1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from pyspark.sql.dataframe import DataFrame
from pyspark.sql.session import SparkSession
from pandas.core.frame import DataFrame as pd_DataFrame
from pyspark.sql.types import MapType, StringType
from yswg_utils.common_udf import parse_bsr_url
import pandas as pd
def asin_bsr_orders_df(df1, spark_session, site_name='us', date_info='2024-01'):
# 计算asin的bsr月销量
"""
df1: 带有 'asin', 'asin_bs_cate_1_rank', 'asin_bs_cate_1_id'字段
# df2: 带有 'asin_bsr_orders', 'asin_bs_cate_1_rank', 'asin_bs_cate_1_id'字段
spark_session: spark连接对象
site_name: 站点, 默认 us
date_info: 年月, 默认 2024-01
"""
sql = f"""
select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, ceil(orders) as asin_bsr_orders from ods_one_category_report " \
f"where site_name='{site_name}' and date_type='month' and date_info='{date_info}';
"""
df2 = spark_session.sql(sql)
df1 = df1.join(df2, on=['asin_bs_cate_1_rank', 'asin_bs_cate_1_id'], how='left')
return df1
def get_bsr_tree_full_name_df(site_name: str, spark_session: SparkSession) -> DataFrame:
"""
bsr tree 表获取 full_name
:param site_name:
:param spark_session:
:return:
"""
sql = f"""
select category_id,
category_parent_id,
rel_first_id as category_first_id,
en_name,
null as full_name
from dim_bsr_category_tree
where site_name = '{site_name}'
order by nodes_num
"""
pd_df_all = spark_session.sql(sql).toPandas()
full_name_result_df = pd.DataFrame()
def build_name(parent_ids: list, parent_df: pd_DataFrame):
nonlocal full_name_result_df
child_df = pd_df_all.query(f"category_parent_id in {str(parent_ids)} ")
if child_df.empty:
return
merged = pd.merge(child_df, parent_df, left_on='category_parent_id', right_on='category_id', how='left')
if len(parent_ids) == 1:
merged['full_name'] = merged['en_name_x']
else:
merged['full_name'] = merged['full_name_y'].fillna("") + "›" + merged['en_name_x']
select = {
'category_id_x': 'category_id',
'category_first_id_x': 'category_first_id',
'category_parent_id_x': 'category_parent_id',
'en_name_x': 'en_name',
'full_name': 'full_name',
}
merged = merged.rename(columns=select)[[*select.values()]]
full_name_result_df = pd.concat([full_name_result_df, merged], ignore_index=True)
next_parent_ids = merged['category_id'].values.tolist()
build_name(next_parent_ids, merged)
parent_ids = ["0"]
parent_df = pd_df_all.query(f"category_id in {str(parent_ids)} ")
if not parent_df.empty:
build_name(parent_ids, parent_df)
result_df = spark_session.createDataFrame(full_name_result_df)
result_df = result_df.drop_duplicates(['full_name'])
return result_df
def get_asin_unlanuch_df(site_name: str, spark_session: SparkSession) -> DataFrame:
"""
获取全部已下架asin详情
:param site_name:
:param spark_session:
:return:
"""
sql = f"""
select asin, asin_unlaunch_time
from dim_asin_err_state
where site_name = '{site_name}'
"""
return spark_session.sql(sql).cache()
def get_self_asin_df(site_name: str, spark_session: SparkSession) -> DataFrame:
"""
获取是否是公司内部asin相关信息
"""
sql = f"""
select distinct asin
from ods_self_asin
where site_name = '{site_name}'
"""
return spark_session.sql(sql)
def get_node_first_id_df(site_name: str, spark_session: SparkSession) -> DataFrame:
"""
获取nodeid 和 bsr 一级分类id对应关系
:param site_name:
:param spark_session:
"""
sql = f"""
select node_id,
max(category_first_id) as category_first_id
from dim_category_desc_id
where site_name = '{site_name}'
group by node_id
"""
return spark_session.sql(sql)
def get_first_id_from_category_desc_df(site_name: str, spark_session: SparkSession)-> DataFrame:
"""
获取分类id和分类名称的对应关系
"""
sql = f"""
select category_id as category_first_id, en_name as category_first_name
from big_data_selection.dim_bsr_category_tree
where site_name = '{site_name}'
and category_parent_id = 0 and delete_time is null
"""
return spark_session.sql(sqlQuery=sql)
def get_bsr_category_tree_df(site_name: str, spark_session: SparkSession) -> DataFrame:
"""
获取bsr分类树id和一级分类id对应关系
:param site_name:
:param spark_session:
:return:
"""
sql = f"""
select category_id as category_id,
rel_first_id as category_first_id,
category_name
from (
select category_id,
rel_first_id,
en_name as category_name,
row_number() over (partition by category_id order by delete_time desc nulls first ) as row_number
from dim_bsr_category_tree
where site_name = '{site_name}'
) tmp
where row_number = 1
"""
return spark_session.sql(sql)
def get_old_id_category_df(site_name: str, spark_session: SparkSession) -> DataFrame:
"""
获取bsr旧分类id和当前分类id对应关系
:param site_name:
:param spark_session:
:return:
"""
spark_session.udf.register("parse_bsr_url", parse_bsr_url, MapType(StringType(), StringType()))
sql = f"""
select id as cate_1_id,
parse_bsr_url(nodes_num, path)['category_id'] as category_id
from ods_bs_category
where site_name = '{site_name}'
"""
return spark_session.sql(sql)
def get_user_mask_type_asin_sql(site_name: str, day: str) -> DataFrame:
"""
查询某日用户更新的流量选品字段数据
usr_mask_type 类型
usr_mask_progress 进度
:return:
"""
add_condition = ''
if day is not None:
add_condition = f"and create_time >='{day}' "
pass
return f"""
with df1 as (
select edit_key_id as asin,
val_after as usr_mask_type
from (
select filed,
edit_key_id,
val_after,
row_number() over ( partition by module,site_name, filed, edit_key_id order by id desc ) as last_row
from sys_edit_log
where val_after is not null
and edit_key_id is not null
and edit_key_id != ''
and site_name = '{site_name}'
and user_id != 'admin'
and module in ('流量选品')
and filed in ('usr_mask_type')
{add_condition}
) tmp
where last_row = 1
),
df2 as (
select edit_key_id as asin,
val_after as usr_mask_progress
from (
select filed,
edit_key_id,
val_after,
row_number() over ( partition by module,site_name, filed, edit_key_id order by id desc ) as last_row
from sys_edit_log
where val_after is not null
and edit_key_id is not null
and edit_key_id != ''
and user_id != 'admin'
and site_name = '{site_name}'
and module in ('流量选品')
and filed in ('usr_mask_progress')
{add_condition}
) tmp
where last_row = 1
)
select df1.asin, df1.usr_mask_type, df2.usr_mask_progress
from df1
full outer join df2 on df1.asin = df2.asin
"""
if __name__ == '__main__':
print(get_user_mask_type_asin_sql("us", "2024-01-01"))