1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
import re
import sys
import traceback
from datetime import datetime
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
from pyspark.sql.types import IntegerType
from pyspark.sql import functions as F
from pyspark.sql.types import *
from yswg_utils.common_udf import udf_rank_and_category
# from ..yswg_utils.common_udf import udf_rank_and_category
class DimStAsinInfo(Templates):
def __init__(self, site_name='us', date_type="day", date_info='2022-10-01'):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save = f'kafka_test'
self.spark = self.create_spark_object(
app_name=f"{self.db_save}: {self.site_name},{self.date_type}, {self.date_info}")
self.kafka = self.create_kafka_object()
self.df_save = self.spark.sql(f"select 1+1;")
self.df_st_asin = self.spark.sql(f"select 1+1;")
self.df_asin_templates = self.spark.sql("select asin_zr_counts, asin_sp_counts, asin_sb1_counts,asin_sb2_counts,asin_sb3_counts,asin_ac_counts,asin_bs_counts,asin_er_counts,asin_tr_counts from dwd_asin_measure limit 0")
self.df_asin_counts = self.spark.sql("select asin_zr_counts, asin_sp_counts, asin_sb1_counts,asin_sb2_counts,asin_sb3_counts,asin_ac_counts,asin_bs_counts,asin_er_counts,asin_tr_counts from dwd_asin_measure limit 0")
self.schema = self.init_schema()
schema = StructType([
StructField('bs_rank_str', StringType(), True),
StructField('bs_category_str', StringType(), True),
])
# self.u_rank_and_category = self.spark.udf.register("u_rank_and_category", udf_rank_and_category, schema)
self.u_rank_and_category = self.spark.udf.register("u_rank_and_category", self.udf_rank_and_category, schema)
@staticmethod
def init_schema():
schema = StructType([
StructField("asin", StringType(), True),
StructField("week", StringType(), True),
StructField("title", StringType(), True),
StructField("img_url", StringType(), True),
StructField("rating", StringType(), True),
StructField("total_comments", StringType(), True),
StructField("price", FloatType(), True),
StructField("rank", StringType(), True),
StructField("category", StringType(), True),
StructField("launch_time", StringType(), True),
StructField("volume", StringType(), True),
StructField("weight", StringType(), True),
StructField("page_inventory", IntegerType(), True),
StructField("buy_box_seller_type", IntegerType(), True),
StructField("asin_vartion_list", IntegerType(), True),
StructField("title_len", IntegerType(), True),
StructField("img_num", IntegerType(), True),
StructField("img_type", StringType(), True),
StructField("activity_type", StringType(), True),
StructField("one_two_val", StringType(), True),
StructField("three_four_val", StringType(), True),
StructField("eight_val", StringType(), True),
StructField("qa_num", IntegerType(), True),
StructField("five_star", IntegerType(), True),
StructField("four_star", IntegerType(), True),
StructField("three_star", IntegerType(), True),
StructField("two_star", IntegerType(), True),
StructField("one_star", IntegerType(), True),
StructField("low_star", IntegerType(), True),
StructField("together_asin", StringType(), True),
StructField("brand", StringType(), True),
StructField("ac_name", StringType(), True),
StructField("material", StringType(), True),
StructField("node_id", StringType(), True),
StructField("data_type", IntegerType(), True),
StructField("sp_num", StringType(), True),
StructField("describe", StringType(), True),
StructField("date_info", StringType(), True),
StructField("weight_str", StringType(), True),
StructField("package_quantity", StringType(), True),
StructField("pattern_name", StringType(), True),
StructField("seller_id", StringType(), True),
StructField("variat_num", IntegerType(), True),
StructField("site_name", StringType(), True),
StructField("best_sellers_rank", StringType(), True),
StructField("best_sellers_herf", StringType(), True)
])
return schema
# @staticmethod
# def udf_rank_and_category(best_sellers_rank):
# # 提取到公共方法中 直接复制的
# return udf_rank_and_category(best_sellers_rank)
@staticmethod
def udf_rank_and_category(best_sellers_rank):
pattern = r"([\d,]+) in ([\w&' ]+)"
best_sellers_rank = re.sub(r'\(See Top 100 in .*?\)', '', str(best_sellers_rank))
matches = re.findall(pattern, str(best_sellers_rank))
bs_rank_str = ",".join([rank.replace(",", "") for rank, category in matches])
bs_category_str = ",".join([category.strip().replace(",", " ") for rank, category in matches])
return bs_rank_str, bs_category_str
def create_kafka_object(self):
# .option("my_kafka.bootstrap.servers", "113.100.143.162:39092") \
kafkaStreamDF = self.spark.readStream \
.format("my_kafka") \
.option("my_kafka.bootstrap.servers", "192.168.10.221:9092,192.168.10.220:9092,192.168.10.210:9092") \
.option("subscribe", f"{self.site_name}_asin_detail") \
.option("startingOffsets", "lastest") \
.load()
return kafkaStreamDF
def read_data(self):
print("1.1 读取dim_st_asin_info表, 计算ao值")
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
print("sql:", sql)
self.df_st_asin = self.spark.sql(sql)
self.df_st_asin = self.df_st_asin.drop_duplicates(['search_term', 'asin', 'data_type']).cache()
self.df_st_asin.show(10, truncate=False)
# print("1.2 读取dim_st_asin_info表, 计算ao值")
# sql = f"select asin, asin_weight, asin_volume from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
# print("sql:", sql)
# self.df_st_asin = self.spark.sql(sql)
# self.df_st_asin = self.df_st_asin.drop_duplicates(['search_term', 'asin', 'data_type']).cache()
# self.df_st_asin.show(10, truncate=False)
def handle_data(self):
# 计算asin的ao值
self.df_asin_counts = self.handle_st_asin_counts()
self.df_asin_counts = self.df_asin_counts.select("asin", "asin_ao").cache()
def handle_asin_bs_category_rank(self, df):
df = df.withColumn(
'bs_str', self.u_rank_and_category('best_sellers_rank')
)
df = df.withColumn('bs_rank_str', df.bs_str.getField('bs_rank_str')) \
.withColumn('bs_category_str', df.bs_str.getField('bs_category_str')) \
.drop('bs_str')
df.show(10, truncate=False)
return df
def handle_st_asin_counts(self):
self.df_st_asin = self.df_st_asin.withColumn(
f"asin_data_type",
F.concat(F.lit(f"asin_"), self.df_st_asin.data_type, F.lit(f"_counts"))
)
df_asin_counts = self.df_st_asin.groupby([f'asin']). \
pivot(f"asin_data_type").count()
df_asin_counts = self.df_asin_templates.unionByName(df_asin_counts, allowMissingColumns=True) # 防止爬虫数据没有导致程序运行出错
df_asin_counts = df_asin_counts.fillna(0)
# df.show(10, truncate=False)
df_asin_counts = df_asin_counts.withColumn(
f"asin_sb_counts",
df_asin_counts[f"asin_sb1_counts"] + df_asin_counts[f"asin_sb2_counts"] + df_asin_counts[f"asin_sb3_counts"]
)
df_asin_counts = df_asin_counts.withColumn(
f"asin_adv_counts",
df_asin_counts[f"asin_sb_counts"] + df_asin_counts[f"asin_sp_counts"]
)
df_asin_counts = df_asin_counts.withColumn(
f"asin_ao",
df_asin_counts[f"asin_adv_counts"] / df_asin_counts[f"asin_zr_counts"]
) # 不要把null置为0, null值产生原因是zr类型没有搜到对应的搜索词
df_asin_counts.show(10, truncate=False)
return df_asin_counts
def process_batch(self, df, epoch_id):
try:
print("df.count():", df.count())
# df.show(5, truncate=False)
# 确保schema非空以避免NoneType错误
if not self.schema:
raise ValueError("Schema is not defined")
df = df.withColumn("parsed_value", F.from_json(F.col("value").cast("string"), self.schema)) \
.selectExpr("parsed_value.*")
# df.show(5, truncate=False)
# print("df.columns:", df.columns)
df = df.select("asin", "launch_time", "volume", "weight", "weight_str", "variat_num", "best_sellers_rank", "best_sellers_herf", "site_name")
df.show(5, truncate=False)
# # 提取排名和分类
df_bs = self.handle_asin_bs_category_rank(df=df.select("asin", "best_sellers_rank"))
# join
# df_bs = df_bs.join(self.df_asin_counts, on='asin', how='left')
# df_bs.show(5, truncate=False)
df_save = df.join(
df_bs, on='asin', how='left'
).join(
self.df_asin_counts, on='asin', how='left'
)
df_save.show(5, truncate=False)
except Exception as e:
print(e, traceback.format_exc())
# # 与从Kafka读取的数据进行连接
# joined_df = df.join(self.df_asin_title, "asin", how='left')
# # 执行你的转换和聚合逻辑
# result_df = joined_df.groupBy("asin").count()
# result_df.show(10, truncate=False)
print("epoch_id:", epoch_id, datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
def run(self):
self.read_data()
self.handle_data()
# 将消息值转换为字符串,并创建一个临时视图
stringifiedDF = self.kafka.selectExpr("CAST(value AS STRING)")
stringifiedDF.createOrReplaceTempView("KafkaData")
# 设置streaming查询,每5分钟触发一次
query = stringifiedDF.writeStream.foreachBatch(self.process_batch).trigger(processingTime='600 seconds').start()
# 等待查询终止
query.awaitTermination()
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter/day
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
handle_obj = DimStAsinInfo(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()