1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os
import sys
sys.path.append(os.path.dirname(sys.path[0]))
from utils.common_util import CommonUtil
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F
from pyspark.sql.types import ArrayType, StringType, StructType, StructField, BooleanType, MapType
"""
merchantwords 搜索词分词词频
"""
def is_number(str):
"""
判断一个字符是否是数字
:param str:
:return:
"""
import re
return re.match(r"^-?\d+\.?\d+$", str) is not None
def word_tokenize(keyword: str):
import re
keyword = re.sub(r'(\d+\.?\d*|-|\"|,|,|?|\?|/|、|)', '', keyword).strip()
from nltk.tokenize import word_tokenize
result = word_tokenize(keyword, "english")
# 过滤标点如下
filter_arr = [
" ", "\t", "\r", "\n", "(", ")", ",", ",", "[", "]", "、", "-", ":", "&", "|", "+", "``", "'", "'", "\""
]
return list(filter(lambda x: not is_number(x) and x not in filter_arr, result))
def run():
spark = SparkUtil.get_spark_session("app_name")
udf_word_tokenize = F.udf(word_tokenize, ArrayType(StringType()))
keywords_all = spark.sql("select keyword from dwt_merchantwords_st_detail where site_name='us'").cache()
df_all = keywords_all.withColumn("word", F.explode(udf_word_tokenize(F.col("keyword"))))
df_all = df_all.groupby(F.col("word")) \
.agg(F.count("word").alias("frequency")) \
.orderBy(F.col("frequency").desc()) \
.select(
F.col("word"),
F.col("frequency"),
F.lit("us").alias("site_name")
)
hive_tb = 'tmp_word_frequency'
# # 去重
partition_dict = {
"site_name": "us"
}
hdfs_path = CommonUtil.build_hdfs_path(hive_tb, partition_dict)
HdfsUtils.delete_hdfs_file(hdfs_path)
partition_by = list(partition_dict.keys())
print(f"当前存储的表名为:{hive_tb},分区为{partition_by}", )
df_all.write.saveAsTable(name=hive_tb, format='hive', mode='append', partitionBy=partition_by)
def word_pluralize(keyword: str):
from textblob import Word
# 单数形式
singularize = Word(keyword).singularize().string
# 复数形式
pluralize = Word(singularize).pluralize().string
result = {
"text": keyword,
"singularize": singularize,
"pluralize": pluralize,
"pluralizeFlag": keyword == pluralize,
"not_regular": keyword not in [singularize, pluralize]
}
return result
def word_stem(keyword: str):
from nltk.stem.snowball import SnowballStemmer
stemmer = SnowballStemmer("english", ignore_stopwords=False)
return stemmer.stem(keyword)
def word_test():
spark = SparkUtil.get_spark_session("word_test")
udf_word_pluralize = F.udf(word_pluralize, StructType(
[
StructField('text', StringType(), True),
StructField('singularize', StringType(), True),
StructField('pluralize', StringType(), True),
StructField('pluralizeFlag', BooleanType(), True),
StructField('not_regular', BooleanType(), True),
]
))
udf_word_stem = F.udf(word_stem, StringType())
keywords_all = spark.sql("select word,frequency from tmp_word_frequency").cache()
keywords_all = keywords_all.withColumn("resultMap", udf_word_pluralize(F.col("word"))).select(
F.col("word"),
F.col("frequency"),
F.col("resultMap").getField("singularize").alias("singularize"),
F.col("resultMap").getField("pluralize").alias("pluralize"),
F.col("resultMap").getField("pluralizeFlag").alias("pluralizeFlag"),
F.col("resultMap").getField("not_regular").alias("not_regular"),
).where("(pluralizeFlag == true) or (not_regular == true)")
# 计算词根
keywords_all = keywords_all.withColumn("word_stem", udf_word_stem(F.col("word")))
keywords_all = keywords_all.withColumn("singularize_stem", udf_word_stem(F.col("singularize")))
keywords_all = keywords_all.withColumn("pluralize_stem", udf_word_stem(F.col("pluralize")))
hive_tb = 'tmp_word_not_regular_v2'
keywords_all.write.saveAsTable(name=hive_tb, format='hive', mode='append')
print("success")
def word_for_calc():
spark = SparkUtil.get_spark_session("word_for_calc")
keywords_all = spark.sql("""
select *
from (
select word, sum(volume) as volume
from (
select regexp_extract(keyword, 'for (.*)', 0) as word, volume
from big_data_selection.dwt_merchantwords_st_detail
) tmp
where word != ''
group by word
) tmp
order by volume desc
""")
keywords_all.write.saveAsTable(name="tmp_for_market", format='hive', mode='append')
print("success")
def word_for_download():
spark = SparkUtil.get_spark_session("word_for_calc")
keywords_all = spark.sql("""
select word
from tmp_for_market
order by volume desc
""")
CommonUtil.df_export_csv(spark, keywords_all, csv_name='word_for_calc', limit=200 * 10000)
print("success")
pass
if __name__ == '__main__':
# word_for_calc()
word_for_download()
print("success")