1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import sys
import random
import string
sys.path.append(os.path.dirname(sys.path[0]))
from utils.db_util import DBUtil
from utils.ssh_util import SSHUtil
from utils.common_util import CommonUtil,DateTypes
from utils.spark_util import SparkUtil
from datetime import datetime
from utils.templates import Templates
class JudgeCount(Templates):
def __init__(self, site_name='us', date_type="month", date_info='2024-01'):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save = 'judge_count'
# 初始化self.spark对
self.spark = self.create_spark_object(
app_name=f"{self.db_save}: {self.site_name}, {self.date_type}, {self.date_info}")
def judge_count(self, count=1000):
sql = f"select * from dwt_st_asin_reverse where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}' limit {count};"
print(f"sql: {sql}")
df = self.spark.sql(sql).cache()
df.show(10)
df_count = df.count()
if df_count < count:
raise Exception(f"{self.site_name}站点: 反查数量不对, 抛出异常, {df_count}")
else:
print(f"{self.site_name}站点: 反查数据量正常, {df_count}")
def run(self):
# self.judge_count()
pass
if __name__ == '__main__':
site_name = CommonUtil.get_sys_arg(1, None)
date_type = CommonUtil.get_sys_arg(2, None)
date_info = CommonUtil.get_sys_arg(3, None)
# 获取最后一个参数
last_flag = CommonUtil.get_sys_arg(len(sys.argv) - 1, None)
cur_date = datetime.now().date()
handle_obj = JudgeCount(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run() # 检验反查数量
sql_date_type = date_type
print(f"执行参数为{sys.argv}")
db_type = 'postgresql_cluster'
CommonUtil.judge_is_work_hours(site_name=site_name, date_type=date_type, date_info=date_info, principal='fangxingjun',
priority=3, export_tools_type=1, belonging_to_process='反查搜索词')
# 获取数据库连接
engine = DBUtil.get_db_engine(db_type, site_name)
suffix = str(date_info).replace("-", "_")
export_cols = [
"st_key",
"search_term",
"st_ao_val",
"st_type",
"st_rank",
"st_search_num",
"st_search_rate",
"st_search_sum",
"st_adv_counts",
"st_quantity_being_sold",
"asin",
"asin_st_zr_orders",
"asin_st_zr_orders_sum",
"asin_st_zr_flow",
"asin_st_sp_orders",
"asin_st_sp_orders_sum",
"asin_st_sp_flow",
"st_asin_zr_page",
"st_asin_zr_page_row",
"st_asin_zr_page_rank",
"st_asin_zr_updated_at",
"st_asin_sp_page",
"st_asin_sp_page_rank",
"st_asin_sp_page_row",
"st_asin_sp_updated_at",
"st_asin_sb1_page",
"st_asin_sb1_updated_at",
"st_asin_sb2_page",
"st_asin_sb2_updated_at",
"st_asin_sb3_page",
"st_asin_sb3_updated_at",
"st_asin_ac_page",
"st_asin_ac_updated_at",
"st_asin_bs_page",
"st_asin_bs_updated_at",
"st_asin_er_page",
"st_asin_er_updated_at",
"st_asin_tr_page",
"st_asin_tr_updated_at",
"st_zr_current_page_asin_counts",
"st_sp_current_page_asin_counts",
"st_brand_label"
]
# 4_week逻辑
if date_type == "4_week" or date_type == DateTypes.month_week.name:
export_tb_target = f"{site_name}_last_4_week_st"
export_tb_copy = f"{site_name}_last_4_week_st_copy1"
export_table = export_tb_copy
sql = f"""
drop table if exists {export_tb_copy};
create table if not exists {export_tb_copy}
(
like {export_tb_target} including comments including defaults
);
truncate table {export_tb_copy};
SELECT create_distributed_table('{export_tb_copy}', 'asin');
"""
# 执行SQL语句
DBUtil.engine_exec_sql(engine, sql)
print("导出的字段:", export_cols)
if date_type == DateTypes.month.name:
# 处理导出表
export_table = f"{site_name}_st_month_{suffix}"
year_month_before = CommonUtil.get_month_offset(date_info, -1).replace("-", "_")
export_master_table = export_table
# export_tb_before = f"us_st_month_{year_month_before}"
# 基础数据结构表
export_tb_before = f"us_st_month_2023_base"
sql = f"""
drop table if exists {export_master_table};
create table if not exists public.{export_master_table}
(
like public.{export_tb_before} including comments including defaults
);
truncate table public.{export_master_table};
SELECT create_distributed_table('{export_master_table}', 'asin');
"""
# 执行SQL语句
DBUtil.engine_exec_sql(engine, sql)
print("导出的字段:", export_cols)
# 关闭与pg的链接
engine.dispose()
if last_flag == "month_append":
partition_dict = {
"site_name": site_name,
"date_type": "month",
"date_info": date_info
}
else:
partition_dict = {
"site_name": site_name,
"date_type": date_type,
"date_info": date_info
}
# 导出执行sqoop的sh编写
sh = CommonUtil.build_export_sh(
site_name=site_name,
db_type=db_type,
hive_tb="dwt_st_asin_reverse",
export_tb=export_table,
col=export_cols,
partition_dict=partition_dict
)
client = SSHUtil.get_ssh_client()
SSHUtil.exec_command_async(client, sh, ignore_err=False)
client.close()
# 重新获取数据库连接
engine = DBUtil.get_db_engine(db_type, site_name)
# 导出后执行(构建索引、切换表名)
salt_id = ''.join(random.sample(string.ascii_letters + string.digits, 8))
sql_index_asin = f"""
CREATE INDEX {site_name}_st_asin_{salt_id}_key ON public.{export_table} USING hash (asin);
"""
# 执行SQL语句
DBUtil.engine_exec_sql(engine, sql_index_asin)
sql_index_zr_flow = f"""
CREATE INDEX {site_name}_st_zr_{salt_id}_key ON public.{export_table} USING btree (asin_st_zr_flow);
"""
DBUtil.engine_exec_sql(engine, sql_index_zr_flow)
sql_index_search_term = f"""
CREATE INDEX {site_name}_search_term_{salt_id}_key ON public.{export_table} USING btree (search_term);
"""
DBUtil.engine_exec_sql(engine, sql_index_search_term)
if date_type == '4_week' or date_type == DateTypes.month_week.name:
# 交换表名
#DBUtil.exchange_tb(engine, export_tb_copy, export_tb_target, cp_index_flag=False)
sql_1 = f"""alter table {export_tb_target} rename to {export_tb_target}_back; """
DBUtil.engine_exec_sql(engine, sql_1)
sql_2 = f"""alter table {export_tb_copy} rename to {export_tb_target};"""
DBUtil.engine_exec_sql(engine, sql_2)
sql_3 = f"""alter table {export_tb_target}_back rename to {export_tb_copy};"""
DBUtil.engine_exec_sql(engine, sql_3)
# 往导出流程表插入导出完成数据,方便监听导出脚本是否全部完成
if date_type == '4_week' or date_type == DateTypes.month.name:
# us站点可以直接插入数据执行
update_workflow_sql = f"""
REPLACE INTO selection.workflow_progress (site_name, page, table_name, date_type, date_info, status, status_val, is_end, over_date, calculate_responsible, exhibition_responsible, remark)
VALUES('{site_name}', '反查搜索词', '{export_table}', '{date_type}', '{date_info}', '导出pg集群完成', 6, '是', CURRENT_TIME,'fangxingjun@yswg.com.cn', 'wangfeng@yswg.com.cn', '反查搜索词')
"""
if date_type == DateTypes.month_week.name or date_type == '4_week':
sql_date_type = '30_day'
if date_type == '4_week':
cur_date = CommonUtil.get_calDay_by_dateInfo(SparkUtil.get_spark_session("get_4_week_date"), date_type, date_info)
update_workflow_sql = f"""
REPLACE INTO selection.workflow_progress (site_name, page, table_name, date_type, date_info, status, status_val, is_end, over_date, calculate_responsible, exhibition_responsible, remark)
VALUES('{site_name}', '反查搜索词', 'us_last_4_week_st', '{sql_date_type}', '{cur_date}', '导出pg集群完成', 6, '是', CURRENT_TIME,'fangxingjun@yswg.com.cn', 'wangfeng@yswg.com.cn', '反查搜索词')
"""
print(update_workflow_sql)
mysql_engine = DBUtil.get_db_engine('mysql', 'us')
DBUtil.engine_exec_sql(mysql_engine, update_workflow_sql)
# 关闭链接
mysql_engine.dispose()
engine.dispose()
CommonUtil.modify_export_workflow_status(update_workflow_sql, site_name, date_type, date_info)