kafka_asin_detail.py 39 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
import json
import os
import re
import sys
import time
import traceback
import zlib

import pandas as pd
import redis
from datetime import datetime

sys.path.append("/opt/module/spark-3.2.0-bin-hadoop3.2/demo/py_demo/")

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
from utils.templates_mysql import TemplatesMysql
# from ..utils.templates_mysql import TemplatesMysql
from pyspark.sql.types import IntegerType
from pyspark.sql import functions as F
from pyspark.sql.types import *
from yswg_utils.common_udf import udf_rank_and_category
# from ..yswg_utils.common_udf import udf_rank_and_category
from yswg_utils.common_df import get_node_first_id_df
from kafka import KafkaConsumer, TopicPartition
from yswg_utils.common_udf import parse_weight_str
# from ..yswg_utils.common_udf import parse_weight_str


class DimStAsinInfo(Templates):

    def __init__(self, site_name='us', date_type="day", date_info='2022-10-01', consumer_type='lastest', topic_name="us_asin_detail", batch_size=100000):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.consumer_type = consumer_type  # 消费实时还是消费历史
        self.topic_name = topic_name  # 主题名字
        self.batch_size = batch_size
        self.batch_size_history = int(batch_size / 10)
        # 连接到Redis服务器
        self.redis_db = {
            "us": 0,
            "uk": 1,
            "de": 2,
            "es": 3,
            "fr": 4,
            "it": 5,
        }
        self.client = redis.Redis(host='192.168.10.224', port=6379, db=self.redis_db[self.site_name], password='yswg2023')
        self.db_save = f'kafka_asin_detail'
        self.spark = self.create_spark_object(
            app_name=f"{self.db_save}: {self.site_name},{self.date_type}, {self.date_info}")
        self.get_date_info_tuple()
        self.df_save = self.spark.sql(f"select 1+1;")
        self.df_st_asin = self.spark.sql(f"select 1+1;")
        self.df_bs_report = self.spark.sql(f"select 1+1;")
        self.df_asin_bs = self.spark.sql(f"select 1+1;")
        self.df_self_asin = self.spark.sql(f"select 1+1;")
        self.df_asin_sku = self.spark.sql(f"select 1+1;")
        self.df_asin_templates = self.spark.sql("select asin_zr_counts, asin_sp_counts, asin_sb1_counts,asin_sb2_counts,asin_sb3_counts,asin_ac_counts,asin_bs_counts,asin_er_counts,asin_tr_counts from dwd_asin_measure limit 0")
        self.df_asin_counts = self.spark.sql("select asin_zr_counts, asin_sp_counts, asin_sb1_counts,asin_sb2_counts,asin_sb3_counts,asin_ac_counts,asin_bs_counts,asin_er_counts,asin_tr_counts from dwd_asin_measure limit 0")
        self.schema = self.init_schema()
        # self.u_rank_and_category = self.spark.udf.register("u_rank_and_category", udf_rank_and_category, schema)
        schema = StructType([
            StructField('asin_bs_cate_1_rank', StringType(), True),
            StructField('rank_and_category', StringType(), True),
        ])
        self.u_rank_and_category = self.spark.udf.register("u_rank_and_category", self.udf_rank_and_category, schema)
        self.u_cal_crc32 = self.spark.udf.register("u_cal_crc32", self.udf_cal_crc32, IntegerType())
        self.u_cal_bkdr = self.spark.udf.register("u_cal_bkdr", self.udf_cal_bkdr, IntegerType())
        self.u_extract_dimensions = self.spark.udf.register("u_cal_bkdr", self.udf_extract_dimensions, StringType())
        self.u_extract_weight = self.spark.udf.register("u_cal_bkdr", self.udf_extract_weight, StringType())
        self.pattern_1_rank_str = {
            "us": "(\d+).*?See Top 100 in ",
            "uk": "(\d+).*?See Top 100 in ",
            "de": "(\d+).*?Siehe Top 100 in ",
            "es": "(\d+).*?Ver el Top 100 en ",
            "fr": "(\d+).*?Voir les 100 premiers en ",
            "it": "(\d+).*?Visualizza i Top 100 nella categoria "
        }  # 匹配一级分类的排名
        self.pattern_str = {
            "us": "(\d+ in [\w&' ]+)",
            "uk": "(\d+ in [\w&' ]+)",
            "de": "Nr. (\d+ in [\w&' ]+)",
            "es": "nº(\d+ en [\w&' ]+)",
            "fr": "(\d+ en [\w&' ]+)",
            "it": "n. (\d+ in [\w&' ]+)",
        }  # 匹配排名和分类
        self.replace_str = {
            "us": "See Top 100 in ",
            "uk": "See Top 100 in ",
            "de": "Siehe Top 100 in ",
            "es": "Ver el Top 100 en ",
            "fr": "Voir les 100 premiers en ",
            "it": "Visualizza i Top 100 nella categoria ",
        }  # 去掉top100匹配

        # 连接mysql
        self.engine = self.get_connection()

    def get_connection(self):
        return TemplatesMysql(site_name="us").mysql_connect()

    def judge_spider_asin_detail_is_finished(self):
        while True:
            try:
                sql = f'SELECT * from workflow_progress WHERE page="ASIN详情" and site_name="{self.site_name}" and date_type="{self.date_type}" and date_info="{self.date_info}" and status_val=3'
                df = pd.read_sql(sql, con=self.engine)
                if df.shape[0] == 1:
                    print(f"ASIN详情状态为3, 抓取完成并终止程序, site_name:{self.site_name}, date_type:{self.date_type}, date_info:{self.date_info}")
                    self.spark.stop()
                    quit()  # 退出程序
                break
            except Exception as e:
                print(e, traceback.format_exc())
                time.sleep(10)
                self.engine = self.get_connection()

    def fetch_self_asin(self):
        while True:
            try:
                sql = f"""SELECT asin, 1 as isSelfAsin from {self.site_name}_self_asin"""
                df_self_asin = pd.read_sql(sql, con=self.engine)
                schema = StructType([
                    StructField("asin", StringType(), True),
                    StructField("isSelfAsin", IntegerType(), True),
                ])
                self.df_self_asin = self.spark.createDataFrame(df_self_asin, schema=schema).cache()
                self.df_self_asin.show(10, truncate=False)
                break
            except Exception as e:
                print(e, traceback.format_exc())
                time.sleep(10)
                self.engine = self.get_connection()

    @staticmethod
    def udf_extract_dimensions(volume_str, asin_volume):
        # 解析类型
        # pattern = r'\b\w+\b'
        pattern = r'[a-z]+'
        matches = re.findall(pattern, asin_volume)

        # 使用集合存储匹配的单词
        type_set = set()
        for word in matches:
            if word in ['inches', 'inch']:
                type_set.add('inches')
            elif word in ['cm', 'centímetros', 'centimetres']:
                type_set.add('cm')
            elif word in ['milímetros', 'millimeter', 'mm']:
                type_set.add('mm')
            elif word in ['metros']:
                type_set.add('m')

        # 根据集合的长度返回结果
        if len(type_set) == 1:
            asin_volume_type = list(type_set)[0]
        elif len(type_set) >= 2:
            asin_volume_type = ','.join(type_set)
        else:
            asin_volume_type = 'none'

        # 解析长宽高
        length, width, height = None, None, None
        if asin_volume_type == 'cm,inches':
            num_inches = volume_str.find('inch')
            num_cm = volume_str.find('cm')
            volume_str = volume_str[:num_inches] if num_cm > num_inches else volume_str[num_cm:num_inches]
        dimensions = re.findall(r"(\d+(\.\d+)?)", volume_str)
        dimensions = [float(dim[0]) for dim in dimensions]

        if len(dimensions) == 1:
            length = dimensions[0]
        elif len(dimensions) == 2:
            if asin_volume_type == 'none':
                if "l" in volume_str and "w" in volume_str:
                    length, width = dimensions
                elif "w" in volume_str and "h" in volume_str:
                    width, height = dimensions
                elif "l" in volume_str and "h" in volume_str:
                    length, height = dimensions
                elif "d" in volume_str and "w" in volume_str:
                    length, width = dimensions
                elif "d" in volume_str and "h" in volume_str:
                    length, height = dimensions
            else:
                length, width = dimensions
        elif len(dimensions) == 3:
            length, width, height = dimensions
        elif len(dimensions) >= 4:
            length, width, height = dimensions[:3]

        return f"{length}*{width}*{height}{asin_volume_type}"

    @staticmethod
    def udf_extract_weight(weight_str: str):
        """
        解析重量字符串获取重量和单位,逗号分隔
        :param weight_str:
        :param site_name:
        :return:
        """
        val = None
        # weight_type = 'pounds' if site_name == 'us' else 'grams'
        weight_type = 'g'
        if weight_str is not None:
            if 'pounds' in weight_str:
                match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}pounds", weight_str)
                val = round(float(match.group(1)) * 1000 * 0.454, 3) if match else None
            elif 'ounces' in weight_str:
                match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}ounces", weight_str)
                val = round(float(match.group(1)) / 16 * 1000 * 0.454, 3) if match else None
            elif any(substring in weight_str for substring in ['kilogram', ' kg']):
                weight_str = weight_str.replace(' kg', ' kilogram')
                match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}kilogram", weight_str)
                val = round(float(match.group(1)) * 1000, 3) if match else None
            elif any(substring in weight_str for substring in ['milligrams']):
                match = re.search(r"(\d+\.{0,}\d{0,})\D{0,}milligrams", weight_str)
                val = round(float(match.group(1)) / 1000, 3) if match else None
            elif ' gram' in weight_str:
                match = re.search(r"(\d+\.{0,}\d{0,})\D{0,} gram", weight_str)
                val = round(float(match.group(1)), 3) if match else None
            elif ' g' in weight_str:
                match = re.search(r"(\d+\.{0,}\d{0,})\D{0,} g", weight_str)
                val = round(float(match.group(1)), 3) if match else None
        if val:
            return f"{val}{weight_type}"
        else:
            return f"{val}"

    def fetch_asin_sku_count(self):
        while True:
            try:
                sql = f"""SELECT asin,count(id) as auctionsNum,count((case when sku!='' then sku else NULL end)) as skusNumCreat  
                     from product_audit_asin_sku  
                    --  where asin in ('B085WYH539')
                     GROUP BY asin 
                    """
                df_asin_sku = pd.read_sql(sql, con=self.engine)
                schema = StructType([
                    StructField("asin", StringType(), True),
                    StructField("auctionsNum", IntegerType(), True),
                    StructField("skusNumCreat", IntegerType(), True),
                ])
                self.df_asin_sku = self.spark.createDataFrame(df_asin_sku, schema=schema).cache()
                self.df_asin_sku.show(10, truncate=False)
                break
            except Exception as e:
                print(e, traceback.format_exc())
                time.sleep(10)
                self.engine = self.get_connection()

    @staticmethod
    def init_schema():
        schema = StructType([
            StructField("asin", StringType(), True),
            StructField("week", StringType(), True),
            StructField("title", StringType(), True),
            StructField("img_url", StringType(), True),
            StructField("rating", StringType(), True),
            StructField("total_comments", StringType(), True),
            StructField("price", FloatType(), True),
            StructField("rank", StringType(), True),
            StructField("category", StringType(), True),
            StructField("launch_time", StringType(), True),
            StructField("volume", StringType(), True),
            StructField("weight", StringType(), True),
            StructField("page_inventory", IntegerType(), True),
            StructField("buy_box_seller_type", IntegerType(), True),
            StructField("asin_vartion_list", IntegerType(), True),
            StructField("title_len", IntegerType(), True),
            StructField("img_num", IntegerType(), True),
            StructField("img_type", StringType(), True),
            StructField("activity_type", StringType(), True),
            StructField("one_two_val", StringType(), True),
            StructField("three_four_val", StringType(), True),
            StructField("eight_val", StringType(), True),
            StructField("qa_num", IntegerType(), True),
            StructField("five_star", IntegerType(), True),
            StructField("four_star", IntegerType(), True),
            StructField("three_star", IntegerType(), True),
            StructField("two_star", IntegerType(), True),
            StructField("one_star", IntegerType(), True),
            StructField("low_star", IntegerType(), True),
            StructField("together_asin", StringType(), True),
            StructField("brand", StringType(), True),
            StructField("ac_name", StringType(), True),
            StructField("material", StringType(), True),
            StructField("node_id", StringType(), True),
            StructField("data_type", IntegerType(), True),
            StructField("sp_num", StringType(), True),
            StructField("describe", StringType(), True),
            StructField("date_info", StringType(), True),
            StructField("weight_str", StringType(), True),
            StructField("package_quantity", StringType(), True),
            StructField("pattern_name", StringType(), True),
            StructField("seller_id", StringType(), True),
            StructField("variat_num", IntegerType(), True),
            StructField("site_name", StringType(), True),
            StructField("best_sellers_rank", StringType(), True),
            StructField("best_sellers_herf", StringType(), True),
            StructField("account_url", StringType(), True),
            StructField("account_name", StringType(), True),
            StructField("parentAsin", StringType(), True),
            StructField("asinUpdateTime", StringType(), True),
            StructField("follow_sellers", StringType(), True),
        ])
        return schema

    @staticmethod
    def udf_cal_crc32(asin, key_size):
        # crc32算法 + 取余

        # 获取asin字符串的字节表示形式
        bytes_str = bytes(asin, 'utf-8')
        # 使用zlib计算CRC-32校验和
        checksum = zlib.crc32(bytes_str)
        # 获取32位的二进制补码
        checksum_signed = (checksum & 0xFFFFFFFF) - (1 << 32) if checksum & (1 << 31) else checksum

        def java_mod(x, y):
            # return x % y if x * y > 0 else x % y - y  # 区分正负值
            return abs(x) % y  # 不区分正负值

        # 取余
        result = java_mod(checksum_signed, key_size)
        return result

    @staticmethod
    def udf_cal_bkdr(asin):
        # BKDR哈希算法
        hash = 0
        for c in asin:
            hash = (hash * 33 + ord(c)) % 65535  # 对哈希值取模65535,以避免溢出
        return hash

    @staticmethod
    def udf_rank_and_category(best_sellers_rank, pattern_1_rank_str, pattern_str, replace_str):
        best_sellers_rank = str(best_sellers_rank).replace(",", "")
        matches = re.findall(pattern_1_rank_str, best_sellers_rank)
        asin_bs_cate_1_rank = matches[0] if matches else None
        best_sellers_rank = best_sellers_rank.replace(replace_str, "")
        matches = re.findall(pattern_str, best_sellers_rank)
        rank_and_category = "&&&&".join([rank_cate.replace(",", "") for rank_cate in matches]) if matches else None
        return asin_bs_cate_1_rank, rank_and_category

    def df_read_data_by_kafka(self):
        # .option("my_kafka.bootstrap.servers", "113.100.143.162:39092") \
        # .option("startingOffsets", "lastest")  # 偏移量, lastest, earliest
        # .select(F.from_json("value", schema=self.schema).alias("data")) \
        kafka_df = self.spark.readStream \
            .format("my_kafka") \
            .option("my_kafka.bootstrap.servers", "192.168.10.221:9092,192.168.10.220:9092,192.168.10.210:9092") \
            .option("subscribe", f"{self.site_name}_asin_detail") \
            .option("startingOffsets", "lastest") \
            .load() \
            .select(F.from_json(F.col("value").cast("string"), schema=self.schema).alias("data")) \
            .select("data.*")

        # assign_option = f"""{{"{self.site_name}_asin_detail": {{"7": 0}}}}"""
        # # .option("subscribe", f""""{self.site_name}_asin_detail": {"7": 0}""")
        # kafka_df = self.spark.readStream \
        #     .format("my_kafka") \
        #     .option("my_kafka.bootstrap.servers", "192.168.10.221:9092,192.168.10.220:9092,192.168.10.210:9092") \
        #     .option("subscribe", f"{self.site_name}_asin_detail")\
        #     .option("assign", assign_option) \
        #     .option("startingOffsets", "lastest") \
        #     .load() \
        #     .selectExpr("CAST(value AS STRING) AS value") \
        #     .select(F.from_json("value", schema=self.schema).alias("data")) \
        #     .select("data.*")

        #"""{"your_topic_name": {"0": 100, "1": 200}}"""
        # .option("my_kafka.fetch.max.bytes", "10485760") \
        # .option("my_kafka.max.partition.fetch.bytes", "10485760") \
        return kafka_df

    def read_data(self):
        print("1.1 读取dim_st_asin_info表, 计算ao值")
        sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
        print("sql:", sql)
        self.df_st_asin = self.spark.sql(sql)
        self.df_st_asin = self.df_st_asin.drop_duplicates(['search_term', 'asin', 'data_type']).cache()
        self.df_st_asin.show(10, truncate=False)
        print("1.2 读取ods_one_category_report表")
        if int(self.year) == 2022 and int(self.month) < 3:
            sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, orders as asin_bsr_orders from ods_one_category_report " \
                  f"where site_name='{self.site_name}' and date_type='month' and date_info='2022-12';"
        else:
            sql = f"select category_id as asin_bs_cate_1_id, rank as asin_bs_cate_1_rank, orders as asin_bsr_orders from ods_one_category_report " \
                  f"where site_name='{self.site_name}' and date_type='month' and date_info='{self.year}-{self.month}';"
        print("sql:", sql)
        self.df_bs_report = self.spark.sql(sqlQuery=sql).cache()
        self.df_bs_report.show(10, truncate=False)
        print("1.3 读取bsr一级分类表")
        self.df_asin_bs = get_node_first_id_df(self.site_name, self.spark)
        self.df_asin_bs = self.df_asin_bs.withColumnRenamed("category_first_id", "asin_bs_cate_1_id")
        self.df_asin_bs.show(10, truncate=False)
        print("1.4 读取内部asin表")
        # sql = f"select asin, 1 as isSelfAsin from ods_self_asin where site_name='{self.site_name}';"
        # print("sql:", sql)
        # self.df_self_asin = self.spark.sql(sqlQuery=sql).cache()
        # self.df_self_asin.show(10, truncate=False)
        self.fetch_self_asin()
        # 读取asin和sku计数关系
        print("1.5 读取asin和sku计数关系")
        self.fetch_asin_sku_count()

    def handle_data(self):
        # 计算asin的ao值
        self.df_asin_counts = self.handle_st_asin_counts()
        self.df_asin_counts = self.df_asin_counts.select("asin", "asin_ao").cache()

    def handle_asin_bs_category_rank(self, df):
        df = df.withColumn(
            'bs_str', self.u_rank_and_category(
                'best_sellers_rank',
                F.lit(self.pattern_1_rank_str[self.site_name]),
                F.lit(self.pattern_str[self.site_name]),
                F.lit(self.replace_str[self.site_name])
            )
        )
        df = df.withColumn('asin_bs_cate_1_rank', df.bs_str.getField('asin_bs_cate_1_rank')) \
            .withColumn('rank_and_category', df.bs_str.getField('rank_and_category')) \
            .drop('bs_str', 'best_sellers_rank')
        df.show(10, truncate=False)
        return df

    def handle_st_asin_counts(self):
        self.df_st_asin = self.df_st_asin.withColumn(
            f"asin_data_type",
            F.concat(F.lit(f"asin_"), self.df_st_asin.data_type, F.lit(f"_counts"))
        )
        df_asin_counts = self.df_st_asin.groupby([f'asin']). \
            pivot(f"asin_data_type").count()

        df_asin_counts = self.df_asin_templates.unionByName(df_asin_counts, allowMissingColumns=True)  # 防止爬虫数据没有导致程序运行出错
        df_asin_counts = df_asin_counts.fillna(0)
        # df.show(10, truncate=False)
        df_asin_counts = df_asin_counts.withColumn(
            f"asin_sb_counts",
            df_asin_counts[f"asin_sb1_counts"] + df_asin_counts[f"asin_sb2_counts"] + df_asin_counts[f"asin_sb3_counts"]
        )
        df_asin_counts = df_asin_counts.withColumn(
            f"asin_adv_counts",
            df_asin_counts[f"asin_sb_counts"] + df_asin_counts[f"asin_sp_counts"]
        )
        df_asin_counts = df_asin_counts.withColumn(
            f"asin_ao",
            df_asin_counts[f"asin_adv_counts"] / df_asin_counts[f"asin_zr_counts"]
        )  # 不要把null置为0, null值产生原因是zr类型没有搜到对应的搜索词
        df_asin_counts = df_asin_counts.withColumn("asin_ao", F.round(df_asin_counts["asin_ao"], 4))

        df_asin_counts.show(10, truncate=False)
        return df_asin_counts

    @staticmethod
    def clean_kafka_df(df):
        df = df.withColumnRenamed("seller_id", "account_id")
        # cols_python = ["asin", "parentAsin", "variat_num", "best_sellers_rank", "best_sellers_herf", "price", "rating",
        #         "brand", "brand", "account_id", "account_name", "account_url", "buy_box_seller_type",
        #         "volume", "weight", "weight_str", "launchTime", "total_comments", "page_inventory"]
        # oneCategoryRank, aoVal, bsrOrders, bsrOrdersSale
        # siteName volumeFormat weightFormat asinUpdateTime
        # java那边插件的字段名称
        cols_java = ['asin', 'parentAsin', 'asinVarNum', 'oneCategoryRank', 'bestSellersRank', 'lastHerf', 'aoVal', 'price', 'rating',
                    'bsrOrders', 'bsrOrdersSale', 'brandName', 'accountId', 'accountName', 'accountUrl', 'siteName', 'buyBoxSellerType',
                    'volume', 'volumeFormat', 'weight', 'weightFormat', 'launchTime', 'totalComments', 'pageInventory', 'asinUpdateTime']
        df = df.select("asin", "parentAsin", "variat_num", "best_sellers_rank", "best_sellers_herf", "price", "rating",
                        "brand", "account_id", "account_name", "account_url", "buy_box_seller_type",
                        "volume", "weight", "weight_str", "launch_time", "total_comments", "page_inventory", "asinUpdateTime", "site_name", "node_id")
        return df

    def rename_cols(self, df):
        # 计算redis的key
        df = df.withColumn(
            'key_outer', self.u_cal_crc32('asin', F.lit(self.batch_size))
        )
        df = df.withColumn(
            'key_inner', self.u_cal_bkdr('asin')
        )
        df.show(5, truncate=False)

        df = df.withColumnRenamed("variat_num", "asinVarNum")
        df = df.withColumnRenamed("asin_bs_cate_1_rank", "oneCategoryRank")
        df = df.withColumnRenamed("rank_and_category", "bestSellersRank")  # 解析后的
        df = df.withColumnRenamed("best_sellers_herf", "lastHerf")
        df = df.withColumnRenamed("asin_ao", "aoVal")
        df = df.withColumnRenamed("asin_bsr_orders", "bsrOrders")
        df = df.withColumnRenamed("asin_bsr_orders_sale", "bsrOrdersSale")
        df = df.withColumnRenamed("brand", "brandName")
        df = df.withColumnRenamed("account_id", "accountId")
        df = df.withColumnRenamed("account_name", "accountName")
        df = df.withColumnRenamed("account_url", "accountUrl")
        df = df.withColumnRenamed("buy_box_seller_type", "buyBoxSellerType")
        df = df.withColumnRenamed("launch_time", "launchTime")
        df = df.withColumnRenamed("total_comments", "totalComments")
        df = df.withColumnRenamed("page_inventory", "pageInventory")
        df = df.select('asin', 'parentAsin', 'asinVarNum', 'oneCategoryRank', 'bestSellersRank', 'lastHerf', 'aoVal', 'price', 'rating',
                    'bsrOrders', 'bsrOrdersSale', 'brandName', 'accountId', 'accountName', 'accountUrl', 'buyBoxSellerType',
                    'volume', 'weight', 'launchTime', 'totalComments', 'pageInventory', 'asinUpdateTime',
                       "site_name", "key_outer", "key_inner")
        return df

    def process_batch(self, df, epoch_id):
        try:
            count = df.count()
            print("当前批次传输的数据量为df.count():", count)
            if count == 0:
                self.judge_spider_asin_detail_is_finished()

            # 确保schema非空以避免NoneType错误
            if not self.schema:
                raise ValueError("Schema is not defined")
            # df.show(5, truncate=False)
            print("df.columns:", df.columns)
            # df = df.select("asin", "launch_time", "volume", "weight", "weight_str", "node_id", "variat_num", "best_sellers_rank", "best_sellers_herf", "seller_id", "account_url", "account_name", "site_name")
            df = self.clean_kafka_df(df=df)
            # df.show(5, truncate=False)
            # # 提取排名和分类
            df_bs = self.handle_asin_bs_category_rank(df=df.select("asin", "best_sellers_rank"))
            # join
            df_save = df.join(
                df_bs, on='asin', how='left'
            ).join(
                self.df_asin_counts, on='asin', how='left'
            ).join(
                self.df_asin_bs, on='node_id', how='left'
            ).join(
                self.df_self_asin, on='asin', how='left'
            ).join(
                self.df_asin_sku, on='asin', how='left'
            )
            df_save = df_save.na.fill({"isSelfAsin": 0})
            # 计算bsr效率
            df_save = df_save.join(
                self.df_bs_report, on=['asin_bs_cate_1_rank', 'asin_bs_cate_1_id'], how='left'
            )
            df_save = df_save.withColumn("asin_bsr_orders_sale", df_save.price * df_save.asin_bsr_orders)
            df_save = self.rename_cols(df=df_save)
            self.save_to_redis(df=df_save)
        except Exception as e:
            print(e, traceback.format_exc())

        # # 与从Kafka读取的数据进行连接
        # joined_df = df.join(self.df_asin_title, "asin", how='left')
        # # 执行你的转换和聚合逻辑
        # result_df = joined_df.groupBy("asin").count()
        # result_df.show(10, truncate=False)
        print("epoch_id:", epoch_id, datetime.now().strftime("%Y-%m-%d %H:%M:%S"))

    def start_stream(self, processing_time=600):
        # kafka_df = self.df_read_data_by_kafka()
        if self.date_type == "month":
            date_type = "_month"
        else:
            date_type = ""
        topics = f"{self.site_name}_asin_detail{date_type}"
        kafka_df = self.get_kafka_df_by_spark(schema=self.schema, consumption_type="latest", topics=topics)
        query = kafka_df.writeStream \
            .outputMode("append") \
            .format("console") \
            .option("checkpointLocation", "/root/tmp") \
            .foreachBatch(self.process_batch) \
            .trigger(processingTime=f'{processing_time} seconds').start()
        query.awaitTermination()

    def save_to_redis(self, df):
        # 将Spark DataFrame转换为Pandas DataFrame
        pdf = df.toPandas()
        # 遍历Pandas DataFrame并将数据插入到Redis
        for index, row in pdf.iterrows():
            # 创建一个复合键,或者根据你的需要选择适当的键
            # 1. 外层key为10197, 内层可以为10197:15931
            # redis_key = f"{row['key_outer']}:{row['key_inner']}"  #
            # # 插入值到Redis - 在这里我仅仅存储了一个值,你可以存储一个字典来存储多个值
            # self.client.set(redis_key, row['value'])
            # row_json = row.to_json(orient='split')
            # self.client.set(redis_key, row_json)
            # 2. 外层key为10197, 内层可以为15931
            # redis_key = row['key_outer']
            # redis_field = row['key_inner']
            # row_json = row.to_json(orient='split')
            # self.client.hset(redis_key, redis_field, row_json)

            # 3. hashmap + 外层key为10197, 内层可以为15931
            redis_key = row['key_outer']
            redis_field = row['key_inner']
            row_dict = row.to_dict()
            # row_dict = {k: str(v).lower().replace("none", "").replace("nan", "") for k, v in row_dict.items()}  # 确保所有的值都是字符串
            row_dict = {k: str(v).replace("None", "").replace("none", "").replace("NaN", "").replace("nan", "") for k, v in row_dict.items()}  # 确保所有的值都是字符串
            row_dict = {k: format(v, ".2f") if isinstance(v, (int, float)) else str(v).replace("None", "").replace(
                    "nan", "") for k, v in row_dict.items()}

            del row_dict["key_outer"]
            del row_dict["key_inner"]
            row_json = json.dumps(row_dict)
            self.client.hset(redis_key, redis_field, row_json)

    def get_topic_name(self):
        if self.site_name == "us" and self.date_type == "month":
            self.topic_name = f"{site_name}_asin_detail_{self.date_type}"
        else:
            self.topic_name = f"{site_name}_asin_detail"

    def handle_history(self):
        self.get_topic_name()
        consumer = self.get_kafka_object_by_python(topic_name=self.topic_name)
        partition_offsets_dict = self.get_kafka_partitions_data(consumer=consumer, topic_name=self.topic_name)
        partition_num = len(partition_offsets_dict)
        beginning_offsets_dict = {}
        end_offsets_dict = {}
        while True:
            num = 0
            for key, value in partition_offsets_dict.items():
                # 起始偏移量
                beginning_offsets_dict[str(key)] = value['beginning_offsets']
                # 结束偏移量
                end_offsets = value['beginning_offsets'] + self.batch_size_history
                end_offsets_partition = value['end_offsets']
                end_offsets_dict[str(key)] = min(end_offsets, end_offsets_partition)
                if end_offsets >= end_offsets_partition:
                    num += 1
                else:
                    partition_offsets_dict[key]['beginning_offsets'] = end_offsets

            starting_offsets_json = json.dumps({self.topic_name: beginning_offsets_dict})
            ending_offsets_json = json.dumps({self.topic_name: end_offsets_dict})
            print(f"starting_offsets_json: {starting_offsets_json}, ending_offsets_json:{ending_offsets_json}")
            kafka_df = self.spark.read \
                .format("kafka") \
                .option("kafka.bootstrap.servers", self.kafka_servers) \
                .option("subscribe", self.topic_name) \
                .option("kafka.security.protocol", self.kafka_security_protocol) \
                .option("kafka.sasl.mechanism", self.kafka_sasl_mechanism) \
                .option("kafka.sasl.jaas.config",
                        f'org.apache.kafka.common.security.plain.PlainLoginModule required username="{self.kafka_username}" password="{self.kafka_password}";') \
                .option("failOnDataLoss", "true") \
                .option("startingOffsets", starting_offsets_json) \
                .option("endingOffsets", ending_offsets_json) \
                .load() \
                .select(F.from_json(F.col("value").cast("string"), schema=self.schema).alias("data")) \
                .select("data.*")
            print(f"kafka_df.count():{kafka_df.count()}")

            if num >= partition_num:
                break
            else:
                continue

    def handle_history_old(self):
        self.get_topic_name()
        consumer = self.get_kafka_object_by_python(topic_name=self.topic_name)
        partition_data_count = self.get_kafka_partitions_data(consumer=consumer, topic_name=self.topic_name)

        beginning_offsets_list = []
        end_offsets_list = []
        for values in partition_data_count.values():
            beginning_offsets_list.append(values['beginning_offsets'])
            end_offsets_list.append(values['end_offsets'])

        min_offset = min(beginning_offsets_list)
        # min_offset = max(beginning_offsets_list)
        max_offset = max(end_offsets_list)
        print(f"min_offset:{min_offset}, max_offset:{max_offset}")
        # max_offset = max(partition_data_count.values())
        # for start_offset in range(0, max_offset+1, self.batch_size_history):
        # self.batch_size_history = 100
        for start_offset in range(min_offset, max_offset+1, self.batch_size_history):
            end_offset = max(start_offset + self.batch_size_history, max_offset)
            starting_offsets_json = json.dumps({self.topic_name: {str(p): start_offset for p in partition_data_count.keys()}})
            ending_offsets_json = json.dumps({self.topic_name: {str(p): end_offset for p in partition_data_count.keys()}})
            # .option("failOnDataLoss", "true")  # 设置 failOnDataLoss 为 true, 默认为False


            kafka_df = self.spark.read \
            .format("kafka") \
            .option("kafka.bootstrap.servers", self.kafka_servers) \
            .option("subscribe", self.topic_name) \
            .option("kafka.security.protocol", self.kafka_security_protocol) \
            .option("kafka.sasl.mechanism", self.kafka_sasl_mechanism) \
            .option("kafka.sasl.jaas.config", f'org.apache.kafka.common.security.plain.PlainLoginModule required username="{self.kafka_username}" password="{self.kafka_password}";') \
            .option("failOnDataLoss", "true") \
            .option("startingOffsets", starting_offsets_json) \
            .option("endingOffsets", ending_offsets_json) \
            .load() \
            .select(F.from_json(F.col("value").cast("string"), schema=self.schema).alias("data")) \
            .select("data.*")
            print(f"kafka_df.count():{kafka_df.count()}, start_offset:{start_offset}, end_offset:{end_offset}")
            self.handle_batch_history(df=kafka_df)
        #     self.handle_batch_history(df=kafka_df)
        #         # current_offsets[partition] = end_offset
 #        .option("startingOffsets", starting_offsets_json) \
 #            .option("endingOffsets", ending_offsets_json) \
 # \
            # while not done:
        #     # for partition in partitions:
        #     #     start_offset = current_offsets[partition]
        #     #     end_offset = start_offset + self.batch_size
        #     #     print(f"partition:{partition}, start_offset:{start_offset}, end_offset:{end_offset}")
        #         # 创建包含所有分区信息的JSON字符串
        #     start_offset, end_offset = 0, 0 + self.batch_size
        #     starting_offsets_json = json.dumps({self.topic_name: {str(p): start_offset for p in partitions}})
        #     # ending_offsets_json = json.dumps({self.topic_name: {str(p): (end_offset if p == partition else start_offset) for p in partitions}})
        #     ending_offsets_json = json.dumps({self.topic_name: {str(p): end_offset for p in partitions}})
        #     print(f"starting_offsets_json:{starting_offsets_json}, ending_offsets_json:{ending_offsets_json}")
        #     # 读取数据
        #     kafka_df = self.spark.read \
        #         .format("kafka") \
        #         .option("kafka.bootstrap.servers", self.kafka_servers) \
        #         .option("subscribe", self.topic_name) \
        #         .option("startingOffsets", starting_offsets_json) \
        #         .option("endingOffsets", ending_offsets_json) \
        #         .option("failOnDataLoss", "false") \
        #         .load()\
        #         .select(F.from_json(F.col("value").cast("string"), schema=self.schema).alias("data")) \
        #         .select("data.*")
        #
        #     # TODO: 根据需要处理数据
        #     # kafka_df.show(10, truncate=False)
        #     print("kafka_df.count():", kafka_df.count())
        #     self.handle_batch_history(df=kafka_df)
        #         # current_offsets[partition] = end_offset
        #
        #     done = all(offset >= partition_data_count[p] for p, offset in current_offsets.items())
        #

        # 关闭SparkSession
        self.spark.stop()

    def handle_batch_history(self, df):
        try:
            print("df.columns:", df.columns)
            # df = df.select("asin", "launch_time", "volume", "weight", "weight_str", "node_id", "variat_num", "best_sellers_rank", "best_sellers_herf", "seller_id", "account_url", "account_name", "site_name")
            df.show(10, truncate=False)
            df = self.clean_kafka_df(df=df)
            # df.show(5, truncate=False)
            # # 提取排名和分类
            df_bs = self.handle_asin_bs_category_rank(df=df.select("asin", "best_sellers_rank"))
            # join
            df_save = df.join(
                df_bs, on='asin', how='left'
            ).join(
                self.df_asin_counts, on='asin', how='left'
            ).join(
                self.df_asin_bs, on='node_id', how='left'
            ).join(
                self.df_self_asin, on='asin', how='left'
            ).join(
                self.df_asin_sku, on='asin', how='left'
            )
            # 计算bsr效率
            df_save = df_save.join(
                self.df_bs_report, on=['asin_bs_cate_1_rank', 'asin_bs_cate_1_id'], how='left'
            )
            df_save = df_save.withColumn("asin_bsr_orders_sale", df_save.price * df_save.asin_bsr_orders)
            df_save = self.rename_cols(df=df_save)
            self.save_to_redis(df=df_save)
        except Exception as e:
            print(e, traceback.format_exc())

    def run(self):

        # self.read_data()
        # self.handle_data()
        if self.consumer_type == 'latest':
            self.start_stream(processing_time=300)
        else:
            self.handle_history()

        # # 将消息值转换为字符串,并创建一个临时视图
        # stringifiedDF = self.my_kafka.selectExpr("CAST(value AS STRING)")
        # stringifiedDF.createOrReplaceTempView("KafkaData")
        # # 设置streaming查询,每5分钟触发一次
        # query = stringifiedDF.writeStream.foreachBatch(self.process_batch).trigger(processingTime='600 seconds').start()
        # # 等待查询终止
        # query.awaitTermination()


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter/day
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
    consumer_type = sys.argv[4]  # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
    handle_obj = DimStAsinInfo(site_name=site_name, date_type=date_type, date_info=date_info, consumer_type=consumer_type, batch_size=100000)
    # handle_obj.run()
    handle_obj.run_kafka()