dim_asin_detail.py 38.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
"""
   @Author      : HuangJian
   @Description : 关键词与Asin详情维表
   @SourceTable :
                  ①ods_asin_keep_date
                  ②ods_asin_variat
                  ③ods_asin_detail
                  ④dwd_bs_category_asin
   @SinkTable   : dim_asin_detail
   @CreateTime  : 2022/11/14 15:56
   @UpdateTime  : 2022/11/14 15:56
"""

import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录


from pyspark.sql.window import Window
from pyspark.sql import functions as F
from utils.spark_util import SparkUtil
from pyspark.sql.types import *
from yswg_utils.common_udf import udf_handle_string_null_value as myUDF
from yswg_utils.common_df import get_node_first_id_df, get_first_id_from_category_desc_df
from utils.common_util import CommonUtil, DateTypes
from yswg_utils.common_udf import udf_new_asin_flag
from utils.hdfs_utils import HdfsUtils
from utils.db_util import DBUtil
from datetime import datetime
from pyspark.storagelevel import StorageLevel
from utils.DorisHelper import DorisHelper
from yswg_utils.common_udf import udf_get_package_quantity_with_flag as udf_get_package_quantity, udf_parse_seller_json, udf_parse_amazon_orders


class DimAsinDetail(object):

    def __init__(self, site_name, date_type, date_info):
        super().__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.hive_tb = f'dim_asin_detail'
        self.partition_dict = {
            "site_name": site_name,
            "date_type": date_type,
            "date_info": date_info
        }
        # 落表路径校验
        self.hdfs_path = CommonUtil.build_hdfs_path(self.hive_tb, partition_dict=self.partition_dict)
        # 创建spark_session对象相关
        app_name = f"{self.__class__.__name__}:{site_name}:{date_info}"
        self.spark = SparkUtil.get_spark_session(app_name)
        self.complete_date_info_tuple = self.get_complete_week_tuple()
        self.date_sql = self.date_sql_padding()
        self.launch_time_upper_limit = self.get_effective_launch_time()
        self.launch_time_lower_limit = "1995-01-01"
        self.cal_date = CommonUtil.get_calDay_by_dateInfo(self.spark, self.date_type, self.date_info)
        self.partitions_by = ['site_name', 'date_type', 'date_info']
        self.partition_num = CommonUtil.reset_partitions(self.site_name, partitions_num=80)
        # Doris相关参数
        self.doris_db = "selection"
        self.parent_asin_latest_detail_table = f"{self.site_name}_parent_asin_latest_detail"
        # 自定义df相关
        self.df_asin_keep_date = self.spark.sql(f"select 1+1;")
        self.df_asin_detail = self.spark.sql(f"select 1+1;")
        self.df_asin_label = self.spark.sql("select 1+1;")
        self.df_asin_weight_and_volume = self.spark.sql("select 1+1;")
        self.df_asin_new_cate = self.spark.sql("select 1+1;")
        self.df_user_package_num = self.spark.sql(f"select 1+1;")
        self.df_self_asin = self.spark.sql(f"select 1+1;")
        self.df_asin_category = self.spark.sql(f"select 1+1;")
        self.df_asin_variat = self.spark.sql(f"select 1+1;")
        # 调用公用udf函数
        self.udf_new_asin_flag = F.udf(udf_new_asin_flag, IntegerType())
        self.handle_string_num_value = F.udf(myUDF, StringType())
        seller_schema = StructType([
            StructField("buy_box_seller_type", IntegerType(), True),
            StructField("account_name", StringType(), True),
            StructField("account_id", StringType(), True)
        ])
        self.u_parse_seller_info = self.spark.udf.register('u_parse_seller_info', udf_parse_seller_json, seller_schema)
        package_schema = StructType([
            StructField("parse_package_quantity", IntegerType(), True),
            StructField("is_package_quantity_abnormal", IntegerType(), True),
        ])
        self.u_judge_package_quantity = self.spark.udf.register('u_judge_package_quantity', udf_get_package_quantity, package_schema)
        self.u_parse_amazon_orders = F.udf(udf_parse_amazon_orders, IntegerType())

    def get_complete_week_tuple(self):
        complete_date_info_tuple = None
        df_date = self.spark.sql(f"select * from dim_date_20_to_30 ;")
        df = df_date.toPandas()
        if self.date_type == 'week':
            complete_date_info_tuple = f"('{self.date_info}')"
        elif self.date_type == '4_week':
            print(self.date_info)
            df_loc = df.loc[(df.year_week == f"{self.date_info}") & (df.week_day == 1)]
            cur_id = list(df_loc.id)[0]
            df_loc = df.loc[df.id == int(cur_id)]
            week1 = list(df_loc.year_week)[0]
            df_loc = df.loc[df.id == int(cur_id) - 7]
            week2 = list(df_loc.year_week)[0]
            df_loc = df.loc[df.id == int(cur_id) - 14]
            week3 = list(df_loc.year_week)[0]
            df_loc = df.loc[df.id == int(cur_id) - 21]
            week4 = list(df_loc.year_week)[0]
            complete_date_info_tuple = (week1, week2, week3, week4)
        elif self.date_type in ['month', 'month_week']:
            df_loc = df.loc[(df.year_month == f"{self.date_info}") & (df.week_day == 1)]
            complete_date_info_tuple = tuple(df_loc.year_week)
        print("self.complete_date_info_tuple:", complete_date_info_tuple)
        return complete_date_info_tuple

    def date_sql_padding(self):
        if 'us' == self.site_name:
            if self.date_type == DateTypes.month_week.name:
                date_sql = f" and date_type='{self.date_type}' and date_info = '{self.date_info}'"
            elif self.date_type == DateTypes.month.name and self.date_info >= '2023-10':
                date_sql = f" and date_type='{self.date_type}' and date_info = '{self.date_info}'"
            else:
                date_sql = f"and date_type='week' and date_info in {self.complete_date_info_tuple}"
        elif self.site_name in ['uk', 'de']:
            if self.date_type in [DateTypes.month.name, DateTypes.month_week.name] and self.date_info >= '2024-05':
                date_sql = f" and date_type='{self.date_type}' and date_info='{self.date_info}'"
            else:
                date_sql = f" and date_type='week' and date_info in {self.complete_date_info_tuple}"
        print(date_sql)
        return date_sql

    def get_effective_launch_time(self):
        year_upper_limit = datetime.now().year + 1
        launch_time_upper_limit = str(year_upper_limit) + "-01-01"
        return launch_time_upper_limit

    # 读取数据
    def read_data(self):
        # 获取dim层的dim_asin_launchtime_info
        print("1. 获取dim层的dim_asin_launchtime_info填充的上架日期")
        sql = f"""select asin, asin_launch_time as populated_asin_launch_time from dim_asin_launchtime_info where site_name='{self.site_name}'  and asin_launch_time is not null"""
        print(sql)
        self.df_asin_keep_date = self.spark.sql(sqlQuery=sql)
        self.df_asin_keep_date = self.df_asin_keep_date.repartition(100).persist(StorageLevel.DISK_ONLY)
        self.df_asin_keep_date.show(10, truncate=False)
        print("2. 获取ods_asin_detail")
        sql = f"""
            select asin, img_url as asin_img_url, lower(title) as asin_title, title_len as asin_title_len, 
            price as asin_price, rating as asin_rating, total_comments as asin_total_comments, 
            page_inventory as asin_page_inventory, category as asin_category_desc, 
            launch_time as crawl_asin_launch_time, img_num as asin_img_num, img_type as asin_img_type, 
            category_state as asin_category_state, material as asin_material, lower(brand) as asin_brand_name, 
            activity_type as asin_activity_type, one_two_val as act_one_two_val, three_four_val as act_three_four_val, 
            five_six_val as act_five_six_val, eight_val as act_eight_val, one_star, two_star, three_star, four_star, 
            five_star, low_star, together_asin, ac_name, node_id, data_type as asin_data_type, variat_list, 
            `describe` as asin_describe, follow_sellers as asin_follow_sellers, product_description, 
            image_view as asin_image_view, spider_int as asin_spider_num, buy_sales, lob_asin_json as asin_lob_info, 
            REGEXP_REPLACE(seller_json, chr(10), '') as seller_json, buy_box_seller_type as asin_buy_box_seller_type, customer_reviews_json, parent_asin, img_list, 
            created_at as created_time, updated_at as updated_time, updated_at as dt, variat_num as variation_num 
            from ods_asin_detail where site_name='{self.site_name}' {self.date_sql}"""
        print(sql)
        self.df_asin_detail = self.spark.sql(sqlQuery=sql)
        self.df_asin_detail = self.df_asin_detail.repartition(100).persist(StorageLevel.DISK_ONLY)
        self.df_asin_detail.show(10, truncate=False)
        print("3. 读取asin体积重量相关信息")
        sql = f"""
                SELECT asin, asin_volume, asin_volume_type, asin_length_sorted as asin_length, 
                asin_width_sorted as asin_width, asin_height_sorted as asin_height, 
                asin_weight, asin_weight_str, asin_weight_type FROM dim_asin_stable_info WHERE site_name='{self.site_name}'"""
        print(sql)
        self.df_asin_weight_and_volume = self.spark.sql(sqlQuery=sql)
        self.df_asin_weight_and_volume = self.df_asin_weight_and_volume.repartition(100).persist(StorageLevel.DISK_ONLY)
        self.df_asin_weight_and_volume.show(10, truncate=False)
        print("4. 获取用户修改打包数量信息")
        pg_con_info = DBUtil.get_connection_info("postgresql", "us")
        sql = f"""
               WITH ranked_edit_logs AS (SELECT edit_key_id, lower(val_related_info) AS val_related_info, val_after, 
               ROW_NUMBER() OVER (PARTITION BY edit_key_id ORDER BY create_time DESC) AS rn FROM sys_edit_log 
               WHERE module = '流量选品' AND filed = 'package_quantity' and site_name='{self.site_name}')
               SELECT edit_key_id AS asin, val_related_info AS asin_title, cast(val_after as int) AS user_package_num, 
               0 AS user_is_package_quantity_abnormal FROM ranked_edit_logs WHERE rn = 1"""
        print(sql)
        if pg_con_info is not None:
            df_user_package_num = SparkUtil.read_jdbc_query(session=self.spark, url=pg_con_info['url'], pwd=pg_con_info['pwd'], username=pg_con_info['username'], query=sql)
            self.df_user_package_num = F.broadcast(df_user_package_num)
            self.df_user_package_num.show(10, truncate=False)
        print("5.读取ods_self_asin,获得公司内部asin信息")
        sql = f"""select asin, 1 as asin_is_self from ods_self_asin where site_name='{self.site_name}' group by asin"""
        print("sql:" + sql)
        df_self_asin = self.spark.sql(sqlQuery=sql)
        self.df_self_asin = F.broadcast(df_self_asin)
        self.df_self_asin.show(10, truncate=False)
        print("6. node_id对应的头部分类信息")
        self.df_asin_new_cate = get_node_first_id_df(self.site_name, self.spark)
        self.df_asin_new_cate = self.df_asin_new_cate.filter('node_id is not null').persist(StorageLevel.DISK_ONLY)
        self.df_asin_new_cate.show(10, truncate=False)
        print("7. 获取asin的标签信息")
        sql = f"""
            select asin, asin_label_list, asin_label_type as asin_is_movie from dim_asin_label 
            where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'
        """
        print("sql:" + sql)
        self.df_asin_label = self.spark.sql(sqlQuery=sql)
        self.df_asin_label = self.df_asin_label.repartition(100).persist(StorageLevel.DISK_ONLY)
        self.df_asin_label.show(10, truncate=False)
        print("8. 获取分类id和分类名称的对应关系")
        self.df_asin_category = get_first_id_from_category_desc_df(self.site_name, self.spark)
        self.df_asin_category = self.df_asin_category.withColumn(
            "category_first_name", F.lower("category_first_name")
        ).repartition(100).persist(StorageLevel.DISK_ONLY)
        self.df_asin_category.show(10, truncate=False)
        if self.date_type in ['month', 'month_week'] and self.date_info < '2024-06':
            sql = f"""
            SELECT asin, parent_asin, color as asin_color, `size` as asin_size, style as asin_style, 
            CASE WHEN state = 1 THEN 1 WHEN state = 2 THEN 0 ElSE NULL END as asin_is_sale, updated_time 
            FROM dim_asin_variation_info where site_name='{self.site_name}' and created_date >='2024-05-21'
            """
            print("sql:" + sql)
            self.df_asin_variat = self.spark.sql(sqlQuery=sql)
            self.df_asin_variat = self.df_asin_variat.repartition(100).persist(StorageLevel.DISK_ONLY)
            self.df_asin_variat.show(10, truncate=False)
        else:
            pass

    # asin详情数据去重
    def handle_df_duplicated(self):
        # 12月数据标记多个data_type用于区分改asin由什么场景抓取
        df_asin_datatype_handle = self.df_asin_detail.select("asin", "asin_data_type")
        df_asin_datatype_handle_agg = df_asin_datatype_handle.groupby(["asin"]).agg(
            F.concat_ws(",", F.collect_set("asin_data_type")).alias("asin_data_type"))
        # asin窗口内排序,按照dt降序
        window = Window.partitionBy(['asin']).orderBy(self.df_asin_detail.dt.desc_nulls_last())
        self.df_asin_detail = self.df_asin_detail.withColumn("dt_rank", F.row_number().over(window=window))
        # 取按asin分组的组内第一条,就是去重后的最新asin_detail
        self.df_asin_detail = self.df_asin_detail.filter("dt_rank=1").drop("dt", "dt_rank", "asin_data_type")
        self.df_asin_detail = self.df_asin_detail.repartition(100)
        df_asin_datatype_handle_agg = df_asin_datatype_handle_agg.repartition(100)
        self.df_asin_detail = self.df_asin_detail.join(df_asin_datatype_handle_agg, on=['asin'], how='left').persist(StorageLevel.MEMORY_ONLY)
        print("asin详情去重后的数量为: ", self.df_asin_detail.count())
        if self.date_type == 'month' and self.date_info == '2024-03':
            sql = f"""
                select asin from dwd_asin_measure where site_name='{self.site_name}' and date_type='{self.date_type}'
                and date_info='{self.date_info}' group by asin"""
            df_effective_asin = self.spark.sql(sql)
            self.df_asin_detail = self.df_asin_detail.join(df_effective_asin, on=['asin'], how='inner')

    # 处理asin的亚马逊月销信息
    def handle_asin_bought_month(self):
        self.df_asin_detail = self.df_asin_detail.withColumn("asin_bought_month", self.u_parse_amazon_orders(self.df_asin_detail.buy_sales))

    # 处理asin的lob_info信息
    def handle_asin_lob_info(self):
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "is_contains_lob_info", F.when(F.col("asin_lob_info").isNotNull(), F.lit(1)).otherwise(F.lit(0)))
        df_asin_detail_parsed = self.df_asin_detail.withColumn(
            "parse_asin_lob", F.when(F.col("is_contains_lob_info") == 1, F.from_json("asin_lob_info", "array<struct<lob_asin:string>>")))
        df_asin_detail_result = df_asin_detail_parsed.withColumn("asin_lob_info", F.expr("transform(parse_asin_lob, x -> x.lob_asin)"))
        self.df_asin_detail = df_asin_detail_result.withColumn(
            "asin_lob_info", F.regexp_replace(F.concat_ws(",", "asin_lob_info"), "[{}]", "")).drop("parse_asin_lob")

    # 处理asin的变体信息
    def handle_asin_variation_attribute(self):
        if self.date_type in ['month', 'month_week'] and self.date_info >= '2024-06':
            print("执行新版的变体信息整合")
            variat_schema = ArrayType(ArrayType(StringType()))
            self.df_asin_detail = self.df_asin_detail.withColumn("variat_list_change", F.from_json(F.col("variat_list"), variat_schema))
            df_asin_with_variation = self.df_asin_detail.filter(F.size("variat_list_change") > 0).\
                select("asin", F.explode("variat_list_change").alias("variant_attribute")).\
                select("asin", F.col("variant_attribute")[0].alias("son_asin"),
                       F.col("variant_attribute")[1].alias("asin_color"),
                       F.col("variant_attribute")[3].alias("asin_size"),
                       F.col("variant_attribute")[4].alias("asin_is_sale"),
                       F.col("variant_attribute")[5].alias("asin_style"))
            df_asin_with_variation = df_asin_with_variation.filter(F.col("asin") == F.col("son_asin")).drop("son_asin", "variant_attribute")
            df_asin_with_variation = df_asin_with_variation.withColumn(
                "asin_is_sale",
                F.when(F.col("asin_is_sale")==1, F.lit(1)).when(F.col("asin_is_sale")==2, F.lit(0)).otherwise(F.lit(None))
            )
            self.df_asin_detail = self.df_asin_detail.join(
                df_asin_with_variation, on=['asin'], how='left'
            )
        elif self.date_type in ['month', 'month_week'] and self.date_info < '2024-06':
            print("执行历史数据的变体信息整合")
            window = Window.partitionBy(self.df_asin_variat.asin).orderBy(
                self.df_asin_variat.updated_time.desc_nulls_last())
            self.df_asin_variat = self.df_asin_variat.withColumn("t_rank", F.row_number().over(window=window))
            self.df_asin_variat = self.df_asin_variat.filter("t_rank = 1").drop("updated_time", "t_rank")
            self.df_asin_variat = self.df_asin_variat.repartition(100)
            self.df_asin_detail = self.df_asin_detail.drop("variation_num", "parent_asin")
            df_asin_variat = self.df_asin_variat.filter("parent_asin is not null").select("asin", "parent_asin")
            df_parent_asin_agg = df_asin_variat.groupby(['parent_asin']).agg(F.count("asin").alias("variation_num"))
            df_parent_asin_agg = df_parent_asin_agg.repartition(100)
            self.df_asin_variat = self.df_asin_variat.join(df_parent_asin_agg, on=['parent_asin'], how='left')
            self.df_asin_detail = self.df_asin_detail.join(self.df_asin_variat, on=['asin'], how='left').cache()
            self.df_asin_detail.show(10, truncate=False)
            self.df_asin_variat.unpersist()
        else:
            pass

    # 处理asin的配送方式信息
    def handle_asin_buy_box_seller_type(self):
        if (self.date_type in ['month', 'month_week'] and self.date_info >= '2024-05') \
                or (self.date_type == '4_week' and self.date_info >= '2024-21'):
            self.df_asin_detail = self.df_asin_detail.withColumn(
                'seller_json',
                F.when(
                    F.length(F.trim(F.regexp_replace('seller_json', chr(10), ''))) == 0, F.lit('')
                       ).otherwise(F.regexp_replace('seller_json', chr(10), '')))
            self.df_asin_detail = self.df_asin_detail.drop("asin_buy_box_seller_type")
            self.df_asin_detail = self.df_asin_detail.withColumn("seller_json_parsed", self.u_parse_seller_info(self.df_asin_detail.seller_json))
            self.df_asin_detail = self.df_asin_detail.withColumn(
                "asin_buy_box_seller_type", self.df_asin_detail.seller_json_parsed.buy_box_seller_type).withColumn(
                "account_name", self.df_asin_detail.seller_json_parsed.account_name).withColumn(
                "account_id", self.df_asin_detail.seller_json_parsed.account_id).drop("seller_json_parsed")
        else:
            self.df_asin_detail = self.df_asin_detail.withColumn("account_id", F.lit(None)).\
                withColumn("seller_json", F.lit(None)).withColumn("account_name", F.lit(None))

    # 处理asin体积重量信息
    def handle_asin_basic_attribute(self):
        self.df_asin_detail = self.df_asin_detail.repartition(100)
        df_weight = self.df_asin_weight_and_volume.filter("asin_weight is not null").select("asin", "asin_weight", "asin_weight_str", "asin_weight_type")
        self.df_asin_detail = self.df_asin_detail.join(df_weight, on=['asin'], how='left')
        if self.site_name == 'us':
            df_volume = self.df_asin_weight_and_volume.filter("asin_volume_type is not null and asin_volume_type not in ('cm', 'none')").select("asin", "asin_volume", "asin_length", "asin_width", "asin_height")
        else:
            df_volume = self.df_asin_weight_and_volume.filter("asin_volume_type is not null and asin_volume_type not in ('inches', 'none')").select("asin", "asin_volume", "asin_length", "asin_width", "asin_height")
        self.df_asin_detail = self.df_asin_detail.join(df_volume, on=['asin'], how='left').drop("asin_volume_type")
        self.df_asin_weight_and_volume.unpersist()

    # 打包数量解析
    def get_package_quantity(self):
        self.df_asin_detail = self.df_asin_detail.repartition(100)
        self.df_user_package_num = self.df_user_package_num.repartition(100)
        self.df_asin_detail = self.df_asin_detail.withColumn("variat_attribute", F.concat_ws("&&&%", F.col("asin_color"), F.col("asin_style"), F.col("asin_size"), F.col("asin_material")))
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "title_parse", self.u_judge_package_quantity(self.df_asin_detail.asin_title)).withColumn(
            "variat_parse", self.u_judge_package_quantity(self.df_asin_detail.variat_attribute))
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "title_package_quantity", self.df_asin_detail.title_parse.getField("parse_package_quantity")).withColumn(
            "variat_package_quantity", self.df_asin_detail.variat_parse.getField("parse_package_quantity")).withColumn(
            "title_package_quantity_is_abnormal", self.df_asin_detail.title_parse.getField("is_package_quantity_abnormal")
        ).withColumn(
            "variat_package_quantity_is_abnormal", self.df_asin_detail.variat_parse.getField("is_package_quantity_abnormal")
        ).drop("title_parse", "variat_parse", "variat_attribute")
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "package_quantity", F.expr(""" CASE
                     WHEN title_package_quantity is null and variat_package_quantity is not null THEN variat_package_quantity
                     WHEN title_package_quantity is not null THEN title_package_quantity
                     ELSE 1 END""")).withColumn(
            "is_package_quantity_abnormal", F.expr("""CASE
                     WHEN title_package_quantity is null  and variat_package_quantity is not null THEN variat_package_quantity_is_abnormal
                     WHEN title_package_quantity is not null THEN title_package_quantity_is_abnormal
                     ELSE 2 END""")).drop("title_package_quantity", "variat_package_quantity", "title_package_quantity_is_abnormal", "variat_package_quantity_is_abnormal")
        self.df_asin_detail = self.df_asin_detail.join(self.df_user_package_num, on=['asin', 'asin_title'], how='left')
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "package_quantity", F.coalesce(F.col("user_package_num"), F.col("package_quantity"))).withColumn(
            "is_package_quantity_abnormal", F.coalesce(F.col("user_is_package_quantity_abnormal"), F.col("is_package_quantity_abnormal"))).\
            drop("user_package_num", "user_is_package_quantity_abnormal").persist(StorageLevel.MEMORY_ONLY)
        print("打包数量解析完毕")
        self.df_asin_detail.select("asin", "asin_title", "package_quantity", "is_package_quantity_abnormal").show(10, truncate=False)
        self.df_user_package_num.unpersist()

    # 补充asin的一级分类ID(通过node_id以及分类描述补充)
    def handle_asin_top_category(self):
        self.df_asin_detail = self.df_asin_detail.join(self.df_asin_new_cate, on=['node_id'], how='left')
        self.df_asin_detail = self.df_asin_detail.withColumn("category_id", F.col("node_id"))
        df_asin_with_category_desc = self.df_asin_detail.filter("category_first_id is null and asin_category_desc is not null").select("asin", "asin_category_desc")
        df_asin_with_category_desc = df_asin_with_category_desc.withColumn(
            "asin_category_split", F.split(F.col("asin_category_desc"), "›")
        ).withColumn("category_first_name", F.lower(F.col("asin_category_split").getItem(0))).drop("asin_category_split", "asin_category_desc")
        df_asin_with_category_desc = df_asin_with_category_desc.join(self.df_asin_category, on=['category_first_name'], how='inner')
        df_asin_with_category_desc = df_asin_with_category_desc.withColumnRenamed("category_first_id", "category_first_id_with_name").drop("category_first_name")
        self.df_asin_detail = self.df_asin_detail.join(df_asin_with_category_desc, on=['asin'], how='left')
        self.df_asin_detail = self.df_asin_detail.withColumn("category_first_id", F.coalesce(F.col("category_first_id"), F.col("category_first_id_with_name"))).drop("category_first_id_with_name")
        self.df_asin_new_cate.unpersist()
        self.df_asin_category.unpersist()

    # 处理asin上架时间信息
    def handle_asin_launch_time(self):
        # 根据asin,且launch_time为空的,去找keep_date补全launch_time
        self.df_asin_detail = self.df_asin_detail.repartition(100)
        self.df_asin_detail = self.df_asin_detail.join(self.df_asin_keep_date, on='asin', how='left')
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "crawl_asin_launch_time", F.when(
                (F.col("crawl_asin_launch_time") <= self.launch_time_upper_limit) &
                (F.col("crawl_asin_launch_time") >= self.launch_time_lower_limit),
                F.col("crawl_asin_launch_time")
            ).otherwise(F.lit(None))
        )
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "asin_launch_time", F.when((F.isnull("crawl_asin_launch_time")) | (F.col("crawl_asin_launch_time") == 'null'), F.col("populated_asin_launch_time")).otherwise(F.col("crawl_asin_launch_time")))
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "asin_launch_time", F.when(
                (F.col("asin_launch_time") <= self.launch_time_upper_limit) &
                (F.col("asin_launch_time") >= self.launch_time_lower_limit),
                F.col("asin_launch_time")
            ).otherwise(F.lit(None))
        )
        self.df_asin_keep_date.unpersist()

    # 处理asin各类型信息
    def handle_asin_flag(self):
        # 生成is_asin_new字段(是否asin新品标记)
        self.df_asin_detail = self.df_asin_detail.withColumn(
            "asin_is_new", self.udf_new_asin_flag(F.col('asin_launch_time'), F.lit(self.cal_date)))\
            .withColumn("asin_is_aadd", F.expr(f"""CASE WHEN INSTR(asin_img_type, '3') > 0 THEN 1 ELSE 0 END"""))\
            .withColumn("asin_is_video", F.expr(f"""CASE WHEN INSTR(asin_img_type, '2') > 0 THEN 1 ELSE 0 END"""))\
            .withColumn("asin_is_picture", F.expr(f"""CASE WHEN INSTR(asin_img_type, '1') > 0 THEN 1 ELSE 0 END"""))\
            .withColumn("asin_is_amazon", F.expr(f"""CASE WHEN asin_buy_box_seller_type == 1 THEN 1 ELSE 0 END"""))\
            .withColumn("asin_is_fba", F.expr(f"""CASE WHEN asin_buy_box_seller_type == 2 THEN 1 ELSE 0 END"""))\
            .withColumn("asin_is_fbm", F.expr(f"""CASE WHEN asin_buy_box_seller_type == 3 THEN 1 ELSE 0 END"""))\
            .withColumn("asin_is_other", F.expr(f"""CASE WHEN asin_buy_box_seller_type == 4 THEN 1 ELSE 0 END"""))\
            .withColumn("asin_is_brand", F.when((F.col("asin_brand_name").cast("string") != 'null') &
                                                (F.col("asin_brand_name").cast("string") != 'none'), 1).otherwise(F.lit(0)))\
            .withColumn("asin_quantity_variation_type", F.when((F.lower(F.col("asin_size").cast("string")) != 'null') &
                               (F.lower(F.col("asin_size").cast("string")) != 'none') &
                               (F.lower(F.col("asin_size").cast("string")).contains('quantity')), 1).otherwise(F.lit(0)))
        if self.site_name == 'us':
            pg_sql = f"""
            select asin_brand_name, 1 as asin_is_alarm from (select lower(trim(brand_name)) as asin_brand_name from brand_alert_erp where brand_name is not null) t group by asin_brand_name"""
            db_type = "postgresql_cluster"
            con_info = DBUtil.get_connection_info(db_type=db_type, site_name=self.site_name)
            if con_info is not None:
                df_alarm_brand = SparkUtil.read_jdbc_query(
                    session=self.spark, url=con_info['url'], pwd=con_info['pwd'], username=con_info['username'], query=pg_sql)
                df_alarm_brand = df_alarm_brand.repartition(100)
                self.df_asin_detail = self.df_asin_detail.join(df_alarm_brand, on=['asin_brand_name'], how='left')
        else:
            self.df_asin_detail = self.df_asin_detail.withColumn("asin_is_alarm", F.lit(0))
        self.df_asin_detail = self.df_asin_detail.na.fill({"asin_is_alarm": 0})
        # 处理是否内部asin信息
        self.df_asin_detail = self.df_asin_detail.join(self.df_self_asin, on=['asin'], how='left')
        self.df_asin_detail = self.df_asin_detail.na.fill({"asin_is_self": 0})
        self.df_self_asin.unpersist()

    # 处理影视标签字段
    def handle_asin_label(self):
        self.df_asin_detail = self.df_asin_detail.join(self.df_asin_label, on=['asin'], how='left')
        self.df_asin_label.unpersist()

    # 处理asin小图信息
    def handle_asin_img_info(self):
        if self.date_type in ['month', 'month_week'] and self.date_info >= '2024-06':
            img_schema = ArrayType(ArrayType(StringType()))
            df_asin_with_img = self.df_asin_detail.withColumn("img_list", F.from_json(F.col("img_list"), img_schema)).filter(F.size("img_list") > 0).\
                select("asin", F.explode("img_list").alias("img_attributes")).\
                select("asin", F.col("img_attributes")[1].alias("img_url"), F.col("img_attributes")[2].alias("img_order_by"),
                       F.col("img_attributes")[3].alias("data_type"))
            df_asin_with_img_agg = df_asin_with_img.groupby("asin").agg(
                F.to_json(F.collect_list(F.struct(F.col("img_url"), F.col("img_order_by"), F.col("data_type")))).alias("img_list")
            )
            self.df_asin_detail = self.df_asin_detail.drop("img_list")
            self.df_asin_detail = self.df_asin_detail.join(df_asin_with_img_agg, on=['asin'], how='left')
        else:
            pass

    # 处理parent_asin下最新变体信息
    def handle_latest_variation_info(self):
        if self.date_type in ['month', 'month_week'] and self.date_info >= '2024-06':
            max_report_sql = f"""
                SELECT MAX(date_info) as table_date_info FROM {self.doris_db}.{self.parent_asin_latest_detail_table}
            """
            df_date_info = DorisHelper.spark_import_with_sql(self.spark, query=max_report_sql)
            table_date_info = df_date_info.take(1)[0]['table_date_info']
            print("doris中记录最新的日期为:", table_date_info)
            if self.date_info >= table_date_info:
                df_asin_variat = self.df_asin_detail.filter("parent_asin is not null").select("parent_asin", "variat_list_change", "created_time")
                latest_asin_window = Window.partitionBy('parent_asin').orderBy(
                    F.desc_nulls_last("created_time")
                )
                df_asin_variat = df_asin_variat.withColumn("p_rank", F.row_number().over(window=latest_asin_window))
                df_asin_variat = df_asin_variat.filter("p_rank = 1").drop("p_rank")
                df_asin_variat =df_asin_variat.filter(F.size("variat_list_change") > 0). \
                    select("parent_asin", "created_time", F.explode("variat_list_change").alias("variant_attribute")). \
                    select("parent_asin", "created_time", F.col("variant_attribute")[0].alias("asin"),
                           F.col("variant_attribute")[1].alias("color"), F.col("variant_attribute")[3].alias("size"),
                           F.col("variant_attribute")[5].alias("style"))
                df_asin_variat_agg = df_asin_variat.groupby(['parent_asin']).agg(
                    F.first("created_time").alias("asin_crawl_date"),
                    F.concat_ws(',', F.collect_list("asin")).alias("variation_info"),
                    F.to_json(F.collect_list(F.struct(F.col("color"), F.col("size"), F.col("style")))).alias("attr_info")
                )
                print("导出父ASIN最新变体信息到doris:")
                df_doris = df_asin_variat_agg.select(
                    "parent_asin", F.lit(self.date_info).alias("date_info"), "asin_crawl_date", "variation_info", "attr_info")
                table_columns="parent_asin, date_info, asin_crawl_date, variation_info, attr_info"
                DorisHelper.spark_export_with_columns(df_save=df_doris, db_name=self.doris_db, table_name=self.parent_asin_latest_detail_table, table_columns=table_columns)
            else:
                print("不用导出旧数据到doris中")
                pass
        else:
            pass

    # 字段标准化及存储
    def df_save(self):
        df_save = self.df_asin_detail \
            .select("asin",
                    self.handle_string_num_value('asin_title').alias('asin_title'),
                    "asin_title_len",
                    F.when(F.col('asin_price') < 0, F.lit(None)).otherwise(F.col('asin_price')).alias('asin_price'),
                    "asin_rating", "asin_total_comments", "asin_buy_box_seller_type", "asin_page_inventory",
                    self.handle_string_num_value('asin_category_desc').alias('asin_category_desc'),
                    self.handle_string_num_value('asin_volume').alias('asin_volume'),
                    "asin_weight", "asin_color", "asin_size", "asin_style", "asin_is_sale",
                    F.lit(None).alias("asin_rank"),
                    self.handle_string_num_value('asin_launch_time').alias('asin_launch_time'),
                    "asin_is_new", "asin_img_num",
                    self.handle_string_num_value('asin_img_type').alias('asin_img_type'),
                    "asin_category_state",
                    self.handle_string_num_value('asin_material').alias('asin_material'),
                    self.handle_string_num_value('asin_brand_name').alias('asin_brand_name'),
                    F.lit(None).alias("bsr_cate_1_id"),
                    F.lit(None).alias("bsr_cate_current_id"),
                    self.handle_string_num_value('asin_activity_type').alias('asin_activity_type'),
                    "act_one_two_val", "act_three_four_val", "act_five_six_val", "act_eight_val",
                    F.lit(None).alias("qa_num"),
                    "one_star", "two_star", "three_star", "four_star", "five_star", "low_star",
                    self.handle_string_num_value('together_asin').alias('together_asin'),
                    self.handle_string_num_value('ac_name').alias('ac_name'),
                    self.handle_string_num_value('node_id').alias('node_id'),
                    "asin_data_type",
                    F.lit(None).alias('sp_num'),
                    self.handle_string_num_value('asin_describe').alias('asin_describe'),
                    "asin_is_amazon", "asin_is_fba", "asin_is_fbm", "asin_is_other", "asin_is_picture", "asin_is_video",
                    "asin_is_aadd",
                    self.handle_string_num_value('asin_img_url').alias('asin_img_url'),
                    "account_id", "account_name", "variation_num", "asin_is_brand", "asin_is_alarm", "created_time",
                    "updated_time", "parent_asin", "asin_is_movie",
                    self.handle_string_num_value('asin_label_list').alias('asin_label_list'),
                    self.handle_string_num_value('asin_weight_type').alias('asin_weight_type'),
                    self.handle_string_num_value('asin_weight_str').alias('asin_weight_str'),
                    F.lit(None).alias('asin_package_quantity'),
                    F.lit(None).alias('asin_pattern_name'),
                    "category_id", "category_first_id",
                    F.lit(None).alias("buy_data_bought_month"),
                    F.lit(None).alias("buy_data_bought_week"),
                    F.lit(None).alias("buy_data_viewed_month"),
                    F.lit(None).alias("buy_data_viewed_week"),
                    "crawl_asin_launch_time", "populated_asin_launch_time", "asin_follow_sellers", "asin_image_view",
                    "product_description", "asin_spider_num", "asin_lob_info", "is_contains_lob_info",
                    "package_quantity", "is_package_quantity_abnormal", "asin_quantity_variation_type", "seller_json",
                    "asin_bought_month", "asin_length", "asin_width", "asin_height", "asin_is_self",
                    "customer_reviews_json", "img_list", "variat_list",
                    F.lit(self.site_name).alias('site_name'),
                    F.lit(self.date_type).alias('date_type'),
                    F.lit(self.date_info).alias('date_info')).persist(StorageLevel.MEMORY_ONLY)
        print("dim_asin_detail处理完毕, 最后的数据量为: ", df_save.count())
        df_save = df_save.filter(F.length(F.col("asin")) <= 10)
        df_save = df_save.repartition(100)
        df_save.show(10, truncate=False)
        print(f"清除hdfs目录中:{self.hdfs_path}")
        HdfsUtils.delete_file_in_folder(self.hdfs_path)
        partition_by = ["site_name", "date_type", "date_info"]
        print(f"当前存储的表名为:{self.hive_tb},分区为{partition_by}")
        df_save.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=self.partitions_by)
        print("success")

    def run(self):
        # 读取数据
        self.read_data()
        # asin详情数据去重
        self.handle_df_duplicated()
        # 处理asin的亚马逊月销信息
        self.handle_asin_bought_month()
        # 处理asin的lob_info信息
        self.handle_asin_lob_info()
        # 处理asin的变体信息
        self.handle_asin_variation_attribute()
        # 处理asin的配送方式信息
        self.handle_asin_buy_box_seller_type()
        # 处理asin体积重量信息
        self.handle_asin_basic_attribute()
        # 打包数量解析
        self.get_package_quantity()
        # 获取node_id对应的分类信息(头部分类)
        self.handle_asin_top_category()
        # 处理asin上架时间信息
        self.handle_asin_launch_time()
        # 处理asin各类型信息
        self.handle_asin_flag()
        # 处理影视标签字段
        self.handle_asin_label()
        # 处理asin小图信息
        self.handle_asin_img_info()
        # 处理parent_asin下最新变体信息
        self.handle_latest_variation_info()
        # 字段标准化及存储
        self.df_save()


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter/day
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
    handle_obj = DimAsinDetail(site_name=site_name, date_type=date_type, date_info=date_info)
    handle_obj.run()