1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
"""
author: 方星钧(ffman)
description: 清洗6大站点对应的 “ods_brand_analytics” 的表: 排名权重计算,用天补全周/30天/月,存储新增的关键词
table_read_name: ods_brand_analytics
table_save_name: ods_brand_analytics
table_save_level: ods
version: 1.0
created_date: 2022-11-21
updated_date: 2022-11-21
"""
import os
import sys
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from pyspark.storagelevel import StorageLevel
from utils.templates import Templates
# from ..utils.templates import Templates
# from AmazonSpider.pyspark_job.utils.templates_test import Templates
from pyspark.sql.types import StringType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
class OdsBrandAnalytics(Templates):
def __init__(self, site_name='us', date_type="month", date_info='2022-01'):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.date_info2 = date_info
self.db_save = f'ods_brand_analytics'
self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}")
# self.df_date = self.get_year_week_tuple() # pandas的df对象
self.df_st = self.spark.sql(f"select 1+1;")
self.df_st_current = self.spark.sql(f"select 1+1;")
self.df_st_rank = self.spark.sql(f"select 1+1;")
self.df_save = self.spark.sql(f"select 1+1;")
self.partitions_num = 1
self.reset_partitions(partitions_num=self.partitions_num)
self.partitions_by = ['site_name', 'date_type', 'date_info']
if self.date_type in ['4_week', "last30day"]:
print(f"date_type={self.date_type}, 无需导入数据")
else:
self.handle_st_import()
self.get_year_week_tuple()
# if self.date_type == '4_week':
# self.date_info = '2022-12-17'
self.get_date_info_tuple()
def read_data(self):
if self.date_type == '4_week':
# if self.site_name in ['us']:
# params1 = f"date_type='day' and date_info in {self.date_info_tuple}"
# else:
# params1 = f"date_type='week' and date_info in {self.year_week_tuple}"
params1 = f"date_type='week' and date_info in {self.year_week_tuple}"
params2 = f" limit 0"
elif self.date_type == 'week_old':
# 旧版周表导入之后直接退出
quit()
elif self.date_type == 'month_old':
params1 = f"date_type='week_old' and date_info in {self.year_week_tuple}"
params2 = f""
else:
params1 = f"date_type='day' and date_info in {self.date_info_tuple}"
params2 = f""
if self.date_type == "last30day":
params2 = f" limit 0"
print("1.1 读取ods_brand_analytics表")
# sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \
# f"and date_type='day' and date_info in {self.date_info_tuple};"
sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \
f"and {params1};"
print("sql:", sql)
self.df_st = self.spark.sql(sql).cache()
self.df_st.show(10, truncate=False)
if self.df_st.count() == 0:
quit()
# print("self.df_st:", self.df_st.drop_duplicates(['search_term']).count())
print("1.2 读取ods_brand_analytics表")
sql = f"select * from ods_brand_analytics where site_name='{self.site_name}' " \
f"and date_type='{self.date_type}' and date_info = '{self.date_info}' {params2};"
print("sql:", sql)
self.df_st_current = self.spark.sql(sql).cache()
self.df_st_current.show(10, truncate=False)
def handle_data(self):
self.handle_st_rank()
self.handle_st_duplicated()
self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info2))
self.df_save.show(10, truncate=False)
def handle_st_import(self):
print(f"导入关键词数据: {self.site_name}, {self.date_type}, {self.date_info}")
os.system(f"/mnt/run_shell/sqoop_shell/import/ods_brand_analytics.sh {self.site_name} {self.date_type} {self.date_info}")
def handle_st_rank(self):
self.df_st_rank = self.df_st.select("search_term", "rank", "date_info")
self.df_st_current = self.df_st_current.withColumn("flag", F.lit(1))
# self.df_st_rank.show(10, truncate=False)
self.df_st_rank = self.df_st_rank.join(
self.df_st_current.select("search_term", "flag"), on='search_term', how='left'
)
self.df_st_rank = self.df_st_rank.filter("flag is null")
# self.df_st_rank.show(10, truncate=False)
# count = self.df_st_current.count() # 计算当前周/月关键词的数量
df_count = self.df_st.groupby(['date_info']).count()
# df_count.show(10, truncate=False)
df_count = df_count.toPandas()
date_dict = {date_info: count for date_info, count in zip(df_count.date_info, df_count['count'])}
# print("date_dict:", date_dict)
self.df_st_rank = self.df_st_rank.groupby(['search_term']). \
pivot("date_info").agg(F.mean("rank"))
# self.df_st_rank.show(10, truncate=False)
self.df_st_rank = self.df_st_rank.fillna(date_dict)
self.df_st_rank = self.df_st_rank.withColumn("rank_sum", F.lit(0))
for col in date_dict.keys():
print("col:", col)
self.df_st_rank = self.df_st_rank.withColumn(
"rank_sum", self.df_st_rank.rank_sum + self.df_st_rank[col]
)
self.df_st_rank = self.df_st_rank.withColumn(
"rank_sum_avg", self.df_st_rank.rank_sum / len(self.date_info_tuple)
)
window = Window.orderBy(
self.df_st_rank.rank_sum_avg.asc()
)
self.df_st_rank = self.df_st_rank.withColumn("rank_avg", F.row_number().over(window=window))
self.df_st_rank = self.df_st_rank.drop("rank_sum", "rank_sum_avg")
# self.df_st_rank.show(10, truncate=False)
for col in date_dict.keys():
self.df_st_rank = self.df_st_rank.drop(col)
# self.df_st_rank.show(10, truncate=False)
self.df_st_rank = self.df_st_rank.withColumnRenamed("rank_avg", "rank")
# self.df_st_rank = self.df_st_rank.withColumn("rank", self.df_st_rank.rank+F.lit(self.df_st_current.rank.count()))
df_max_rank = self.df_st_current.agg(F.max('rank').alias("max_rank"))
df_max_rank = df_max_rank.toPandas()
max_rank = list(df_max_rank.max_rank)[0] if self.date_type not in ['4_week', 'last30day'] else 0
if self.date_type == 'last30day':
self.df_st_rank = self.df_st_rank.fillna({'rank': 0})
self.df_st_rank = self.df_st_rank.withColumn("rank", self.df_st_rank.rank+F.lit(max_rank))
# print("self.df_st_rank:", self.df_st_rank.count())
# self.df_st_rank.show(10, truncate=False)
def handle_st_duplicated(self):
# 默认取最新一天的关键词数据
window = Window.partitionBy(['search_term']).orderBy(
self.df_st.date_info.desc()
)
self.df_st = self.df_st.withColumn("rank_top", F.row_number().over(window))
self.df_st = self.df_st.filter("rank_top=1")
self.df_st = self.df_st.drop("rank_top", "rank")
self.df_save = self.df_st_rank.join(
self.df_st, on='search_term', how='left'
)
# print("self.df_save:", self.df_save.count())
# self.df_save.show(10, truncate=False)
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:day/week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-月-日/年-周/年-月/年-季, 比如: 2022-1
handle_obj = OdsBrandAnalytics(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()