1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
import json
import os
import sys
sys.path.append(os.path.dirname(sys.path[0]))
from utils.db_util import DBUtil, DbTypes
from utils.common_util import CommonUtil
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F, Window
from pyspark.sql.types import ArrayType, StringType, MapType, IntegerType, BooleanType
from yswg_utils.udf_util import UdfUtil
_alphaCharsStr = 'A-Za-z\\xAA\\xB5\\xBA\\xC0-\\xD6\\xD8-\\xF6\\xF8-\u02C1\u02C6-\u02D1\u02E0-\u02E4\u02EC\u02EE\u0370-\u0374\u0376\u0377\u037A-\u037D\u037F\u0386\u0388-\u038A\u038C\u038E-\u03A1\u03A3-\u03F5\u03F7-\u0481\u048A-\u052F\u0531-\u0556\u0559\u0561-\u0587\u05D0-\u05EA\u05F0-\u05F2\u0620-\u064A\u066E\u066F\u0671-\u06D3\u06D5\u06E5\u06E6\u06EE\u06EF\u06FA-\u06FC\u06FF\u0710\u0712-\u072F\u074D-\u07A5\u07B1\u07CA-\u07EA\u07F4\u07F5\u07FA\u0800-\u0815\u081A\u0824\u0828\u0840-\u0858\u08A0-\u08B4\u0904-\u0939\u093D\u0950\u0958-\u0961\u0971-\u0980\u0985-\u098C\u098F\u0990\u0993-\u09A8\u09AA-\u09B0\u09B2\u09B6-\u09B9\u09BD\u09CE\u09DC\u09DD\u09DF-\u09E1\u09F0\u09F1\u0A05-\u0A0A\u0A0F\u0A10\u0A13-\u0A28\u0A2A-\u0A30\u0A32\u0A33\u0A35\u0A36\u0A38\u0A39\u0A59-\u0A5C\u0A5E\u0A72-\u0A74\u0A85-\u0A8D\u0A8F-\u0A91\u0A93-\u0AA8\u0AAA-\u0AB0\u0AB2\u0AB3\u0AB5-\u0AB9\u0ABD\u0AD0\u0AE0\u0AE1\u0AF9\u0B05-\u0B0C\u0B0F\u0B10\u0B13-\u0B28\u0B2A-\u0B30\u0B32\u0B33\u0B35-\u0B39\u0B3D\u0B5C\u0B5D\u0B5F-\u0B61\u0B71\u0B83\u0B85-\u0B8A\u0B8E-\u0B90\u0B92-\u0B95\u0B99\u0B9A\u0B9C\u0B9E\u0B9F\u0BA3\u0BA4\u0BA8-\u0BAA\u0BAE-\u0BB9\u0BD0\u0C05-\u0C0C\u0C0E-\u0C10\u0C12-\u0C28\u0C2A-\u0C39\u0C3D\u0C58-\u0C5A\u0C60\u0C61\u0C85-\u0C8C\u0C8E-\u0C90\u0C92-\u0CA8\u0CAA-\u0CB3\u0CB5-\u0CB9\u0CBD\u0CDE\u0CE0\u0CE1\u0CF1\u0CF2\u0D05-\u0D0C\u0D0E-\u0D10\u0D12-\u0D3A\u0D3D\u0D4E\u0D5F-\u0D61\u0D7A-\u0D7F\u0D85-\u0D96\u0D9A-\u0DB1\u0DB3-\u0DBB\u0DBD\u0DC0-\u0DC6\u0E01-\u0E30\u0E32\u0E33\u0E40-\u0E46\u0E81\u0E82\u0E84\u0E87\u0E88\u0E8A\u0E8D\u0E94-\u0E97\u0E99-\u0E9F\u0EA1-\u0EA3\u0EA5\u0EA7\u0EAA\u0EAB\u0EAD-\u0EB0\u0EB2\u0EB3\u0EBD\u0EC0-\u0EC4\u0EC6\u0EDC-\u0EDF\u0F00\u0F40-\u0F47\u0F49-\u0F6C\u0F88-\u0F8C\u1000-\u102A\u103F\u1050-\u1055\u105A-\u105D\u1061\u1065\u1066\u106E-\u1070\u1075-\u1081\u108E\u10A0-\u10C5\u10C7\u10CD\u10D0-\u10FA\u10FC-\u1248\u124A-\u124D\u1250-\u1256\u1258\u125A-\u125D\u1260-\u1288\u128A-\u128D\u1290-\u12B0\u12B2-\u12B5\u12B8-\u12BE\u12C0\u12C2-\u12C5\u12C8-\u12D6\u12D8-\u1310\u1312-\u1315\u1318-\u135A\u1380-\u138F\u13A0-\u13F5\u13F8-\u13FD\u1401-\u166C\u166F-\u167F\u1681-\u169A\u16A0-\u16EA\u16F1-\u16F8\u1700-\u170C\u170E-\u1711\u1720-\u1731\u1740-\u1751\u1760-\u176C\u176E-\u1770\u1780-\u17B3\u17D7\u17DC\u1820-\u1877\u1880-\u18A8\u18AA\u18B0-\u18F5\u1900-\u191E\u1950-\u196D\u1970-\u1974\u1980-\u19AB\u19B0-\u19C9\u1A00-\u1A16\u1A20-\u1A54\u1AA7\u1B05-\u1B33\u1B45-\u1B4B\u1B83-\u1BA0\u1BAE\u1BAF\u1BBA-\u1BE5\u1C00-\u1C23\u1C4D-\u1C4F\u1C5A-\u1C7D\u1CE9-\u1CEC\u1CEE-\u1CF1\u1CF5\u1CF6\u1D00-\u1DBF\u1E00-\u1F15\u1F18-\u1F1D\u1F20-\u1F45\u1F48-\u1F4D\u1F50-\u1F57\u1F59\u1F5B\u1F5D\u1F5F-\u1F7D\u1F80-\u1FB4\u1FB6-\u1FBC\u1FBE\u1FC2-\u1FC4\u1FC6-\u1FCC\u1FD0-\u1FD3\u1FD6-\u1FDB\u1FE0-\u1FEC\u1FF2-\u1FF4\u1FF6-\u1FFC\u2071\u207F\u2090-\u209C\u2102\u2107\u210A-\u2113\u2115\u2119-\u211D\u2124\u2126\u2128\u212A-\u212D\u212F-\u2139\u213C-\u213F\u2145-\u2149\u214E\u2183\u2184\u2C00-\u2C2E\u2C30-\u2C5E\u2C60-\u2CE4\u2CEB-\u2CEE\u2CF2\u2CF3\u2D00-\u2D25\u2D27\u2D2D\u2D30-\u2D67\u2D6F\u2D80-\u2D96\u2DA0-\u2DA6\u2DA8-\u2DAE\u2DB0-\u2DB6\u2DB8-\u2DBE\u2DC0-\u2DC6\u2DC8-\u2DCE\u2DD0-\u2DD6\u2DD8-\u2DDE\u2E2F\u3005\u3006\u3031-\u3035\u303B\u303C\u3041-\u3096\u309D-\u309F\u30A1-\u30FA\u30FC-\u30FF\u3105-\u312D\u3131-\u318E\u31A0-\u31BA\u31F0-\u31FF\u3400-\u4DB5\u4E00-\u9FD5\uA000-\uA48C\uA4D0-\uA4FD\uA500-\uA60C\uA610-\uA61F\uA62A\uA62B\uA640-\uA66E\uA67F-\uA69D\uA6A0-\uA6E5\uA717-\uA71F\uA722-\uA788\uA78B-\uA7AD\uA7B0-\uA7B7\uA7F7-\uA801\uA803-\uA805\uA807-\uA80A\uA80C-\uA822\uA840-\uA873\uA882-\uA8B3\uA8F2-\uA8F7\uA8FB\uA8FD\uA90A-\uA925\uA930-\uA946\uA960-\uA97C\uA984-\uA9B2\uA9CF\uA9E0-\uA9E4\uA9E6-\uA9EF\uA9FA-\uA9FE\uAA00-\uAA28\uAA40-\uAA42\uAA44-\uAA4B\uAA60-\uAA76\uAA7A\uAA7E-\uAAAF\uAAB1\uAAB5\uAAB6\uAAB9-\uAABD\uAAC0\uAAC2\uAADB-\uAADD\uAAE0-\uAAEA\uAAF2-\uAAF4\uAB01-\uAB06\uAB09-\uAB0E\uAB11-\uAB16\uAB20-\uAB26\uAB28-\uAB2E\uAB30-\uAB5A\uAB5C-\uAB65\uAB70-\uABE2\uAC00-\uD7A3\uD7B0-\uD7C6\uD7CB-\uD7FB\uF900-\uFA6D\uFA70-\uFAD9\uFB00-\uFB06\uFB13-\uFB17\uFB1D\uFB1F-\uFB28\uFB2A-\uFB36\uFB38-\uFB3C\uFB3E\uFB40\uFB41\uFB43\uFB44\uFB46-\uFBB1\uFBD3-\uFD3D\uFD50-\uFD8F\uFD92-\uFDC7\uFDF0-\uFDFB\uFE70-\uFE74\uFE76-\uFEFC\uFF21-\uFF3A\uFF41-\uFF5A\uFF66-\uFFBE\uFFC2-\uFFC7\uFFCA-\uFFCF\uFFD2-\uFFD7\uFFDA-\uFFDC'
"""
导入词
"""
def snowball_stem_word(string: str, ignore_stopwords: bool = False):
"""
此处后面可能需要维护一个近义词词典
对输入的英文短语 利用 snowball 进行词性还原和分词,返回还原后的词及分词list及命中的停止词即介词;
停止词文件是相关资源文件在指定目录下
代码模仿 snowball 官方推荐代码 https://snowballstem.org/demo.html#English
:param string: 返回的词性还原后的字符串词干
:param ignore_stopwords: 是否忽略停止词
:return:
"""
import re
from nltk.stem.snowball import SnowballStemmer
stemmer = SnowballStemmer("english", ignore_stopwords=ignore_stopwords)
result = ''
i = 0
pattern = f"([{_alphaCharsStr}']+)"
hint_word = []
hint_stop_word = []
for word_match in re.finditer(pattern, string):
word = word_match.group()
first_index = word_match.span()[0]
stem_word = stemmer.stem(word)
if stem_word not in stemmer.stopwords:
result += re.sub("/[ &<>\n]/g", " ", string[i:first_index])
hint_word.append(stem_word)
result += stem_word
else:
hint_stop_word.append(stem_word)
i = first_index + len(word)
if i < len(string):
result += string[i:len(string)]
result = result.strip()
return result, hint_word, hint_stop_word
def import_langs():
print("import_langs ..........")
spark = SparkUtil.get_spark_session("app_name")
en_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/en.txt")
de_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/de.txt")
es_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/es.txt")
fr_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/fr.txt")
en_words = en_words.withColumn("lang", F.lit("en"))
de_words = de_words.withColumn("lang", F.lit("de"))
es_words = es_words.withColumn("lang", F.lit("es"))
fr_words = fr_words.withColumn("lang", F.lit("fr"))
all_words = en_words.unionByName(de_words).unionByName(es_words).unionByName(fr_words)
all_words = all_words.withColumn("word", F.lower("value"))
all_words = all_words.drop_duplicates(['word', 'lang'])
all_words = all_words.groupby("word").agg(
F.collect_list(F.col("lang")).alias("langs")
).select(
F.col("word"),
F.col("langs"),
F.lit("all").alias("part")
)
all_words = all_words.repartition(1)
hive_tb = 'tmp_lang_word'
partition_dict = {
"part": "all"
}
hdfs_path = CommonUtil.build_hdfs_path(hive_tb, partition_dict)
HdfsUtils.delete_hdfs_file(hdfs_path)
partition_by = list(partition_dict.keys())
print(f"当前存储的表名为:{hive_tb},分区为{partition_by}", )
all_words.write.saveAsTable(name=hive_tb, format='hive', mode='append', partitionBy=partition_by)
print("success")
def udf_pack_word_frequency_map(frequency_list):
lang_word_map = {row['lang']: row['frequency'] for row in frequency_list}
# 获取最大的那个
if len(lang_word_map) > 1:
lang, frequency = sorted(lang_word_map.items(), key=lambda it: (it[1]), reverse=True)[0]
min_frequency = int(frequency / 100)
# 过滤
result_map = {}
for key in lang_word_map.keys():
lang_frequency = lang_word_map.get(key)
if lang_frequency == 1 or lang_frequency > min_frequency:
result_map[key] = lang_frequency
return result_map
return lang_word_map
def import_langs_frequency():
print("import_langs_frequency ..........")
spark = SparkUtil.get_spark_session("app_name")
udf_pack_word_frequency_map_reg = F.udf(udf_pack_word_frequency_map, MapType(StringType(), IntegerType()))
en_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/en_50k.txt")
de_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/de_50k.txt")
es_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/es_50k.txt")
fr_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/fr_50k.txt")
#
en_words = en_words.withColumn("lang", F.lit("en"))
de_words = de_words.withColumn("lang", F.lit("de"))
es_words = es_words.withColumn("lang", F.lit("es"))
fr_words = fr_words.withColumn("lang", F.lit("fr"))
all_words = en_words.unionByName(de_words).unionByName(es_words).unionByName(fr_words)
all_words = all_words.withColumn("split", F.split(F.col("value"), "\\s"))
# 此处对英文词汇进行补全
all_words = all_words.select(
F.lower(F.col("split").getItem(0)).alias("word"),
F.col("split").getItem(1).cast(IntegerType()).alias("frequency"),
F.col("lang")
)
# 此处对英文词汇进行补全
en_word_all = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/en.txt")
en_word_all = en_word_all.select(
F.lower(F.col("value")).alias("word"),
F.lit(1).alias("frequency"),
F.lit("en").alias("lang"),
)
en_word_all = en_word_all.join(all_words.where("lang == 'en'"), on=['word'], how='left_anti')
all_words = all_words.unionByName(en_word_all)
# 此处进行词干提取
def stem_word():
pass
F.udf(UdfUtil.snowball_stem_word, )
all_words = all_words.groupby("word").agg(
F.collect_list(F.struct(F.col("lang"), F.col("frequency"))).alias("frequency_list")
).select(
F.col("word"),
udf_pack_word_frequency_map_reg(F.col("frequency_list")).alias("langs"),
F.lit("all").alias("part")
)
all_words = all_words.repartition(1)
hive_tb = 'tmp_lang_word_frequency'
partition_dict = {
"part": "all"
}
hdfs_path = CommonUtil.build_hdfs_path(hive_tb, partition_dict)
HdfsUtils.delete_hdfs_file(hdfs_path)
partition_by = list(partition_dict.keys())
print(f"当前存储的表名为:{hive_tb},分区为{partition_by}", )
all_words.write.saveAsTable(name=hive_tb, format='hive', mode='append', partitionBy=partition_by)
print("success")
def test_stem_word():
print("import_langs_frequency ..........")
spark = SparkUtil.get_spark_session("app_name")
udf_pack_word_frequency_map_reg = F.udf(udf_pack_word_frequency_map, MapType(StringType(), IntegerType()))
en_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/en_50k.txt")
de_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/de_50k.txt")
es_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/es_50k.txt")
fr_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/fr_50k.txt")
#
en_words = en_words.withColumn("lang", F.lit("en"))
de_words = de_words.withColumn("lang", F.lit("de"))
es_words = es_words.withColumn("lang", F.lit("es"))
fr_words = fr_words.withColumn("lang", F.lit("fr"))
all_words = en_words.unionByName(de_words).unionByName(es_words).unionByName(fr_words)
all_words = all_words.withColumn("split", F.split(F.col("value"), "\\s"))
# 此处对英文词汇进行补全
all_words = all_words.select(
F.lower(F.col("split").getItem(0)).alias("word"),
F.col("split").getItem(1).cast(IntegerType()).alias("frequency"),
F.col("lang")
)
# 此处对英文词汇进行补全
en_word_all = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/en.txt")
en_word_all = en_word_all.select(
F.lower(F.col("value")).alias("word"),
F.lit(1).alias("frequency"),
F.lit("en").alias("lang"),
)
en_word_all = en_word_all.join(all_words.where("lang == 'en'"), on=['word'], how='left_anti')
all_words = all_words.unionByName(en_word_all)
# 此处进行词干提取
def stem_word(word: str):
return snowball_stem_word(word, False)[0]
udf_stem_word = F.udf(stem_word, StringType())
all_words = all_words.withColumn("stem_word", udf_stem_word(F.col("word")))
all_words = all_words.withColumn("max_frequency", F.max("frequency").over(Window.partitionBy(['stem_word', 'lang'])))
all_words = all_words.groupby("stem_word").agg(
F.collect_list(F.struct(F.col("lang"), F.col("max_frequency").alias('frequency'))).alias("frequency_list"),
F.collect_list(F.col('word')).alias("word_before"),
).select(
F.col("stem_word"),
F.col("word_before"),
udf_pack_word_frequency_map_reg(F.col("frequency_list")).alias("langs"),
F.lit("all").alias("part")
)
all_words = all_words.repartition(1)
hive_tb = 'tmp_test_stem_word'
partition_dict = {
"part": "all"
}
hdfs_path = CommonUtil.build_hdfs_path(hive_tb, partition_dict)
HdfsUtils.delete_hdfs_file(hdfs_path)
partition_by = list(partition_dict.keys())
print(f"当前存储的表名为:{hive_tb},分区为{partition_by}", )
all_words.write.saveAsTable(name=hive_tb, format='hive', mode='append', partitionBy=partition_by)
print("success")
def download():
spark = SparkUtil.get_spark_session("download")
df_all = spark.sql("""
select *
from tmp_keyword_lang_test
""")
path = CommonUtil.df_export_csv(spark, df_all, "tmp_keyword_lang_test", limit=100 * 10000)
print(f"success : {path}")
pass
def udf_detect_phrase_reg(lang_word_map, word_translate_map: dict):
def detect_phrase(phrase: str):
import re
# phrase = re.sub(r'(\d+\.?\d*|-|\'|\"|,|,|?|\?|/|、|)', '', phrase).strip()
# 分词
from nltk.tokenize import word_tokenize
wordList = list(filter(lambda x: len(x) >= 2, word_tokenize(phrase, "english")))
tmp_map = {
"en": {"frequency": 0, "word": []},
"fr": {"frequency": 0, "word": []},
"es": {"frequency": 0, "word": []},
"de": {"frequency": 0, "word": []},
}
for word in wordList:
lang_rank_map: dict = lang_word_map.get(word)
if lang_rank_map is not None:
for lang in lang_rank_map.keys():
frequency = lang_rank_map[lang]
tmp_map[lang]["frequency"] = tmp_map[lang]["frequency"] + frequency
tmp_map[lang]["word"].append(word)
pass
# 先根据word名称个数倒序后根据分数
lang, hint_word_map = sorted(tmp_map.items(), key=lambda it: (len(it[1]['word']), it[1]['frequency']), reverse=True)[0]
if hint_word_map['frequency'] == 0:
return {"lang": None, "hint_word": None, "translate_val": None}
else:
hint_word_list = hint_word_map['word']
hint_word = " ".join(hint_word_list)
if len(hint_word) <= 2:
return {"lang": None, "hint_word": None, "translate_val": None}
translate_val = None
if lang == 'en' and word_translate_map is not None:
translate_val = phrase
for tmpword in hint_word_list:
# 翻译
translatearr = word_translate_map.get(tmpword)
if translatearr is not None and len(translatearr) >= 1:
translate_val = re.sub(rf"\b{tmpword}\b", translatearr[0], translate_val)
pass
pass
return {"lang": lang, "hint_word": hint_word, "translate_val": translate_val}
pass
return F.udf(detect_phrase, MapType(StringType(), StringType()))
def calc_keyword_lang():
spark = SparkUtil.get_spark_session("calc_keyword_lang")
lang_word_list = spark.sql("""
select word, langs
from big_data_selection.tmp_lang_word_frequency
""").collect()
en_cn_dict_list = spark.sql("""
select word, simple_cn from tmp_en_dict
""").collect()
# lang_word_df => 转为map
lang_word_map = {row['word']: row['langs'] for row in lang_word_list}
# 翻译 =>文件
en_cn_dict_map = {row['word']: row['simple_cn'] for row in en_cn_dict_list}
keyword_df = spark.sql("""
select keyword
from big_data_selection.dwt_merchantwords_st_detail
where site_name='us' limit 1000000
""").cache()
keyword_df = keyword_df.withColumn("resultMap", udf_detect_phrase_reg(lang_word_map, en_cn_dict_map)(F.col("keyword")))
keyword_df = keyword_df.select(
F.col("keyword"),
F.col("resultMap").getField("lang").alias("lang"),
F.col("resultMap").getField("hint_word").alias("hint_word"),
F.col("resultMap").getField("translate_val").alias("translate_val"),
)
keyword_df.write.saveAsTable(name="tmp_keyword_lang_test", format='hive', mode='append')
print("success")
def udf_test_reg(lang_word_map):
def detect_phrase(phrase: str):
# 分词后的词干
wordList = UdfUtil.snowball_stem_word(phrase, False)[1]
tmp_map = {
"en": {"frequency": 0, "word": []},
"fr": {"frequency": 0, "word": []},
"es": {"frequency": 0, "word": []},
"de": {"frequency": 0, "word": []},
}
for word in wordList:
lang_rank_map: dict = lang_word_map.get(word)
if lang_rank_map is not None:
for lang in lang_rank_map.keys():
frequency = lang_rank_map[lang]
tmp_map[lang]["frequency"] = tmp_map[lang]["frequency"] + frequency
tmp_map[lang]["word"].append(word)
pass
# 先根据word名称个数倒序后根据分数
lang, hint_word_map = sorted(tmp_map.items(), key=lambda it: (len(it[1]['word']), it[1]['frequency']), reverse=True)[0]
if hint_word_map['frequency'] == 0:
return {"lang": None, "hint_word": None, }
else:
hint_word_list = hint_word_map['word']
hint_word = " ".join(hint_word_list)
if len(hint_word) <= 2:
return {"lang": None, "hint_word": None, }
return {"lang": lang, "hint_word": hint_word}
pass
return F.udf(detect_phrase, MapType(StringType(), StringType()))
def build_word_frequency_map(lang_word_list):
word_result_map = {}
stem_result_map = {}
for row in lang_word_list:
word = row['word']
stem = row['stem']
frequency = row['frequency']
lang = row['lang']
lang_map1 = word_result_map.get(word) or {}
lang_map1[lang] = frequency
word_result_map[word] = lang_map1
lang_map2 = stem_result_map.get(stem) or {}
lang_map2[lang] = max(lang_map2.get(lang, 0), frequency)
stem_result_map[word] = lang_map2
for tmp_map in [word_result_map, stem_result_map]:
# 去重差异较大值
for key, value in tmp_map.items():
max_frequency = max(value.values())
# 删除
for key in value.copy().keys():
frequency = value.get(key)
if frequency != 1 and int(max_frequency / frequency > 100):
del value[key]
pass
return word_result_map, stem_result_map
def calc_aba_keyword_lang():
spark = SparkUtil.get_spark_session("calc_aba_keyword_lang")
word_sql = f"""
select word, stem, frequency, lang
from lang_word_frequency
"""
conn_info = DBUtil.get_connection_info(db_type=DbTypes.postgresql_test.name, site_name="us")
word_frequency_df = SparkUtil.read_jdbc_query(
session=spark,
url=conn_info["url"],
pwd=conn_info["pwd"],
username=conn_info["username"],
query=word_sql
).collect()
word_result_map, stem_result_map = build_word_frequency_map(word_frequency_df)
brand_sql = f"""
select asin_brand_name
from tmp_amazon_brand_dict
"""
brand_all_list = spark.sql(brand_sql).cache().collect()
# 所有的品牌名
brand_list = {str(row['asin_brand_name']).lower() for row in brand_all_list}
aba_keyword_df = spark.sql("""
select search_term,
site_name
from big_data_selection.ods_st_key
where site_name in (
'uk',
'us'
)
""").cache()
aba_keyword_df = aba_keyword_df.withColumn("resultMap", udf_test_reg(stem_result_map)(F.col("search_term")))
def udf_has_brand_reg(brand_list):
# def detect_phrase(keyword: str):
# # keyword
#
# pass
# pass
#
# aba_keyword_df = aba_keyword_df.withColumn("resultMap", udf_test_reg(stem_result_map)(F.col("search_term")))
#
#
# aba_keyword_df = aba_keyword_df.select(
# F.col("search_term"),
# F.col("resultMap").getField("lang").alias("lang"),
# F.col("resultMap").getField("hint_word").alias("hint_word"),
# F.col("site_name")
# )
#
# aba_keyword_df.write.saveAsTable(name="tmp_aba_keyword_lang_test_v2", format='hive', mode='append')
print("success")
def calc_brand_name_list():
spark = SparkUtil.get_spark_session("calc_aba_keyword_lang")
brand_name_list = spark.sql("""
select asin_brand_name as brand_name
from big_data_selection.dim_cal_asin_history_detail
where site_name='us'
""")
brand_name_list = brand_name_list.withColumn("asin_brand_name", F.lower(F.trim(F.col("asin_brand_name"))))
brand_name_list = brand_name_list.drop_duplicates()
brand_name_list.write.saveAsTable(name="tmp_brand_name_list", format='hive', mode='append')
pass
def ge_all_err_word():
spark = SparkUtil.get_spark_session("ge_all_err_word")
keyword_df = spark.sql("""
select keyword
from big_data_selection.dwt_merchantwords_st_detail
where site_name='us'
""")
def has_cn(word):
import re
pattern = re.compile(r'[\u4e00-\u9fa5]|[\u0800-\u4e00]|[\uac00-\ud7ff]')
return len(pattern.findall(word)) > 0
udf_has_cn_reg = F.udf(has_cn, BooleanType())
keyword_df = keyword_df.withColumn("cn_flag", udf_has_cn_reg(F.col("keyword")))
keyword_df = keyword_df.where("cn_flag == true")
keyword_df.write.saveAsTable(name="tmp_error_keyword", format='hive', mode='append')
print("success")
pass
def get_simple_translation(translation: str):
result = []
for line in translation.split("||"):
import re
first_cn = re.split(r'[;,,]', line)[0]
# 去掉所有[] () ()包裹的词语
first_cn = re.sub(r'\(.*\)|\[.*\]|(.*)', "", first_cn)
first_cn = re.sub(r'[a-z]+.', "", first_cn)
# 去掉所有的词性符号
result.append(first_cn)
pass
return result
# 英文字典翻译
def build_en_dict():
print("build_en_dict ..........")
spark = SparkUtil.get_spark_session("build_en_dict")
en_dict_df = spark.read.json("file:///tmp/wjc_py/yswg_utils/resource/en_dict_all.json")
# \n换行符冲突 改为使用 ||替换
en_dict_df = en_dict_df.withColumn("translation",
F.trim(
F.regexp_replace(F.regexp_replace(F.col("translation"), r"(\t|\u0020)", ""), r"\n", "||"))
)
udf_get_simple_translation_reg = F.udf(get_simple_translation, ArrayType(StringType()))
# word 单词名称
# phonetic 音标,以英语英标为主
# definition 单词释义(英文),每行一个释义
# translation 单词释义(中文),每行一个释义
# pos 词语位置,用 "/" 分割不同位置
# collins 柯林斯星级
# oxford 是否是牛津三千核心词汇
# tag 字符串标签:zk/中考,gk/高考,cet4/四级 等等标签,空格分割
# bnc 英国国家语料库词频顺序
# frq 当代语料库词频顺序
# exchange 时态复数等变换,使用 "/" 分割不同项目,见后面表格
# detail json 扩展信息,字典形式保存例句(待添加)
# audio 读音音频 url (待添加)
en_dict_df = en_dict_df.select(
F.trim(F.regexp_replace(F.col("word"), r"[\n\t]", "")).alias("word"),
F.trim(F.regexp_replace(F.col("sw"), r"[\n\t]", "")).alias("sw"),
F.trim(F.regexp_replace(F.col("exchange"), r"[\n\t]", "")).alias("exchange"),
F.col("translation"),
udf_get_simple_translation_reg(F.col("translation")).alias("simple_cn"),
F.trim(F.regexp_replace(F.col("collins"), r"[\n\t]", "")).alias("collins"),
) \
.orderBy(F.col("collins").desc())
# en_dict_df = en_dict_df.where("word=='account'").show(truncate=False)
en_dict_df.write.saveAsTable(name="tmp_en_dict", format='hive', mode='append')
pass
print("success")
pass
def ge_all_aba_err_word():
"""
aba查看乱码数据
:return:
"""
print("ge_all_aba_err_word ..........")
spark = SparkUtil.get_spark_session("ge_all_aba_err_word")
keyword_df = spark.sql("""
select search_term as keyword
from big_data_selection.ods_st_key
""")
def has_cn(word):
import re
pattern = re.compile(r'[\u4e00-\u9fa5]|[\u0800-\u4e00]|[\uac00-\ud7ff]')
return len(pattern.findall(word)) > 0
udf_has_cn_reg = F.udf(has_cn, BooleanType())
keyword_df = keyword_df.withColumn("cn_flag", udf_has_cn_reg(F.col("keyword")))
keyword_df = keyword_df.where("cn_flag == true")
keyword_df.write.saveAsTable(name="tmp_aba_error_keyword", format='hive', mode='append')
print("success")
pass
def title_contain_brand_name():
spark = SparkUtil.get_spark_session("title_contain_brand_name")
flag_df = spark.sql("""
select flag,
count(flag)
from (
select title,
brand_name,
if(locate(lower(brand_name), lower(title)) > 0, 1, 0) as flag
from big_data_selection.dwt_bsr_asin_detail
where date_info = '2023-11'
and site_name = 'us'
and title is not null
and brand_name is not null
)
group by flag
""")
flag_df.show()
pass
def split_word(word: str):
word = word.replace("+", " ")
word = word.replace("\"", "")
from nltk.tokenize import word_tokenize
return word_tokenize(word, "english")
def calc_amazon_word_frequency():
spark = SparkUtil.get_spark_session("amazon_word_frequency")
keyword_df = spark.sql("""
select keyword from dwt_merchantwords_st_detail;
""").cache()
keyword_df.write.saveAsTable(name="tmp_amazon_word_frequency", format='hive', mode='append')
pass
def build_brand_name_dict():
spark = SparkUtil.get_spark_session("build_brand_name_dict")
save_df = spark.sql("""
select distinct trim(asin_brand_name) as asin_brand_name
from big_data_selection.dim_cal_asin_history_detail
where site_name = 'us'
and asin_brand_name is not null
""").cache()
save_df.write.saveAsTable(name="tmp_amazon_brand_dict", format='hive', mode='append')
print('success')
pass
if __name__ == '__main__':
calc_aba_top100w_asin()
# calc_aba_keyword_lang()
# build_brand_name_dict()
# arr = [
# "24 oz",
# "skechers+skechers+skechers+skechers+ skechers+ skechers 4runner rtx 3060 ti",
# "the shark® ai robot vacmop™ rv2002wd",
# "stella & chewy’s carnivore cravings purrfect pate cans – grain free, protein rich wet cat food (case of 24)"
# ]
# for s in arr:
# print(split_word(s))