1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
"""
@Author : HuangJian
@Description : 关键词与Asin详情维表
@SourceTable :
①ods_asin_keep_date
②ods_asin_variat
③ods_asin_detail
④dwd_bs_category_asin
@SinkTable : dim_asin_detail
@CreateTime : 2022/11/14 15:56
@UpdateTime : 2022/11/14 15:56
"""
import os
import sys
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from utils.spark_util import SparkUtil
from pyspark.sql.types import *
from yswg_utils.common_udf import udf_handle_string_null_value as myUDF
from yswg_utils.common_df import get_node_first_id_df, get_first_id_from_category_desc_df
from utils.common_util import CommonUtil, DateTypes
from yswg_utils.common_udf import udf_new_asin_flag
from utils.hdfs_utils import HdfsUtils
from utils.db_util import DBUtil
from datetime import datetime
from pyspark.storagelevel import StorageLevel
from utils.DorisHelper import DorisHelper
from yswg_utils.common_udf import udf_get_package_quantity_with_flag as udf_get_package_quantity, udf_parse_seller_json, udf_parse_amazon_orders
class DimAsinDetail(object):
def __init__(self, site_name, date_type, date_info):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.hive_tb = f'dim_asin_detail'
self.partition_dict = {
"site_name": site_name,
"date_type": date_type,
"date_info": date_info
}
# 落表路径校验
self.hdfs_path = CommonUtil.build_hdfs_path(self.hive_tb, partition_dict=self.partition_dict)
# 创建spark_session对象相关
app_name = f"{self.__class__.__name__}:{site_name}:{date_info}"
self.spark = SparkUtil.get_spark_session(app_name)
self.complete_date_info_tuple = self.get_complete_week_tuple()
self.date_sql = self.date_sql_padding()
self.launch_time_upper_limit = self.get_effective_launch_time()
self.launch_time_lower_limit = "1995-01-01"
self.cal_date = CommonUtil.get_calDay_by_dateInfo(self.spark, self.date_type, self.date_info)
self.partitions_by = ['site_name', 'date_type', 'date_info']
self.partition_num = CommonUtil.reset_partitions(self.site_name, partitions_num=80)
# Doris相关参数
self.doris_db = "selection"
self.parent_asin_latest_detail_table = f"{self.site_name}_parent_asin_latest_detail"
# 自定义df相关
self.df_asin_keep_date = self.spark.sql(f"select 1+1;")
self.df_asin_detail = self.spark.sql(f"select 1+1;")
self.df_asin_label = self.spark.sql("select 1+1;")
self.df_asin_weight_and_volume = self.spark.sql("select 1+1;")
self.df_asin_new_cate = self.spark.sql("select 1+1;")
self.df_user_package_num = self.spark.sql(f"select 1+1;")
self.df_self_asin = self.spark.sql(f"select 1+1;")
self.df_asin_category = self.spark.sql(f"select 1+1;")
self.df_asin_variat = self.spark.sql(f"select 1+1;")
# 调用公用udf函数
self.udf_new_asin_flag = F.udf(udf_new_asin_flag, IntegerType())
self.handle_string_num_value = F.udf(myUDF, StringType())
seller_schema = StructType([
StructField("buy_box_seller_type", IntegerType(), True),
StructField("account_name", StringType(), True),
StructField("account_id", StringType(), True)
])
self.u_parse_seller_info = self.spark.udf.register('u_parse_seller_info', udf_parse_seller_json, seller_schema)
package_schema = StructType([
StructField("parse_package_quantity", IntegerType(), True),
StructField("is_package_quantity_abnormal", IntegerType(), True),
])
self.u_judge_package_quantity = self.spark.udf.register('u_judge_package_quantity', udf_get_package_quantity, package_schema)
self.u_parse_amazon_orders = F.udf(udf_parse_amazon_orders, IntegerType())
def get_complete_week_tuple(self):
complete_date_info_tuple = None
df_date = self.spark.sql(f"select * from dim_date_20_to_30 ;")
df = df_date.toPandas()
if self.date_type == 'week':
complete_date_info_tuple = f"('{self.date_info}')"
elif self.date_type == '4_week':
print(self.date_info)
df_loc = df.loc[(df.year_week == f"{self.date_info}") & (df.week_day == 1)]
cur_id = list(df_loc.id)[0]
df_loc = df.loc[df.id == int(cur_id)]
week1 = list(df_loc.year_week)[0]
df_loc = df.loc[df.id == int(cur_id) - 7]
week2 = list(df_loc.year_week)[0]
df_loc = df.loc[df.id == int(cur_id) - 14]
week3 = list(df_loc.year_week)[0]
df_loc = df.loc[df.id == int(cur_id) - 21]
week4 = list(df_loc.year_week)[0]
complete_date_info_tuple = (week1, week2, week3, week4)
elif self.date_type in ['month', 'month_week']:
df_loc = df.loc[(df.year_month == f"{self.date_info}") & (df.week_day == 1)]
complete_date_info_tuple = tuple(df_loc.year_week)
print("self.complete_date_info_tuple:", complete_date_info_tuple)
return complete_date_info_tuple
def date_sql_padding(self):
if 'us' == self.site_name:
if self.date_type == DateTypes.month_week.name:
date_sql = f" and date_type='{self.date_type}' and date_info = '{self.date_info}'"
elif self.date_type == DateTypes.month.name and self.date_info >= '2023-10':
date_sql = f" and date_type='{self.date_type}' and date_info = '{self.date_info}'"
else:
date_sql = f"and date_type='week' and date_info in {self.complete_date_info_tuple}"
elif self.site_name in ['uk', 'de']:
if self.date_type in [DateTypes.month.name, DateTypes.month_week.name] and self.date_info >= '2024-05':
date_sql = f" and date_type='{self.date_type}' and date_info='{self.date_info}'"
else:
date_sql = f" and date_type='week' and date_info in {self.complete_date_info_tuple}"
print(date_sql)
return date_sql
def get_effective_launch_time(self):
year_upper_limit = datetime.now().year + 1
launch_time_upper_limit = str(year_upper_limit) + "-01-01"
return launch_time_upper_limit
# 读取数据
def read_data(self):
# 获取dim层的dim_asin_launchtime_info
print("1. 获取dim层的dim_asin_launchtime_info填充的上架日期")
sql = f"""select asin, asin_launch_time as populated_asin_launch_time from dim_asin_launchtime_info where site_name='{self.site_name}' and asin_launch_time is not null"""
print(sql)
self.df_asin_keep_date = self.spark.sql(sqlQuery=sql)
self.df_asin_keep_date = self.df_asin_keep_date.repartition(100).persist(StorageLevel.DISK_ONLY)
self.df_asin_keep_date.show(10, truncate=False)
print("2. 获取ods_asin_detail")
sql = f"""
select asin, img_url as asin_img_url, lower(title) as asin_title, title_len as asin_title_len,
price as asin_price, rating as asin_rating, total_comments as asin_total_comments,
page_inventory as asin_page_inventory, category as asin_category_desc,
launch_time as crawl_asin_launch_time, img_num as asin_img_num, img_type as asin_img_type,
category_state as asin_category_state, material as asin_material, lower(brand) as asin_brand_name,
activity_type as asin_activity_type, one_two_val as act_one_two_val, three_four_val as act_three_four_val,
five_six_val as act_five_six_val, eight_val as act_eight_val, one_star, two_star, three_star, four_star,
five_star, low_star, together_asin, ac_name, node_id, data_type as asin_data_type, variat_list,
`describe` as asin_describe, follow_sellers as asin_follow_sellers, product_description,
image_view as asin_image_view, spider_int as asin_spider_num, buy_sales, lob_asin_json as asin_lob_info,
REGEXP_REPLACE(seller_json, chr(10), '') as seller_json, buy_box_seller_type as asin_buy_box_seller_type, customer_reviews_json, parent_asin, img_list,
created_at as created_time, updated_at as updated_time, updated_at as dt, variat_num as variation_num
from ods_asin_detail where site_name='{self.site_name}' {self.date_sql}"""
print(sql)
self.df_asin_detail = self.spark.sql(sqlQuery=sql)
self.df_asin_detail = self.df_asin_detail.repartition(100).persist(StorageLevel.DISK_ONLY)
self.df_asin_detail.show(10, truncate=False)
print("3. 读取asin体积重量相关信息")
sql = f"""
SELECT asin, asin_volume, asin_volume_type, asin_length_sorted as asin_length,
asin_width_sorted as asin_width, asin_height_sorted as asin_height,
asin_weight, asin_weight_str, asin_weight_type FROM dim_asin_stable_info WHERE site_name='{self.site_name}'"""
print(sql)
self.df_asin_weight_and_volume = self.spark.sql(sqlQuery=sql)
self.df_asin_weight_and_volume = self.df_asin_weight_and_volume.repartition(100).persist(StorageLevel.DISK_ONLY)
self.df_asin_weight_and_volume.show(10, truncate=False)
print("4. 获取用户修改打包数量信息")
pg_con_info = DBUtil.get_connection_info("postgresql", "us")
sql = f"""
WITH ranked_edit_logs AS (SELECT edit_key_id, lower(val_related_info) AS val_related_info, val_after,
ROW_NUMBER() OVER (PARTITION BY edit_key_id ORDER BY create_time DESC) AS rn FROM sys_edit_log
WHERE module = '流量选品' AND filed = 'package_quantity' and site_name='{self.site_name}')
SELECT edit_key_id AS asin, val_related_info AS asin_title, cast(val_after as int) AS user_package_num,
0 AS user_is_package_quantity_abnormal FROM ranked_edit_logs WHERE rn = 1"""
print(sql)
if pg_con_info is not None:
df_user_package_num = SparkUtil.read_jdbc_query(session=self.spark, url=pg_con_info['url'], pwd=pg_con_info['pwd'], username=pg_con_info['username'], query=sql)
self.df_user_package_num = F.broadcast(df_user_package_num)
self.df_user_package_num.show(10, truncate=False)
print("5.读取ods_self_asin,获得公司内部asin信息")
sql = f"""select asin, 1 as asin_is_self from ods_self_asin where site_name='{self.site_name}' group by asin"""
print("sql:" + sql)
df_self_asin = self.spark.sql(sqlQuery=sql)
self.df_self_asin = F.broadcast(df_self_asin)
self.df_self_asin.show(10, truncate=False)
print("6. node_id对应的头部分类信息")
self.df_asin_new_cate = get_node_first_id_df(self.site_name, self.spark)
self.df_asin_new_cate = self.df_asin_new_cate.filter('node_id is not null').persist(StorageLevel.DISK_ONLY)
self.df_asin_new_cate.show(10, truncate=False)
print("7. 获取asin的标签信息")
sql = f"""
select asin, asin_label_list, asin_label_type as asin_is_movie from dim_asin_label
where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'
"""
print("sql:" + sql)
self.df_asin_label = self.spark.sql(sqlQuery=sql)
self.df_asin_label = self.df_asin_label.repartition(100).persist(StorageLevel.DISK_ONLY)
self.df_asin_label.show(10, truncate=False)
print("8. 获取分类id和分类名称的对应关系")
self.df_asin_category = get_first_id_from_category_desc_df(self.site_name, self.spark)
self.df_asin_category = self.df_asin_category.withColumn(
"category_first_name", F.lower("category_first_name")
).repartition(100).persist(StorageLevel.DISK_ONLY)
self.df_asin_category.show(10, truncate=False)
if self.date_type in ['month', 'month_week'] and self.date_info < '2024-06':
sql = f"""
SELECT asin, parent_asin, color as asin_color, `size` as asin_size, style as asin_style,
CASE WHEN state = 1 THEN 1 WHEN state = 2 THEN 0 ElSE NULL END as asin_is_sale, updated_time
FROM dim_asin_variation_info where site_name='{self.site_name}' and created_date >='2024-05-21'
"""
print("sql:" + sql)
self.df_asin_variat = self.spark.sql(sqlQuery=sql)
self.df_asin_variat = self.df_asin_variat.repartition(100).persist(StorageLevel.DISK_ONLY)
self.df_asin_variat.show(10, truncate=False)
else:
pass
# asin详情数据去重
def handle_df_duplicated(self):
# 12月数据标记多个data_type用于区分改asin由什么场景抓取
df_asin_datatype_handle = self.df_asin_detail.select("asin", "asin_data_type")
df_asin_datatype_handle_agg = df_asin_datatype_handle.groupby(["asin"]).agg(
F.concat_ws(",", F.collect_set("asin_data_type")).alias("asin_data_type"))
# asin窗口内排序,按照dt降序
window = Window.partitionBy(['asin']).orderBy(self.df_asin_detail.dt.desc_nulls_last())
self.df_asin_detail = self.df_asin_detail.withColumn("dt_rank", F.row_number().over(window=window))
# 取按asin分组的组内第一条,就是去重后的最新asin_detail
self.df_asin_detail = self.df_asin_detail.filter("dt_rank=1").drop("dt", "dt_rank", "asin_data_type")
self.df_asin_detail = self.df_asin_detail.repartition(100)
df_asin_datatype_handle_agg = df_asin_datatype_handle_agg.repartition(100)
self.df_asin_detail = self.df_asin_detail.join(df_asin_datatype_handle_agg, on=['asin'], how='left').persist(StorageLevel.MEMORY_ONLY)
print("asin详情去重后的数量为: ", self.df_asin_detail.count())
if self.date_type == 'month' and self.date_info == '2024-03':
sql = f"""
select asin from dwd_asin_measure where site_name='{self.site_name}' and date_type='{self.date_type}'
and date_info='{self.date_info}' group by asin"""
df_effective_asin = self.spark.sql(sql)
self.df_asin_detail = self.df_asin_detail.join(df_effective_asin, on=['asin'], how='inner')
# 处理asin的亚马逊月销信息
def handle_asin_bought_month(self):
self.df_asin_detail = self.df_asin_detail.withColumn("asin_bought_month", self.u_parse_amazon_orders(self.df_asin_detail.buy_sales))
# 处理asin的lob_info信息
def handle_asin_lob_info(self):
self.df_asin_detail = self.df_asin_detail.withColumn(
"is_contains_lob_info", F.when(F.col("asin_lob_info").isNotNull(), F.lit(1)).otherwise(F.lit(0)))
df_asin_detail_parsed = self.df_asin_detail.withColumn(
"parse_asin_lob", F.when(F.col("is_contains_lob_info") == 1, F.from_json("asin_lob_info", "array<struct<lob_asin:string>>")))
df_asin_detail_result = df_asin_detail_parsed.withColumn("asin_lob_info", F.expr("transform(parse_asin_lob, x -> x.lob_asin)"))
self.df_asin_detail = df_asin_detail_result.withColumn(
"asin_lob_info", F.regexp_replace(F.concat_ws(",", "asin_lob_info"), "[{}]", "")).drop("parse_asin_lob")
# 处理asin的变体信息
def handle_asin_variation_attribute(self):
if self.date_type in ['month', 'month_week'] and self.date_info >= '2024-06':
print("执行新版的变体信息整合")
variat_schema = ArrayType(ArrayType(StringType()))
self.df_asin_detail = self.df_asin_detail.withColumn("variat_list_change", F.from_json(F.col("variat_list"), variat_schema))
df_asin_with_variation = self.df_asin_detail.filter(F.size("variat_list_change") > 0).\
select("asin", F.explode("variat_list_change").alias("variant_attribute")).\
select("asin", F.col("variant_attribute")[0].alias("son_asin"),
F.col("variant_attribute")[1].alias("asin_color"),
F.col("variant_attribute")[3].alias("asin_size"),
F.col("variant_attribute")[4].alias("asin_is_sale"),
F.col("variant_attribute")[5].alias("asin_style"))
df_asin_with_variation = df_asin_with_variation.filter(F.col("asin") == F.col("son_asin")).drop("son_asin", "variant_attribute")
df_asin_with_variation = df_asin_with_variation.withColumn(
"asin_is_sale",
F.when(F.col("asin_is_sale")==1, F.lit(1)).when(F.col("asin_is_sale")==2, F.lit(0)).otherwise(F.lit(None))
)
self.df_asin_detail = self.df_asin_detail.join(
df_asin_with_variation, on=['asin'], how='left'
)
elif self.date_type in ['month', 'month_week'] and self.date_info < '2024-06':
print("执行历史数据的变体信息整合")
window = Window.partitionBy(self.df_asin_variat.asin).orderBy(
self.df_asin_variat.updated_time.desc_nulls_last())
self.df_asin_variat = self.df_asin_variat.withColumn("t_rank", F.row_number().over(window=window))
self.df_asin_variat = self.df_asin_variat.filter("t_rank = 1").drop("updated_time", "t_rank")
self.df_asin_variat = self.df_asin_variat.repartition(100)
self.df_asin_detail = self.df_asin_detail.drop("variation_num", "parent_asin")
df_asin_variat = self.df_asin_variat.filter("parent_asin is not null").select("asin", "parent_asin")
df_parent_asin_agg = df_asin_variat.groupby(['parent_asin']).agg(F.count("asin").alias("variation_num"))
df_parent_asin_agg = df_parent_asin_agg.repartition(100)
self.df_asin_variat = self.df_asin_variat.join(df_parent_asin_agg, on=['parent_asin'], how='left')
self.df_asin_detail = self.df_asin_detail.join(self.df_asin_variat, on=['asin'], how='left').cache()
self.df_asin_detail.show(10, truncate=False)
self.df_asin_variat.unpersist()
else:
pass
# 处理asin的配送方式信息
def handle_asin_buy_box_seller_type(self):
if (self.date_type in ['month', 'month_week'] and self.date_info >= '2024-05') \
or (self.date_type == '4_week' and self.date_info >= '2024-21'):
self.df_asin_detail = self.df_asin_detail.withColumn(
'seller_json',
F.when(
F.length(F.trim(F.regexp_replace('seller_json', chr(10), ''))) == 0, F.lit('')
).otherwise(F.regexp_replace('seller_json', chr(10), '')))
self.df_asin_detail = self.df_asin_detail.drop("asin_buy_box_seller_type")
self.df_asin_detail = self.df_asin_detail.withColumn("seller_json_parsed", self.u_parse_seller_info(self.df_asin_detail.seller_json))
self.df_asin_detail = self.df_asin_detail.withColumn(
"asin_buy_box_seller_type", self.df_asin_detail.seller_json_parsed.buy_box_seller_type).withColumn(
"account_name", self.df_asin_detail.seller_json_parsed.account_name).withColumn(
"account_id", self.df_asin_detail.seller_json_parsed.account_id).drop("seller_json_parsed")
else:
self.df_asin_detail = self.df_asin_detail.withColumn("account_id", F.lit(None)).\
withColumn("seller_json", F.lit(None)).withColumn("account_name", F.lit(None))
# 处理asin体积重量信息
def handle_asin_basic_attribute(self):
self.df_asin_detail = self.df_asin_detail.repartition(100)
df_weight = self.df_asin_weight_and_volume.filter("asin_weight is not null").select("asin", "asin_weight", "asin_weight_str", "asin_weight_type")
self.df_asin_detail = self.df_asin_detail.join(df_weight, on=['asin'], how='left')
if self.site_name == 'us':
df_volume = self.df_asin_weight_and_volume.filter("asin_volume_type is not null and asin_volume_type not in ('cm', 'none')").select("asin", "asin_volume", "asin_length", "asin_width", "asin_height")
else:
df_volume = self.df_asin_weight_and_volume.filter("asin_volume_type is not null and asin_volume_type not in ('inches', 'none')").select("asin", "asin_volume", "asin_length", "asin_width", "asin_height")
self.df_asin_detail = self.df_asin_detail.join(df_volume, on=['asin'], how='left').drop("asin_volume_type")
self.df_asin_weight_and_volume.unpersist()
# 打包数量解析
def get_package_quantity(self):
self.df_asin_detail = self.df_asin_detail.repartition(100)
self.df_user_package_num = self.df_user_package_num.repartition(100)
self.df_asin_detail = self.df_asin_detail.withColumn("variat_attribute", F.concat_ws("&&&%", F.col("asin_color"), F.col("asin_style"), F.col("asin_size"), F.col("asin_material")))
self.df_asin_detail = self.df_asin_detail.withColumn(
"title_parse", self.u_judge_package_quantity(self.df_asin_detail.asin_title)).withColumn(
"variat_parse", self.u_judge_package_quantity(self.df_asin_detail.variat_attribute))
self.df_asin_detail = self.df_asin_detail.withColumn(
"title_package_quantity", self.df_asin_detail.title_parse.getField("parse_package_quantity")).withColumn(
"variat_package_quantity", self.df_asin_detail.variat_parse.getField("parse_package_quantity")).withColumn(
"title_package_quantity_is_abnormal", self.df_asin_detail.title_parse.getField("is_package_quantity_abnormal")
).withColumn(
"variat_package_quantity_is_abnormal", self.df_asin_detail.variat_parse.getField("is_package_quantity_abnormal")
).drop("title_parse", "variat_parse", "variat_attribute")
self.df_asin_detail = self.df_asin_detail.withColumn(
"package_quantity", F.expr(""" CASE
WHEN title_package_quantity is null and variat_package_quantity is not null THEN variat_package_quantity
WHEN title_package_quantity is not null THEN title_package_quantity
ELSE 1 END""")).withColumn(
"is_package_quantity_abnormal", F.expr("""CASE
WHEN title_package_quantity is null and variat_package_quantity is not null THEN variat_package_quantity_is_abnormal
WHEN title_package_quantity is not null THEN title_package_quantity_is_abnormal
ELSE 2 END""")).drop("title_package_quantity", "variat_package_quantity", "title_package_quantity_is_abnormal", "variat_package_quantity_is_abnormal")
self.df_asin_detail = self.df_asin_detail.join(self.df_user_package_num, on=['asin', 'asin_title'], how='left')
self.df_asin_detail = self.df_asin_detail.withColumn(
"package_quantity", F.coalesce(F.col("user_package_num"), F.col("package_quantity"))).withColumn(
"is_package_quantity_abnormal", F.coalesce(F.col("user_is_package_quantity_abnormal"), F.col("is_package_quantity_abnormal"))).\
drop("user_package_num", "user_is_package_quantity_abnormal").persist(StorageLevel.MEMORY_ONLY)
print("打包数量解析完毕")
self.df_asin_detail.select("asin", "asin_title", "package_quantity", "is_package_quantity_abnormal").show(10, truncate=False)
self.df_user_package_num.unpersist()
# 补充asin的一级分类ID(通过node_id以及分类描述补充)
def handle_asin_top_category(self):
self.df_asin_detail = self.df_asin_detail.join(self.df_asin_new_cate, on=['node_id'], how='left')
self.df_asin_detail = self.df_asin_detail.withColumn("category_id", F.col("node_id"))
df_asin_with_category_desc = self.df_asin_detail.filter("category_first_id is null and asin_category_desc is not null").select("asin", "asin_category_desc")
df_asin_with_category_desc = df_asin_with_category_desc.withColumn(
"asin_category_split", F.split(F.col("asin_category_desc"), "›")
).withColumn("category_first_name", F.lower(F.col("asin_category_split").getItem(0))).drop("asin_category_split", "asin_category_desc")
df_asin_with_category_desc = df_asin_with_category_desc.join(self.df_asin_category, on=['category_first_name'], how='inner')
df_asin_with_category_desc = df_asin_with_category_desc.withColumnRenamed("category_first_id", "category_first_id_with_name").drop("category_first_name")
self.df_asin_detail = self.df_asin_detail.join(df_asin_with_category_desc, on=['asin'], how='left')
self.df_asin_detail = self.df_asin_detail.withColumn("category_first_id", F.coalesce(F.col("category_first_id"), F.col("category_first_id_with_name"))).drop("category_first_id_with_name")
self.df_asin_new_cate.unpersist()
self.df_asin_category.unpersist()
# 处理asin上架时间信息
def handle_asin_launch_time(self):
# 根据asin,且launch_time为空的,去找keep_date补全launch_time
self.df_asin_detail = self.df_asin_detail.repartition(100)
self.df_asin_detail = self.df_asin_detail.join(self.df_asin_keep_date, on='asin', how='left')
self.df_asin_detail = self.df_asin_detail.withColumn(
"crawl_asin_launch_time", F.when(
(F.col("crawl_asin_launch_time") <= self.launch_time_upper_limit) &
(F.col("crawl_asin_launch_time") >= self.launch_time_lower_limit),
F.col("crawl_asin_launch_time")
).otherwise(F.lit(None))
)
self.df_asin_detail = self.df_asin_detail.withColumn(
"asin_launch_time", F.when((F.isnull("crawl_asin_launch_time")) | (F.col("crawl_asin_launch_time") == 'null'), F.col("populated_asin_launch_time")).otherwise(F.col("crawl_asin_launch_time")))
self.df_asin_detail = self.df_asin_detail.withColumn(
"asin_launch_time", F.when(
(F.col("asin_launch_time") <= self.launch_time_upper_limit) &
(F.col("asin_launch_time") >= self.launch_time_lower_limit),
F.col("asin_launch_time")
).otherwise(F.lit(None))
)
self.df_asin_keep_date.unpersist()
# 处理asin各类型信息
def handle_asin_flag(self):
# 生成is_asin_new字段(是否asin新品标记)
self.df_asin_detail = self.df_asin_detail.withColumn(
"asin_is_new", self.udf_new_asin_flag(F.col('asin_launch_time'), F.lit(self.cal_date)))\
.withColumn("asin_is_aadd", F.expr(f"""CASE WHEN INSTR(asin_img_type, '3') > 0 THEN 1 ELSE 0 END"""))\
.withColumn("asin_is_video", F.expr(f"""CASE WHEN INSTR(asin_img_type, '2') > 0 THEN 1 ELSE 0 END"""))\
.withColumn("asin_is_picture", F.expr(f"""CASE WHEN INSTR(asin_img_type, '1') > 0 THEN 1 ELSE 0 END"""))\
.withColumn("asin_is_amazon", F.expr(f"""CASE WHEN asin_buy_box_seller_type == 1 THEN 1 ELSE 0 END"""))\
.withColumn("asin_is_fba", F.expr(f"""CASE WHEN asin_buy_box_seller_type == 2 THEN 1 ELSE 0 END"""))\
.withColumn("asin_is_fbm", F.expr(f"""CASE WHEN asin_buy_box_seller_type == 3 THEN 1 ELSE 0 END"""))\
.withColumn("asin_is_other", F.expr(f"""CASE WHEN asin_buy_box_seller_type == 4 THEN 1 ELSE 0 END"""))\
.withColumn("asin_is_brand", F.when((F.col("asin_brand_name").cast("string") != 'null') &
(F.col("asin_brand_name").cast("string") != 'none'), 1).otherwise(F.lit(0)))\
.withColumn("asin_quantity_variation_type", F.when((F.lower(F.col("asin_size").cast("string")) != 'null') &
(F.lower(F.col("asin_size").cast("string")) != 'none') &
(F.lower(F.col("asin_size").cast("string")).contains('quantity')), 1).otherwise(F.lit(0)))
if self.site_name == 'us':
pg_sql = f"""
select asin_brand_name, 1 as asin_is_alarm from (select lower(trim(brand_name)) as asin_brand_name from brand_alert_erp where brand_name is not null) t group by asin_brand_name"""
db_type = "postgresql_cluster"
con_info = DBUtil.get_connection_info(db_type=db_type, site_name=self.site_name)
if con_info is not None:
df_alarm_brand = SparkUtil.read_jdbc_query(
session=self.spark, url=con_info['url'], pwd=con_info['pwd'], username=con_info['username'], query=pg_sql)
df_alarm_brand = df_alarm_brand.repartition(100)
self.df_asin_detail = self.df_asin_detail.join(df_alarm_brand, on=['asin_brand_name'], how='left')
else:
self.df_asin_detail = self.df_asin_detail.withColumn("asin_is_alarm", F.lit(0))
self.df_asin_detail = self.df_asin_detail.na.fill({"asin_is_alarm": 0})
# 处理是否内部asin信息
self.df_asin_detail = self.df_asin_detail.join(self.df_self_asin, on=['asin'], how='left')
self.df_asin_detail = self.df_asin_detail.na.fill({"asin_is_self": 0})
self.df_self_asin.unpersist()
# 处理影视标签字段
def handle_asin_label(self):
self.df_asin_detail = self.df_asin_detail.join(self.df_asin_label, on=['asin'], how='left')
self.df_asin_label.unpersist()
# 处理asin小图信息
def handle_asin_img_info(self):
if self.date_type in ['month', 'month_week'] and self.date_info >= '2024-06':
img_schema = ArrayType(ArrayType(StringType()))
df_asin_with_img = self.df_asin_detail.withColumn("img_list", F.from_json(F.col("img_list"), img_schema)).filter(F.size("img_list") > 0).\
select("asin", F.explode("img_list").alias("img_attributes")).\
select("asin", F.col("img_attributes")[1].alias("img_url"), F.col("img_attributes")[2].alias("img_order_by"),
F.col("img_attributes")[3].alias("data_type"))
df_asin_with_img_agg = df_asin_with_img.groupby("asin").agg(
F.to_json(F.collect_list(F.struct(F.col("img_url"), F.col("img_order_by"), F.col("data_type")))).alias("img_list")
)
self.df_asin_detail = self.df_asin_detail.drop("img_list")
self.df_asin_detail = self.df_asin_detail.join(df_asin_with_img_agg, on=['asin'], how='left')
else:
pass
# 处理parent_asin下最新变体信息
def handle_latest_variation_info(self):
if self.date_type in ['month', 'month_week'] and self.date_info >= '2024-06':
max_report_sql = f"""
SELECT MAX(date_info) as table_date_info FROM {self.doris_db}.{self.parent_asin_latest_detail_table}
"""
df_date_info = DorisHelper.spark_import_with_sql(self.spark, query=max_report_sql)
table_date_info = df_date_info.take(1)[0]['table_date_info']
print("doris中记录最新的日期为:", table_date_info)
if self.date_info >= table_date_info:
df_asin_variat = self.df_asin_detail.filter("parent_asin is not null").select("parent_asin", "variat_list_change", "created_time")
latest_asin_window = Window.partitionBy('parent_asin').orderBy(
F.desc_nulls_last("created_time")
)
df_asin_variat = df_asin_variat.withColumn("p_rank", F.row_number().over(window=latest_asin_window))
df_asin_variat = df_asin_variat.filter("p_rank = 1").drop("p_rank")
df_asin_variat =df_asin_variat.filter(F.size("variat_list_change") > 0). \
select("parent_asin", "created_time", F.explode("variat_list_change").alias("variant_attribute")). \
select("parent_asin", "created_time", F.col("variant_attribute")[0].alias("asin"),
F.col("variant_attribute")[1].alias("color"), F.col("variant_attribute")[3].alias("size"),
F.col("variant_attribute")[5].alias("style"))
df_asin_variat_agg = df_asin_variat.groupby(['parent_asin']).agg(
F.first("created_time").alias("asin_crawl_date"),
F.concat_ws(',', F.collect_list("asin")).alias("variation_info"),
F.to_json(F.collect_list(F.struct(F.col("color"), F.col("size"), F.col("style")))).alias("attr_info")
)
print("导出父ASIN最新变体信息到doris:")
df_doris = df_asin_variat_agg.select(
"parent_asin", F.lit(self.date_info).alias("date_info"), "asin_crawl_date", "variation_info", "attr_info")
table_columns="parent_asin, date_info, asin_crawl_date, variation_info, attr_info"
DorisHelper.spark_export_with_columns(df_save=df_doris, db_name=self.doris_db, table_name=self.parent_asin_latest_detail_table, table_columns=table_columns)
else:
print("不用导出旧数据到doris中")
pass
else:
pass
# 字段标准化及存储
def df_save(self):
df_save = self.df_asin_detail \
.select("asin",
self.handle_string_num_value('asin_title').alias('asin_title'),
"asin_title_len",
F.when(F.col('asin_price') < 0, F.lit(None)).otherwise(F.col('asin_price')).alias('asin_price'),
"asin_rating", "asin_total_comments", "asin_buy_box_seller_type", "asin_page_inventory",
self.handle_string_num_value('asin_category_desc').alias('asin_category_desc'),
self.handle_string_num_value('asin_volume').alias('asin_volume'),
"asin_weight", "asin_color", "asin_size", "asin_style", "asin_is_sale",
F.lit(None).alias("asin_rank"),
self.handle_string_num_value('asin_launch_time').alias('asin_launch_time'),
"asin_is_new", "asin_img_num",
self.handle_string_num_value('asin_img_type').alias('asin_img_type'),
"asin_category_state",
self.handle_string_num_value('asin_material').alias('asin_material'),
self.handle_string_num_value('asin_brand_name').alias('asin_brand_name'),
F.lit(None).alias("bsr_cate_1_id"),
F.lit(None).alias("bsr_cate_current_id"),
self.handle_string_num_value('asin_activity_type').alias('asin_activity_type'),
"act_one_two_val", "act_three_four_val", "act_five_six_val", "act_eight_val",
F.lit(None).alias("qa_num"),
"one_star", "two_star", "three_star", "four_star", "five_star", "low_star",
self.handle_string_num_value('together_asin').alias('together_asin'),
self.handle_string_num_value('ac_name').alias('ac_name'),
self.handle_string_num_value('node_id').alias('node_id'),
"asin_data_type",
F.lit(None).alias('sp_num'),
self.handle_string_num_value('asin_describe').alias('asin_describe'),
"asin_is_amazon", "asin_is_fba", "asin_is_fbm", "asin_is_other", "asin_is_picture", "asin_is_video",
"asin_is_aadd",
self.handle_string_num_value('asin_img_url').alias('asin_img_url'),
"account_id", "account_name", "variation_num", "asin_is_brand", "asin_is_alarm", "created_time",
"updated_time", "parent_asin", "asin_is_movie",
self.handle_string_num_value('asin_label_list').alias('asin_label_list'),
self.handle_string_num_value('asin_weight_type').alias('asin_weight_type'),
self.handle_string_num_value('asin_weight_str').alias('asin_weight_str'),
F.lit(None).alias('asin_package_quantity'),
F.lit(None).alias('asin_pattern_name'),
"category_id", "category_first_id",
F.lit(None).alias("buy_data_bought_month"),
F.lit(None).alias("buy_data_bought_week"),
F.lit(None).alias("buy_data_viewed_month"),
F.lit(None).alias("buy_data_viewed_week"),
"crawl_asin_launch_time", "populated_asin_launch_time", "asin_follow_sellers", "asin_image_view",
"product_description", "asin_spider_num", "asin_lob_info", "is_contains_lob_info",
"package_quantity", "is_package_quantity_abnormal", "asin_quantity_variation_type", "seller_json",
"asin_bought_month", "asin_length", "asin_width", "asin_height", "asin_is_self",
"customer_reviews_json", "img_list", "variat_list",
F.lit(self.site_name).alias('site_name'),
F.lit(self.date_type).alias('date_type'),
F.lit(self.date_info).alias('date_info')).persist(StorageLevel.MEMORY_ONLY)
print("dim_asin_detail处理完毕, 最后的数据量为: ", df_save.count())
df_save = df_save.filter(F.length(F.col("asin")) <= 10)
df_save = df_save.repartition(100)
df_save.show(10, truncate=False)
print(f"清除hdfs目录中:{self.hdfs_path}")
HdfsUtils.delete_file_in_folder(self.hdfs_path)
partition_by = ["site_name", "date_type", "date_info"]
print(f"当前存储的表名为:{self.hive_tb},分区为{partition_by}")
df_save.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=self.partitions_by)
print("success")
def run(self):
# 读取数据
self.read_data()
# asin详情数据去重
self.handle_df_duplicated()
# 处理asin的亚马逊月销信息
self.handle_asin_bought_month()
# 处理asin的lob_info信息
self.handle_asin_lob_info()
# 处理asin的变体信息
self.handle_asin_variation_attribute()
# 处理asin的配送方式信息
self.handle_asin_buy_box_seller_type()
# 处理asin体积重量信息
self.handle_asin_basic_attribute()
# 打包数量解析
self.get_package_quantity()
# 获取node_id对应的分类信息(头部分类)
self.handle_asin_top_category()
# 处理asin上架时间信息
self.handle_asin_launch_time()
# 处理asin各类型信息
self.handle_asin_flag()
# 处理影视标签字段
self.handle_asin_label()
# 处理asin小图信息
self.handle_asin_img_info()
# 处理parent_asin下最新变体信息
self.handle_latest_variation_info()
# 字段标准化及存储
self.df_save()
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter/day
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
handle_obj = DimAsinDetail(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()