_seller_type != 1 AND seller_country_name is not null AND seller_country_name like '%CN%' THEN 2 ELSE 3 END"""))
        self.df_fd_asin_info.unpersist()

    # 处理asin的lqs评分
    def handle_asin_lqs_rating(self):
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "category_node_rating", F.when(F.col("category_id").isNotNull(), F.lit(1)).otherwise(F.lit(0))
        ).withColumn(
            "zr_rating", F.when(F.col("asin_zr_counts") > 0, F.lit(0.5)).otherwise(F.lit(0))
        ).withColumn(
            "sp_rating", F.when(F.col("asin_sp_counts") > 0, F.lit(1)).otherwise(F.lit(0))
        ).withColumn(
            "a_add_rating", F.when(F.col("asin_img_type").contains("3"), F.lit(1)).otherwise(F.lit(0))
        ).withColumn(
            "video_rating", F.when(F.col("asin_img_type").contains("2"), F.lit(0.5)).otherwise(F.lit(0))
        ).withColumn(
            "brand_rating", F.when(F.col("is_brand_label") == 1, F.lit(0.2)).otherwise(F.lit(0))
        ).withColumn(
            "product_describe_rating", F.when(F.col("is_with_product_description") == 1, F.lit(0.2)).otherwise(F.lit(0))
        ).withColumn(
            "highlight_rating",
            F.when((F.col("asin_describe").isNotNull()) & (F.size(F.split(F.col("asin_describe"), '\\|-\\|')) <= 4),
                   F.size(F.split(F.col("asin_describe"), '\\|-\\|')) * 0.4)
            .when((F.col("asin_describe").isNotNull()) & (F.size(F.split(F.col("asin_describe"), '\\|-\\|')) > 4),
                  F.lit(1.6))
            .otherwise(F.lit(0))
        ).withColumn(
            "title_len_rating",
            F.when((F.col("asin_title_len") >= 50) & (F.col("asin_title_len") <= 200), F.lit(0.5)).otherwise(F.lit(0))
        ).withColumn(
            "title_brand_rating",
            F.expr(f"""CASE WHEN asin_brand_name is not null AND lower(regexp_replace(asin_title, '[^a-zA-Z0-9\\s]', '')) LIKE lower(regexp_replace(asin_brand_name, '[^a-zA-Z0-9\\s]', '')) || '%' THEN 0.5 ELSE 0 END""")
        ).withColumn(
            "img_num_rating", F.when(F.col("asin_img_num") <= 4, F.col("asin_img_num") * 0.5).when(F.col("asin_img_num") > 4, F.lit(2)).otherwise(F.lit(0))
        ).withColumn(
            "img_enlarge_rating", F.when(F.col("asin_image_view") == 1, F.lit(0.5)).otherwise(F.lit(0))
        )
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "asin_lqs_rating_detail",
            F.to_json(F.struct(F.col("category_node_rating"), F.col("zr_rating"), F.col("sp_rating"),
                               F.col("a_add_rating"), F.col("video_rating"), F.col("brand_rating"),
                               F.col("product_describe_rating"), F.col("highlight_rating"), F.col("title_len_rating"),
                               F.col("title_brand_rating"), F.col("img_num_rating"), F.col("img_enlarge_rating"))
            )
        )
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "asin_lqs_rating",
            F.col("category_node_rating") + F.col("zr_rating") + F.col("sp_rating") + F.col("a_add_rating") + F.col(
                "video_rating") + F.col("brand_rating") + F.col("product_describe_rating") + F.col(
                "highlight_rating") + F.col("title_len_rating") + F.col("title_brand_rating") + F.col(
                "img_num_rating") + F.col("img_enlarge_rating")
        )
        self.df_asin_detail = self.df_asin_detail.\
            drop("is_with_product_description", "asin_describe", "asin_image_view", "category_node_rating", "zr_rating",
                 "sp_rating", "a_add_rating", "video_rating", "brand_rating", "product_describe_rating",
                 "highlight_rating", "title_len_rating", "title_brand_rating", "img_num_rating", "img_enlarge_rating")

    # 处理asin是否隐藏分类信息(US/UK/DE站点通用)以及asin_type信息
    def handle_asin_is_hide(self):
        mysql_con = DBUtil.get_connection_info("mysql", "us")
        sql = f"""
            select category_id_base as category_id, 1 as hide_flag from us_bs_category_hide group by category_id_base
        """
        df_hide_category = SparkUtil.read_jdbc_query(session=self.spark, url=mysql_con['url'], pwd=mysql_con['pwd'],
                                                     username=mysql_con['username'], query=sql)
        self.df_asin_detail = self.df_asin_detail.join(df_hide_category, on=['category_id'], how='left')
        self.df_asin_detail = self.df_asin_detail.withColumn("asin_is_hide", F.expr("""
      CASE WHEN hide_flag = 1 THEN 1 WHEN category_first_id = 'grocery' and category_id != '6492272011' THEN 1 
      WHEN category_id in ('21393128011', '21377129011', '21377127011', '21377130011', '21388218011', '21377132011') THEN 1
      ELSE 0 END""")).drop("hide_flag")
        self.df_asin_detail = self.df_asin_detail.withColumn("asin_is_need", F.expr("""
        CASE WHEN category_first_id in ('mobile-apps', 'audible', 'books', 'music', 'dmusic', 'digital-text', 'magazines', 'movies-tv', 'software', 'videogames', 'amazon-devices', 'boost', 'us-live-explorations', 'amazon-renewed') THEN 1 
        WHEN asin NOT LIKE 'B0%' THEN 1 
        ELSE 0 END"""))
        self.df_asin_detail = self.df_asin_detail.withColumn("asin_type", F.expr("""
            CASE WHEN asin_is_self=1 THEN 1 WHEN asin_is_need=1 THEN 2 WHEN asin_is_hide=1 THEN 3 ELSE 0 END"""
            )).drop("asin_is_self", "asin_is_need", "asin_is_hide")

    # 处理匹配度
    def handle_title_matching_degree(self):
        window = Window.partitionBy("asin")
        self.df_title_matching_degree = self.df_title_matching_degree.withColumn(
            "asin_count", F.count("asin").over(window))
        # 统计每个asin中,flag为1的数量
        self.df_title_matching_degree = self.df_title_matching_degree.withColumn(
            "contains_count", F.sum("contains_flag").over(window))
        self.df_title_matching_degree = self.df_title_matching_degree.withColumn(
            "title_matching_degree", F.round(F.col("contains_count") / F.col("asin_count"), 4))
        self.df_title_matching_degree = self.df_title_matching_degree.drop("asin_count", "contains_count", "contains_flag")
        self.df_title_matching_degree = self.df_title_matching_degree.drop_duplicates(['asin'])
        self.df_asin_detail = self.df_asin_detail.join(self.df_title_matching_degree, on=['asin'], how='left')
        self.df_title_matching_degree.unpersist()

    # 处理变体ASIN属性(asin维度)的变化率相关信息
    def handle_asin_attribute_change(self):
        self.df_asin_detail = self.df_asin_detail.join(self.df_flow_asin_last, on=['asin'], how='left')
        columns_to_change = [
            ("first_category_rank", "previous_first_category_rank", "asin_rank"),
            ("bsr_orders", "previous_bsr_orders", "asin_bsr_orders"),
            ("asin_rating", "previous_asin_rating", "asin_rating"),
            ("asin_total_comments", "previous_asin_total_comments", "asin_comments"),
            ("variation_num", "previous_variation_num", "asin_variation"),
            ("asin_ao_val", "previous_asin_ao_val", "asin_ao"),
            ("asin_price", "previous_asin_price", "asin_price"),
            ("sales", "pervious_sales", "asin_sales")
        ]
        for current_col, previous_col, suffix in columns_to_change:
            rise_col, change_col = self.calculate_change(current_col, previous_col)
            if suffix == 'asin_ao':
                self.df_asin_detail = self.df_asin_detail.withColumn(f"{suffix}_rise", F.round(rise_col, 3))
            elif suffix in ['asin_price', 'sales']:
                self.df_asin_detail = self.df_asin_detail.withColumn(f"{suffix}_rise", F.round(rise_col, 2))
            elif suffix == 'asin_rating':
                self.df_asin_detail = self.df_asin_detail.withColumn(f"{suffix}_rise", F.round(rise_col, 1))
            else:
                self.df_asin_detail = self.df_asin_detail.withColumn(f"{suffix}_rise", rise_col.cast(IntegerType()))
            self.df_asin_detail = self.df_asin_detail.withColumn(f"{suffix}_change", F.round(change_col, 4))
            self.df_asin_detail.drop(previous_col)
        self.df_flow_asin_last.unpersist()

    # 字段标准化
    def handle_column(self):
        self.df_save = self.df_asin_detail.\
            select("asin", "asin_ao_val", "asin_zr_counts", "asin_sp_counts", "asin_sb_counts", "asin_vi_counts",
                   "asin_bs_counts", "asin_ac_counts", "asin_tr_counts", "asin_er_counts", "bsr_orders",
                   F.lit(None).alias("orders"), "sales", F.lit(None).alias("cate_current_id"),
                   F.lit(None).alias("cate_1_id"), "asin_img_url", "asin_title", "asin_title_len", "asin_price",
                   "asin_rating", "asin_total_comments", "asin_buy_box_seller_type", "asin_page_inventory",
                   "asin_category_desc", "asin_volume", "asin_weight", "asin_color", "asin_size", "asin_style",
                   "asin_is_sale", F.lit(None).alias("asin_rank"), "asin_launch_time", "asin_is_new", "asin_img_num",
                   "asin_img_type", "asin_material", "asin_brand_name", "asin_activity_type", "act_one_two_val",
                   "act_three_four_val", "act_five_six_val", "act_eight_val", F.lit(None).alias("qa_num"), "one_star",
                   "two_star", "three_star", "four_star", "five_star", "low_star", "together_asin", "ac_name",
                   "variation_num", "account_name", "account_id", "seller_country_name", "bsr_type",
                   F.lit(-1).alias("bsr_best_orders_type"), F.lit(None).alias("zr_best_orders_type"), "parent_asin", "asin_rank_rise",
                   "asin_rank_change", "asin_ao_rise", "asin_ao_change", "asin_price_rise", "asin_price_change",
                   F.lit(None).alias("asin_orders_rise"), F.lit(None).alias("asin_orders_change"), "asin_rating_rise",
                   "asin_rating_change", "asin_comments_rise", "asin_comments_change", "asin_bsr_orders_rise",
                   "asin_bsr_orders_change", "asin_sales_rise", "asin_sales_change", "asin_variation_rise",
                   "asin_variation_change", "asin_size_type", "asin_rating_type", "asin_site_name_type",
                   "asin_weight_type", "asin_launch_time_type", "asin_ao_val_type", "asin_rank_type", "asin_price_type",
                   F.lit(None).alias("created_time"), F.lit(None).alias("updated_time"), "asin_lob_info",
                   "customer_reviews_json", "img_info", "is_contains_lob_info", "is_package_quantity_abnormal",
                   "asin_st_counts", "asin_quantity_variation_type", "package_quantity",
                   F.lit(None).alias("sp_type1"), F.lit(None).alias("sp_type2"), F.lit(None).alias("sp_type3"),
                   "is_movie_label", "is_brand_label", "is_alarm_brand", "asin_type", F.lit(None).alias("asin_cost_fee"),
                   F.lit(None).alias("asin_refund_fee"), F.lit(None).alias("asin_adv_fee"),
                   F.lit(None).alias("asin_commission_fee"), F.lit(None).alias("asin_fba_fee"),
                   F.lit(None).alias("asin_freight_air_fee"), F.lit(None).alias("asin_freight_ocean_fee"),
                   F.lit(None).alias("asin_operate_fee"), F.lit(None).alias("asin_air_freight_gross_margin"),
                   F.lit(None).alias("asin_ocean_freight_gross_margin"), "asin_crawl_date",
                   F.lit(None).alias("asin_package_quantity"), F.lit(None).alias("asin_pattern_name"),
                   "category_first_id", "category_id", "first_category_rank", "current_category_rank",
                   "asin_weight_ratio", "asin_bought_month", F.lit(None).alias("buy_data_bought_week"),
                   F.lit(None).alias("buy_data_viewed_month"), F.lit(None).alias("buy_data_viewed_week"),
                   F.lit(None).alias("theme_en"), F.lit(None).alias("theme_label_en"), "asin_lqs_rating",
                   "asin_lqs_rating_detail", "title_matching_degree", "zr_flow_proportion", "matrix_flow_proportion",
                   "matrix_ao_val", "follow_sellers_count", "seller_json",
                   F.lit(self.site_name).alias("site_name"), F.lit(self.date_type).alias("date_type"),
                   F.lit(self.date_info).alias("date_info"))
        self.df_save = self.df_save.na.fill(
            {"asin_zr_counts": 0, "asin_sp_counts": 0, "asin_sb_counts": 0, "asin_vi_counts": 0, "asin_bs_counts": 0,
             "asin_ac_counts": 0, "asin_tr_counts": 0, "asin_er_counts": 0, "asin_title_len": 0,
             "asin_total_comments": 0, "variation_num": 0, "asin_img_num": 0, "act_one_two_val": 0.0,
             "act_three_four_val": 0.0, "act_five_six_val": 0.0, "act_eight_val": 0.0, "one_star": 0,
             "two_star": 0, "three_star": 0, "four_star": 0, "five_star": 0, "low_star": 0, "asin_size_type": 0,
             "asin_rating_type": 0, "asin_site_name_type": 0, "asin_weight_type": 0, "asin_launch_time_type": 0,
             "asin_ao_val_type": 0, "asin_rank_type": 0, "asin_price_type": 0, "asin_quantity_variation_type": 0,
             "package_quantity": 1, "is_movie_label": 0, "is_brand_label": 0, "is_alarm_brand": 0,
             "title_matching_degree": 0.0, "asin_lqs_rating": 0.0, "follow_sellers_count": -1})
        self.df_save = self.df_save.repartition(60).persist(StorageLevel.DISK_ONLY)
        self.df_save = self.df_save.drop_duplicates(['asin']).filter(F.length(F.col("asin"))<=10)
        print("数据量为:", self.df_save.count())
        self.df_save.show(10, truncate=False)

    # 保存数据
    def save_data(self):
        print(f"清除hdfs目录中:{self.hdfs_path}")
        HdfsUtils.delete_file_in_folder(self.hdfs_path)
        partition_by = ["site_name", "date_type", "date_info"]
        print(f"当前存储的表名为:{self.hive_tb},分区为{partition_by}", )
        df_save = self.df_save
        df_save = df_save.drop("seller_json")
        df_save.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=self.partitions_by)
        print("save asin_detail success")
        if self.date_type in ['month', 'month_week'] and self.date_info >= '2024-06':
            max_report_sql = f"""
               select max(report_date) as completed_date_info  from workflow_everyday where site_name='us' and date_type='month' and page='流量选品' and status_val=14
            """
            mysql_con = DBUtil.get_connection_info("mysql", "us")
            df_date_info = SparkUtil.read_jdbc_query(session=self.spark, url=mysql_con['url'], pwd=mysql_con['pwd'],
                                                     username=mysql_con['username'], query=max_report_sql)
            completed_date_info = df_date_info.take(1)[0]['completed_date_info']
            if self.date_info > completed_date_info:
                print("往doris存储最新asin详情信息:")
                df_doris = self.df_save.\
                    select("asin", "asin_ao_val", "asin_title", "asin_title_len", "asin_category_desc", "asin_volume",
                           "asin_weight", "asin_launch_time", "asin_brand_name", "one_star", "two_star", "three_star",
                           "four_star", "five_star", "low_star", "account_name", "account_id", "seller_country_name",
                           "category_first_id", "parent_asin", "variation_num", "img_info", "asin_crawl_date", "asin_price",
                           "asin_rating", "asin_total_comments", "matrix_ao_val", "zr_flow_proportion",
                           "matrix_flow_proportion", "date_info", F.col("asin_img_url").alias("img_url"),
                           F.col("category_id").alias("category_current_id"),
                           F.col("first_category_rank").alias("category_first_rank"),
                           F.col("current_category_rank").alias("category_current_rank"), "asin_type",
                           "bsr_orders", F.col("sales").alias("bsr_orders_sale"),
                           F.col("asin_page_inventory").alias("page_inventory"), "asin_bought_month", "seller_json",
                           F.col("asin_buy_box_seller_type").alias("buy_box_seller_type")
                           )
                table_columns = """asin, asin_ao_val, asin_title, asin_title_len, asin_category_desc, asin_volume, 
                          asin_weight, asin_launch_time, asin_brand_name, one_star, two_star, three_star, four_star, five_star, low_star, 
                          account_name, account_id, seller_country_name, category_first_id, parent_asin, variation_num, img_info, 
                          asin_crawl_date, asin_price, asin_rating, asin_total_comments, matrix_ao_val, zr_flow_proportion, matrix_flow_proportion, 
                          date_info, img_url, category_current_id, category_first_rank, category_current_rank, asin_type, bsr_orders, bsr_orders_sale, 
                          page_inventory, asin_bought_month, seller_json, buy_box_seller_type"""
                DorisHelper.spark_export_with_columns(df_save=df_doris, db_name=self.doris_db, table_name=self.asin_latest_detail_table, table_columns=table_columns)
                print("save asin_latest_detail success")
            else:
                print("不用导出旧数据到doris中")
                pass

    def handle_data(self):
        self.handle_asin_basic_attribute()
        self.handle_asin_detail_all_type()
        self.handle_asin_category_info()
        self.handle_asin_measure()
        self.handle_seller_country()
        self.handle_asin_lqs_rating()
        self.handle_asin_is_hide()
        self.handle_title_matching_degree()
        self.handle_asin_attribute_change()
        self.handle_column()


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季, 比如: 2022-1
    handle_obj = DwtFlowAsin(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()