tmp_st_lang.py 27.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
import json
import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))
from utils.db_util import DBUtil, DbTypes
from utils.common_util import CommonUtil
from utils.hdfs_utils import HdfsUtils

from utils.spark_util import SparkUtil
from pyspark.sql import functions as F, Window
from pyspark.sql.types import ArrayType, StringType, MapType, IntegerType, BooleanType

from yswg_utils.udf_util import UdfUtil

_alphaCharsStr = 'A-Za-z\\xAA\\xB5\\xBA\\xC0-\\xD6\\xD8-\\xF6\\xF8-\u02C1\u02C6-\u02D1\u02E0-\u02E4\u02EC\u02EE\u0370-\u0374\u0376\u0377\u037A-\u037D\u037F\u0386\u0388-\u038A\u038C\u038E-\u03A1\u03A3-\u03F5\u03F7-\u0481\u048A-\u052F\u0531-\u0556\u0559\u0561-\u0587\u05D0-\u05EA\u05F0-\u05F2\u0620-\u064A\u066E\u066F\u0671-\u06D3\u06D5\u06E5\u06E6\u06EE\u06EF\u06FA-\u06FC\u06FF\u0710\u0712-\u072F\u074D-\u07A5\u07B1\u07CA-\u07EA\u07F4\u07F5\u07FA\u0800-\u0815\u081A\u0824\u0828\u0840-\u0858\u08A0-\u08B4\u0904-\u0939\u093D\u0950\u0958-\u0961\u0971-\u0980\u0985-\u098C\u098F\u0990\u0993-\u09A8\u09AA-\u09B0\u09B2\u09B6-\u09B9\u09BD\u09CE\u09DC\u09DD\u09DF-\u09E1\u09F0\u09F1\u0A05-\u0A0A\u0A0F\u0A10\u0A13-\u0A28\u0A2A-\u0A30\u0A32\u0A33\u0A35\u0A36\u0A38\u0A39\u0A59-\u0A5C\u0A5E\u0A72-\u0A74\u0A85-\u0A8D\u0A8F-\u0A91\u0A93-\u0AA8\u0AAA-\u0AB0\u0AB2\u0AB3\u0AB5-\u0AB9\u0ABD\u0AD0\u0AE0\u0AE1\u0AF9\u0B05-\u0B0C\u0B0F\u0B10\u0B13-\u0B28\u0B2A-\u0B30\u0B32\u0B33\u0B35-\u0B39\u0B3D\u0B5C\u0B5D\u0B5F-\u0B61\u0B71\u0B83\u0B85-\u0B8A\u0B8E-\u0B90\u0B92-\u0B95\u0B99\u0B9A\u0B9C\u0B9E\u0B9F\u0BA3\u0BA4\u0BA8-\u0BAA\u0BAE-\u0BB9\u0BD0\u0C05-\u0C0C\u0C0E-\u0C10\u0C12-\u0C28\u0C2A-\u0C39\u0C3D\u0C58-\u0C5A\u0C60\u0C61\u0C85-\u0C8C\u0C8E-\u0C90\u0C92-\u0CA8\u0CAA-\u0CB3\u0CB5-\u0CB9\u0CBD\u0CDE\u0CE0\u0CE1\u0CF1\u0CF2\u0D05-\u0D0C\u0D0E-\u0D10\u0D12-\u0D3A\u0D3D\u0D4E\u0D5F-\u0D61\u0D7A-\u0D7F\u0D85-\u0D96\u0D9A-\u0DB1\u0DB3-\u0DBB\u0DBD\u0DC0-\u0DC6\u0E01-\u0E30\u0E32\u0E33\u0E40-\u0E46\u0E81\u0E82\u0E84\u0E87\u0E88\u0E8A\u0E8D\u0E94-\u0E97\u0E99-\u0E9F\u0EA1-\u0EA3\u0EA5\u0EA7\u0EAA\u0EAB\u0EAD-\u0EB0\u0EB2\u0EB3\u0EBD\u0EC0-\u0EC4\u0EC6\u0EDC-\u0EDF\u0F00\u0F40-\u0F47\u0F49-\u0F6C\u0F88-\u0F8C\u1000-\u102A\u103F\u1050-\u1055\u105A-\u105D\u1061\u1065\u1066\u106E-\u1070\u1075-\u1081\u108E\u10A0-\u10C5\u10C7\u10CD\u10D0-\u10FA\u10FC-\u1248\u124A-\u124D\u1250-\u1256\u1258\u125A-\u125D\u1260-\u1288\u128A-\u128D\u1290-\u12B0\u12B2-\u12B5\u12B8-\u12BE\u12C0\u12C2-\u12C5\u12C8-\u12D6\u12D8-\u1310\u1312-\u1315\u1318-\u135A\u1380-\u138F\u13A0-\u13F5\u13F8-\u13FD\u1401-\u166C\u166F-\u167F\u1681-\u169A\u16A0-\u16EA\u16F1-\u16F8\u1700-\u170C\u170E-\u1711\u1720-\u1731\u1740-\u1751\u1760-\u176C\u176E-\u1770\u1780-\u17B3\u17D7\u17DC\u1820-\u1877\u1880-\u18A8\u18AA\u18B0-\u18F5\u1900-\u191E\u1950-\u196D\u1970-\u1974\u1980-\u19AB\u19B0-\u19C9\u1A00-\u1A16\u1A20-\u1A54\u1AA7\u1B05-\u1B33\u1B45-\u1B4B\u1B83-\u1BA0\u1BAE\u1BAF\u1BBA-\u1BE5\u1C00-\u1C23\u1C4D-\u1C4F\u1C5A-\u1C7D\u1CE9-\u1CEC\u1CEE-\u1CF1\u1CF5\u1CF6\u1D00-\u1DBF\u1E00-\u1F15\u1F18-\u1F1D\u1F20-\u1F45\u1F48-\u1F4D\u1F50-\u1F57\u1F59\u1F5B\u1F5D\u1F5F-\u1F7D\u1F80-\u1FB4\u1FB6-\u1FBC\u1FBE\u1FC2-\u1FC4\u1FC6-\u1FCC\u1FD0-\u1FD3\u1FD6-\u1FDB\u1FE0-\u1FEC\u1FF2-\u1FF4\u1FF6-\u1FFC\u2071\u207F\u2090-\u209C\u2102\u2107\u210A-\u2113\u2115\u2119-\u211D\u2124\u2126\u2128\u212A-\u212D\u212F-\u2139\u213C-\u213F\u2145-\u2149\u214E\u2183\u2184\u2C00-\u2C2E\u2C30-\u2C5E\u2C60-\u2CE4\u2CEB-\u2CEE\u2CF2\u2CF3\u2D00-\u2D25\u2D27\u2D2D\u2D30-\u2D67\u2D6F\u2D80-\u2D96\u2DA0-\u2DA6\u2DA8-\u2DAE\u2DB0-\u2DB6\u2DB8-\u2DBE\u2DC0-\u2DC6\u2DC8-\u2DCE\u2DD0-\u2DD6\u2DD8-\u2DDE\u2E2F\u3005\u3006\u3031-\u3035\u303B\u303C\u3041-\u3096\u309D-\u309F\u30A1-\u30FA\u30FC-\u30FF\u3105-\u312D\u3131-\u318E\u31A0-\u31BA\u31F0-\u31FF\u3400-\u4DB5\u4E00-\u9FD5\uA000-\uA48C\uA4D0-\uA4FD\uA500-\uA60C\uA610-\uA61F\uA62A\uA62B\uA640-\uA66E\uA67F-\uA69D\uA6A0-\uA6E5\uA717-\uA71F\uA722-\uA788\uA78B-\uA7AD\uA7B0-\uA7B7\uA7F7-\uA801\uA803-\uA805\uA807-\uA80A\uA80C-\uA822\uA840-\uA873\uA882-\uA8B3\uA8F2-\uA8F7\uA8FB\uA8FD\uA90A-\uA925\uA930-\uA946\uA960-\uA97C\uA984-\uA9B2\uA9CF\uA9E0-\uA9E4\uA9E6-\uA9EF\uA9FA-\uA9FE\uAA00-\uAA28\uAA40-\uAA42\uAA44-\uAA4B\uAA60-\uAA76\uAA7A\uAA7E-\uAAAF\uAAB1\uAAB5\uAAB6\uAAB9-\uAABD\uAAC0\uAAC2\uAADB-\uAADD\uAAE0-\uAAEA\uAAF2-\uAAF4\uAB01-\uAB06\uAB09-\uAB0E\uAB11-\uAB16\uAB20-\uAB26\uAB28-\uAB2E\uAB30-\uAB5A\uAB5C-\uAB65\uAB70-\uABE2\uAC00-\uD7A3\uD7B0-\uD7C6\uD7CB-\uD7FB\uF900-\uFA6D\uFA70-\uFAD9\uFB00-\uFB06\uFB13-\uFB17\uFB1D\uFB1F-\uFB28\uFB2A-\uFB36\uFB38-\uFB3C\uFB3E\uFB40\uFB41\uFB43\uFB44\uFB46-\uFBB1\uFBD3-\uFD3D\uFD50-\uFD8F\uFD92-\uFDC7\uFDF0-\uFDFB\uFE70-\uFE74\uFE76-\uFEFC\uFF21-\uFF3A\uFF41-\uFF5A\uFF66-\uFFBE\uFFC2-\uFFC7\uFFCA-\uFFCF\uFFD2-\uFFD7\uFFDA-\uFFDC'

"""
导入词
"""


def snowball_stem_word(string: str, ignore_stopwords: bool = False):
    """
    此处后面可能需要维护一个近义词词典
    对输入的英文短语 利用 snowball 进行词性还原和分词,返回还原后的词及分词list及命中的停止词即介词;
    停止词文件是相关资源文件在指定目录下
    代码模仿 snowball 官方推荐代码 https://snowballstem.org/demo.html#English
    :param string: 返回的词性还原后的字符串词干
    :param ignore_stopwords: 是否忽略停止词
    :return:
    """
    import re
    from nltk.stem.snowball import SnowballStemmer
    stemmer = SnowballStemmer("english", ignore_stopwords=ignore_stopwords)
    result = ''
    i = 0
    pattern = f"([{_alphaCharsStr}']+)"
    hint_word = []
    hint_stop_word = []
    for word_match in re.finditer(pattern, string):
        word = word_match.group()
        first_index = word_match.span()[0]
        stem_word = stemmer.stem(word)
        if stem_word not in stemmer.stopwords:
            result += re.sub("/[ &<>\n]/g", " ", string[i:first_index])
            hint_word.append(stem_word)
            result += stem_word
        else:
            hint_stop_word.append(stem_word)
        i = first_index + len(word)

    if i < len(string):
        result += string[i:len(string)]

    result = result.strip()
    return result, hint_word, hint_stop_word


def import_langs():
    print("import_langs ..........")
    spark = SparkUtil.get_spark_session("app_name")

    en_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/en.txt")
    de_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/de.txt")
    es_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/es.txt")
    fr_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/fr.txt")

    en_words = en_words.withColumn("lang", F.lit("en"))
    de_words = de_words.withColumn("lang", F.lit("de"))
    es_words = es_words.withColumn("lang", F.lit("es"))
    fr_words = fr_words.withColumn("lang", F.lit("fr"))

    all_words = en_words.unionByName(de_words).unionByName(es_words).unionByName(fr_words)

    all_words = all_words.withColumn("word", F.lower("value"))
    all_words = all_words.drop_duplicates(['word', 'lang'])
    all_words = all_words.groupby("word").agg(
        F.collect_list(F.col("lang")).alias("langs")
    ).select(
        F.col("word"),
        F.col("langs"),
        F.lit("all").alias("part")
    )

    all_words = all_words.repartition(1)

    hive_tb = 'tmp_lang_word'

    partition_dict = {
        "part": "all"
    }
    hdfs_path = CommonUtil.build_hdfs_path(hive_tb, partition_dict)
    HdfsUtils.delete_hdfs_file(hdfs_path)
    partition_by = list(partition_dict.keys())
    print(f"当前存储的表名为:{hive_tb},分区为{partition_by}", )
    all_words.write.saveAsTable(name=hive_tb, format='hive', mode='append', partitionBy=partition_by)
    print("success")


def udf_pack_word_frequency_map(frequency_list):
    lang_word_map = {row['lang']: row['frequency'] for row in frequency_list}
    # 获取最大的那个
    if len(lang_word_map) > 1:
        lang, frequency = sorted(lang_word_map.items(), key=lambda it: (it[1]), reverse=True)[0]
        min_frequency = int(frequency / 100)
        # 过滤
        result_map = {}
        for key in lang_word_map.keys():
            lang_frequency = lang_word_map.get(key)
            if lang_frequency == 1 or lang_frequency > min_frequency:
                result_map[key] = lang_frequency
        return result_map

    return lang_word_map


def import_langs_frequency():
    print("import_langs_frequency ..........")
    spark = SparkUtil.get_spark_session("app_name")
    udf_pack_word_frequency_map_reg = F.udf(udf_pack_word_frequency_map, MapType(StringType(), IntegerType()))

    en_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/en_50k.txt")
    de_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/de_50k.txt")
    es_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/es_50k.txt")
    fr_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/fr_50k.txt")
    #
    en_words = en_words.withColumn("lang", F.lit("en"))
    de_words = de_words.withColumn("lang", F.lit("de"))
    es_words = es_words.withColumn("lang", F.lit("es"))
    fr_words = fr_words.withColumn("lang", F.lit("fr"))

    all_words = en_words.unionByName(de_words).unionByName(es_words).unionByName(fr_words)
    all_words = all_words.withColumn("split", F.split(F.col("value"), "\\s"))

    # 此处对英文词汇进行补全

    all_words = all_words.select(
        F.lower(F.col("split").getItem(0)).alias("word"),
        F.col("split").getItem(1).cast(IntegerType()).alias("frequency"),
        F.col("lang")
    )
    # 此处对英文词汇进行补全
    en_word_all = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/en.txt")
    en_word_all = en_word_all.select(
        F.lower(F.col("value")).alias("word"),
        F.lit(1).alias("frequency"),
        F.lit("en").alias("lang"),
    )

    en_word_all = en_word_all.join(all_words.where("lang == 'en'"), on=['word'], how='left_anti')
    all_words = all_words.unionByName(en_word_all)

    # 此处进行词干提取
    def stem_word():
        pass

    F.udf(UdfUtil.snowball_stem_word, )

    all_words = all_words.groupby("word").agg(
        F.collect_list(F.struct(F.col("lang"), F.col("frequency"))).alias("frequency_list")
    ).select(
        F.col("word"),
        udf_pack_word_frequency_map_reg(F.col("frequency_list")).alias("langs"),
        F.lit("all").alias("part")
    )

    all_words = all_words.repartition(1)

    hive_tb = 'tmp_lang_word_frequency'

    partition_dict = {
        "part": "all"
    }
    hdfs_path = CommonUtil.build_hdfs_path(hive_tb, partition_dict)
    HdfsUtils.delete_hdfs_file(hdfs_path)
    partition_by = list(partition_dict.keys())
    print(f"当前存储的表名为:{hive_tb},分区为{partition_by}", )
    all_words.write.saveAsTable(name=hive_tb, format='hive', mode='append', partitionBy=partition_by)
    print("success")


def test_stem_word():
    print("import_langs_frequency ..........")
    spark = SparkUtil.get_spark_session("app_name")
    udf_pack_word_frequency_map_reg = F.udf(udf_pack_word_frequency_map, MapType(StringType(), IntegerType()))

    en_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/en_50k.txt")
    de_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/de_50k.txt")
    es_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/es_50k.txt")
    fr_words = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/frequency/fr_50k.txt")
    #
    en_words = en_words.withColumn("lang", F.lit("en"))
    de_words = de_words.withColumn("lang", F.lit("de"))
    es_words = es_words.withColumn("lang", F.lit("es"))
    fr_words = fr_words.withColumn("lang", F.lit("fr"))

    all_words = en_words.unionByName(de_words).unionByName(es_words).unionByName(fr_words)
    all_words = all_words.withColumn("split", F.split(F.col("value"), "\\s"))

    # 此处对英文词汇进行补全

    all_words = all_words.select(
        F.lower(F.col("split").getItem(0)).alias("word"),
        F.col("split").getItem(1).cast(IntegerType()).alias("frequency"),
        F.col("lang")
    )
    # 此处对英文词汇进行补全
    en_word_all = spark.read.text("file:///tmp/wjc_py/yswg_utils/resource/en.txt")
    en_word_all = en_word_all.select(
        F.lower(F.col("value")).alias("word"),
        F.lit(1).alias("frequency"),
        F.lit("en").alias("lang"),
    )

    en_word_all = en_word_all.join(all_words.where("lang == 'en'"), on=['word'], how='left_anti')
    all_words = all_words.unionByName(en_word_all)

    # 此处进行词干提取
    def stem_word(word: str):
        return snowball_stem_word(word, False)[0]

    udf_stem_word = F.udf(stem_word, StringType())
    all_words = all_words.withColumn("stem_word", udf_stem_word(F.col("word")))

    all_words = all_words.withColumn("max_frequency", F.max("frequency").over(Window.partitionBy(['stem_word', 'lang'])))

    all_words = all_words.groupby("stem_word").agg(
        F.collect_list(F.struct(F.col("lang"), F.col("max_frequency").alias('frequency'))).alias("frequency_list"),
        F.collect_list(F.col('word')).alias("word_before"),
    ).select(
        F.col("stem_word"),
        F.col("word_before"),
        udf_pack_word_frequency_map_reg(F.col("frequency_list")).alias("langs"),
        F.lit("all").alias("part")
    )

    all_words = all_words.repartition(1)

    hive_tb = 'tmp_test_stem_word'

    partition_dict = {
        "part": "all"
    }
    hdfs_path = CommonUtil.build_hdfs_path(hive_tb, partition_dict)
    HdfsUtils.delete_hdfs_file(hdfs_path)
    partition_by = list(partition_dict.keys())
    print(f"当前存储的表名为:{hive_tb},分区为{partition_by}", )
    all_words.write.saveAsTable(name=hive_tb, format='hive', mode='append', partitionBy=partition_by)
    print("success")


def download():
    spark = SparkUtil.get_spark_session("download")

    df_all = spark.sql("""
    select *
    from tmp_keyword_lang_test
    """)
    path = CommonUtil.df_export_csv(spark, df_all, "tmp_keyword_lang_test", limit=100 * 10000)
    print(f"success : {path}")
    pass


def udf_detect_phrase_reg(lang_word_map, word_translate_map: dict):
    def detect_phrase(phrase: str):
        import re
        # phrase = re.sub(r'(\d+\.?\d*|-|\'|\"|,|,|?|\?|/|、|)', '', phrase).strip()
        # 分词
        from nltk.tokenize import word_tokenize
        wordList = list(filter(lambda x: len(x) >= 2, word_tokenize(phrase, "english")))
        tmp_map = {
            "en": {"frequency": 0, "word": []},
            "fr": {"frequency": 0, "word": []},
            "es": {"frequency": 0, "word": []},
            "de": {"frequency": 0, "word": []},
        }
        for word in wordList:
            lang_rank_map: dict = lang_word_map.get(word)
            if lang_rank_map is not None:
                for lang in lang_rank_map.keys():
                    frequency = lang_rank_map[lang]
                    tmp_map[lang]["frequency"] = tmp_map[lang]["frequency"] + frequency
                    tmp_map[lang]["word"].append(word)
            pass

        #  先根据word名称个数倒序后根据分数
        lang, hint_word_map = sorted(tmp_map.items(), key=lambda it: (len(it[1]['word']), it[1]['frequency']), reverse=True)[0]

        if hint_word_map['frequency'] == 0:
            return {"lang": None, "hint_word": None, "translate_val": None}
        else:
            hint_word_list = hint_word_map['word']
            hint_word = " ".join(hint_word_list)
            if len(hint_word) <= 2:
                return {"lang": None, "hint_word": None, "translate_val": None}

            translate_val = None
            if lang == 'en' and word_translate_map is not None:
                translate_val = phrase
                for tmpword in hint_word_list:
                    # 翻译
                    translatearr = word_translate_map.get(tmpword)
                    if translatearr is not None and len(translatearr) >= 1:
                        translate_val = re.sub(rf"\b{tmpword}\b", translatearr[0], translate_val)
                    pass
                pass

            return {"lang": lang, "hint_word": hint_word, "translate_val": translate_val}
        pass

    return F.udf(detect_phrase, MapType(StringType(), StringType()))


def calc_keyword_lang():
    spark = SparkUtil.get_spark_session("calc_keyword_lang")

    lang_word_list = spark.sql("""
        select word, langs
        from big_data_selection.tmp_lang_word_frequency
    """).collect()

    en_cn_dict_list = spark.sql("""
        select word, simple_cn from tmp_en_dict
    """).collect()

    # lang_word_df => 转为map
    lang_word_map = {row['word']: row['langs'] for row in lang_word_list}
    # 翻译 =>文件
    en_cn_dict_map = {row['word']: row['simple_cn'] for row in en_cn_dict_list}

    keyword_df = spark.sql("""
            select keyword
            from big_data_selection.dwt_merchantwords_st_detail
            where site_name='us' limit 1000000
    """).cache()

    keyword_df = keyword_df.withColumn("resultMap", udf_detect_phrase_reg(lang_word_map, en_cn_dict_map)(F.col("keyword")))

    keyword_df = keyword_df.select(
        F.col("keyword"),
        F.col("resultMap").getField("lang").alias("lang"),
        F.col("resultMap").getField("hint_word").alias("hint_word"),
        F.col("resultMap").getField("translate_val").alias("translate_val"),
    )

    keyword_df.write.saveAsTable(name="tmp_keyword_lang_test", format='hive', mode='append')

    print("success")



def udf_test_reg(lang_word_map):
    def detect_phrase(phrase: str):
        # 分词后的词干
        wordList = UdfUtil.snowball_stem_word(phrase, False)[1]

        tmp_map = {
            "en": {"frequency": 0, "word": []},
            "fr": {"frequency": 0, "word": []},
            "es": {"frequency": 0, "word": []},
            "de": {"frequency": 0, "word": []},
        }
        for word in wordList:
            lang_rank_map: dict = lang_word_map.get(word)
            if lang_rank_map is not None:
                for lang in lang_rank_map.keys():
                    frequency = lang_rank_map[lang]
                    tmp_map[lang]["frequency"] = tmp_map[lang]["frequency"] + frequency
                    tmp_map[lang]["word"].append(word)
            pass

        #  先根据word名称个数倒序后根据分数
        lang, hint_word_map = sorted(tmp_map.items(), key=lambda it: (len(it[1]['word']), it[1]['frequency']), reverse=True)[0]

        if hint_word_map['frequency'] == 0:
            return {"lang": None, "hint_word": None, }
        else:
            hint_word_list = hint_word_map['word']
            hint_word = " ".join(hint_word_list)
            if len(hint_word) <= 2:
                return {"lang": None, "hint_word": None, }
            return {"lang": lang, "hint_word": hint_word}
        pass

    return F.udf(detect_phrase, MapType(StringType(), StringType()))


def build_word_frequency_map(lang_word_list):
    word_result_map = {}
    stem_result_map = {}
    for row in lang_word_list:
        word = row['word']
        stem = row['stem']
        frequency = row['frequency']
        lang = row['lang']
        lang_map1 = word_result_map.get(word) or {}
        lang_map1[lang] = frequency
        word_result_map[word] = lang_map1

        lang_map2 = stem_result_map.get(stem) or {}
        lang_map2[lang] = max(lang_map2.get(lang, 0), frequency)
        stem_result_map[word] = lang_map2

    for tmp_map in [word_result_map, stem_result_map]:
        # 去重差异较大值
        for key, value in tmp_map.items():
            max_frequency = max(value.values())
            # 删除
            for key in value.copy().keys():
                frequency = value.get(key)
                if frequency != 1 and int(max_frequency / frequency > 100):
                    del value[key]
            pass

    return word_result_map, stem_result_map


def calc_aba_keyword_lang():
    spark = SparkUtil.get_spark_session("calc_aba_keyword_lang")

    word_sql = f"""
        select word, stem, frequency, lang
        from lang_word_frequency
        """

    conn_info = DBUtil.get_connection_info(db_type=DbTypes.postgresql_test.name, site_name="us")
    word_frequency_df = SparkUtil.read_jdbc_query(
        session=spark,
        url=conn_info["url"],
        pwd=conn_info["pwd"],
        username=conn_info["username"],
        query=word_sql
    ).collect()

    word_result_map, stem_result_map = build_word_frequency_map(word_frequency_df)

    brand_sql = f"""
        select asin_brand_name
        from tmp_amazon_brand_dict
        """
    brand_all_list = spark.sql(brand_sql).cache().collect()
    # 所有的品牌名
    brand_list = {str(row['asin_brand_name']).lower() for row in brand_all_list}

    aba_keyword_df = spark.sql("""
select search_term,
	   site_name
from big_data_selection.ods_st_key
where site_name in (
					'uk',
					'us'
	)
    """).cache()

    aba_keyword_df = aba_keyword_df.withColumn("resultMap", udf_test_reg(stem_result_map)(F.col("search_term")))

def udf_has_brand_reg(brand_list):
    # def detect_phrase(keyword: str):
    #     # keyword
    #
    #     pass
    # pass
    #
    # aba_keyword_df = aba_keyword_df.withColumn("resultMap", udf_test_reg(stem_result_map)(F.col("search_term")))
    #
    #
    # aba_keyword_df = aba_keyword_df.select(
    #     F.col("search_term"),
    #     F.col("resultMap").getField("lang").alias("lang"),
    #     F.col("resultMap").getField("hint_word").alias("hint_word"),
    #     F.col("site_name")
    # )
    #
    # aba_keyword_df.write.saveAsTable(name="tmp_aba_keyword_lang_test_v2", format='hive', mode='append')
    print("success")


def calc_brand_name_list():
    spark = SparkUtil.get_spark_session("calc_aba_keyword_lang")
    brand_name_list = spark.sql("""
    select asin_brand_name as brand_name
    from big_data_selection.dim_cal_asin_history_detail
    where site_name='us'
    """)

    brand_name_list = brand_name_list.withColumn("asin_brand_name", F.lower(F.trim(F.col("asin_brand_name"))))
    brand_name_list = brand_name_list.drop_duplicates()
    brand_name_list.write.saveAsTable(name="tmp_brand_name_list", format='hive', mode='append')

    pass


def ge_all_err_word():
    spark = SparkUtil.get_spark_session("ge_all_err_word")
    keyword_df = spark.sql("""
    select keyword
    from big_data_selection.dwt_merchantwords_st_detail
    where site_name='us'
    """)

    def has_cn(word):
        import re
        pattern = re.compile(r'[\u4e00-\u9fa5]|[\u0800-\u4e00]|[\uac00-\ud7ff]')
        return len(pattern.findall(word)) > 0

    udf_has_cn_reg = F.udf(has_cn, BooleanType())

    keyword_df = keyword_df.withColumn("cn_flag", udf_has_cn_reg(F.col("keyword")))
    keyword_df = keyword_df.where("cn_flag == true")
    keyword_df.write.saveAsTable(name="tmp_error_keyword", format='hive', mode='append')
    print("success")
    pass


def get_simple_translation(translation: str):
    result = []
    for line in translation.split("||"):
        import re
        first_cn = re.split(r'[;,,]', line)[0]
        # 去掉所有[] () ()包裹的词语
        first_cn = re.sub(r'\(.*\)|\[.*\]|(.*)', "", first_cn)
        first_cn = re.sub(r'[a-z]+.', "", first_cn)
        # 去掉所有的词性符号
        result.append(first_cn)
        pass

    return result


# 英文字典翻译
def build_en_dict():
    print("build_en_dict ..........")
    spark = SparkUtil.get_spark_session("build_en_dict")
    en_dict_df = spark.read.json("file:///tmp/wjc_py/yswg_utils/resource/en_dict_all.json")

    #  \n换行符冲突 改为使用 ||替换
    en_dict_df = en_dict_df.withColumn("translation",
                                       F.trim(
                                           F.regexp_replace(F.regexp_replace(F.col("translation"), r"(\t|\u0020)", ""), r"\n", "||"))
                                       )

    udf_get_simple_translation_reg = F.udf(get_simple_translation, ArrayType(StringType()))

    # word	单词名称
    # phonetic	音标,以英语英标为主
    # definition	单词释义(英文),每行一个释义
    # translation	单词释义(中文),每行一个释义
    # pos	词语位置,用 "/" 分割不同位置
    # collins	柯林斯星级
    # oxford	是否是牛津三千核心词汇
    # tag	字符串标签:zk/中考,gk/高考,cet4/四级 等等标签,空格分割
    # bnc	英国国家语料库词频顺序
    # frq	当代语料库词频顺序
    # exchange	时态复数等变换,使用 "/" 分割不同项目,见后面表格
    # detail	json 扩展信息,字典形式保存例句(待添加)
    # audio	读音音频 url (待添加)
    en_dict_df = en_dict_df.select(
        F.trim(F.regexp_replace(F.col("word"), r"[\n\t]", "")).alias("word"),
        F.trim(F.regexp_replace(F.col("sw"), r"[\n\t]", "")).alias("sw"),
        F.trim(F.regexp_replace(F.col("exchange"), r"[\n\t]", "")).alias("exchange"),
        F.col("translation"),
        udf_get_simple_translation_reg(F.col("translation")).alias("simple_cn"),
        F.trim(F.regexp_replace(F.col("collins"), r"[\n\t]", "")).alias("collins"),
    ) \
        .orderBy(F.col("collins").desc())

    # en_dict_df = en_dict_df.where("word=='account'").show(truncate=False)

    en_dict_df.write.saveAsTable(name="tmp_en_dict", format='hive', mode='append')

    pass

    print("success")
    pass


def ge_all_aba_err_word():
    """
    aba查看乱码数据
    :return:
    """
    print("ge_all_aba_err_word ..........")

    spark = SparkUtil.get_spark_session("ge_all_aba_err_word")
    keyword_df = spark.sql("""
        select search_term as keyword
        from big_data_selection.ods_st_key
        """)

    def has_cn(word):
        import re
        pattern = re.compile(r'[\u4e00-\u9fa5]|[\u0800-\u4e00]|[\uac00-\ud7ff]')
        return len(pattern.findall(word)) > 0

    udf_has_cn_reg = F.udf(has_cn, BooleanType())

    keyword_df = keyword_df.withColumn("cn_flag", udf_has_cn_reg(F.col("keyword")))
    keyword_df = keyword_df.where("cn_flag == true")
    keyword_df.write.saveAsTable(name="tmp_aba_error_keyword", format='hive', mode='append')
    print("success")
    pass


def title_contain_brand_name():
    spark = SparkUtil.get_spark_session("title_contain_brand_name")
    flag_df = spark.sql("""
        select flag,
               count(flag)
        from (
                 select title,
                        brand_name,
                        if(locate(lower(brand_name), lower(title)) > 0, 1, 0) as flag
                 from big_data_selection.dwt_bsr_asin_detail
                 where date_info = '2023-11'
                   and site_name = 'us'
                   and title is not null
                   and brand_name is not null
             )
        group by flag
        """)
    flag_df.show()

    pass


def split_word(word: str):
    word = word.replace("+", " ")
    word = word.replace("\"", "")
    from nltk.tokenize import word_tokenize
    return word_tokenize(word, "english")


def calc_amazon_word_frequency():
    spark = SparkUtil.get_spark_session("amazon_word_frequency")
    keyword_df = spark.sql("""
        select keyword  from dwt_merchantwords_st_detail;
        """).cache()

    keyword_df.write.saveAsTable(name="tmp_amazon_word_frequency", format='hive', mode='append')
    pass


def build_brand_name_dict():
    spark = SparkUtil.get_spark_session("build_brand_name_dict")
    save_df = spark.sql("""
        select distinct trim(asin_brand_name) as asin_brand_name
        from big_data_selection.dim_cal_asin_history_detail
        where site_name = 'us'
          and asin_brand_name is not null
        """).cache()

    save_df.write.saveAsTable(name="tmp_amazon_brand_dict", format='hive', mode='append')
    print('success')
    pass





if __name__ == '__main__':
    calc_aba_top100w_asin()
    # calc_aba_keyword_lang()

    # build_brand_name_dict()
    # arr = [
    #     "24 oz",
    #     "skechers+skechers+skechers+skechers+ skechers+ skechers 4runner rtx 3060 ti",
    #     "the shark® ai robot vacmop™ rv2002wd",
    #     "stella & chewy’s carnivore cravings purrfect pate cans – grain free, protein rich wet cat food (case of 24)"
    # ]
    # for s in arr:
    #     print(split_word(s))