1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
import copy
import json
import os
import re
import ast
import sys
import threading
import time
import logging
import traceback
import zlib
import pandas as pd
import numpy as np
import redis
from datetime import datetime
sys.path.append("/opt/module/spark-3.2.0-bin-hadoop3.2/demo/py_demo/")
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from sqlalchemy import create_engine
from utils.templates import Templates
# from ..utils.templates import Templates
from utils.templates_mysql import TemplatesMysql
# from ..utils.templates_mysql import TemplatesMysql
from pyspark.sql.types import IntegerType
from pyspark.sql import functions as F
from pyspark.sql.types import *
from psycopg2.errors import NumericValueOutOfRange
from sqlalchemy.exc import OperationalError, DataError, PendingRollbackError
from utils.mysql_db import sql_connect, sql_update_many, sql_delete, get_country_engine
from pyspark.sql import SparkSession
class SpiderAsinDetail(Templates):
def __init__(self, site_name='us', date_type="day", date_info='2022-10-01', consumer_type='lastest', topic_name="us_asin_detail", batch_size_history=100000):
super(SpiderAsinDetail, self).__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.consumer_type = consumer_type # 消费实时还是消费历史
# 通过date_type 获取 topic
self.get_topic_name()
# 通过date_type 获取 schema
self.init_schema()
# self.topic_name = topic_name # 主题名字
self.batch_size_history = batch_size_history
self.db_save = f'spider_asin_detail'
self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name},{self.date_type}, {self.date_info}")
# self.schema = self.init_schema()
# 连接mysql
self.engine = get_country_engine(self.site_name)
self.pg14_engine = self.get_14pg_country_engine(self.site_name)
sql_connect(self.site_name)
logging.basicConfig(format='%(asctime)s %(name)s %(levelname)s %(message)s',
level=logging.INFO)
self.df_type_dict = {
"asin_vartion_list": '',
"img_list": '',
"asin_detail": '',
}
def judge_spider_asin_detail_is_finished(self):
while True:
try:
sql = f'SELECT * from workflow_progress WHERE page="ASIN详情" and site_name="{self.site_name}" and date_type="{self.date_type}" and date_info="{self.date_info}" and status_val=3'
df = pd.read_sql(sql, con=self.engine)
if df.shape[0] == 1:
print(f"ASIN详情状态为3, 抓取完成并终止程序, site_name:{self.site_name}, date_type:{self.date_type}, date_info:{self.date_info}")
self.spark.stop()
quit() # 退出程序
break
except Exception as e:
print(e, traceback.format_exc())
time.sleep(10)
self.engine = self.get_connection()
def init_schema(self):
if self.date_type == "month":
self.schema = StructType([
StructField("asin", StringType(), True),
StructField("week", StringType(), True),
StructField("month", StringType(), True),
StructField("asin_vartion_list", StringType(), True),
StructField("img_list", StringType(), True),
StructField("title", StringType(), True),
StructField("img_url", StringType(), True),
StructField("rating", StringType(), True),
StructField("total_comments", StringType(), True),
StructField("price", FloatType(), True),
StructField("rank", StringType(), True),
StructField("category", StringType(), True),
StructField("launch_time", StringType(), True),
StructField("volume", StringType(), True),
StructField("weight", StringType(), True),
StructField("page_inventory", IntegerType(), True),
StructField("buy_box_seller_type", IntegerType(), True),
StructField("title_len", IntegerType(), True),
StructField("img_num", IntegerType(), True),
StructField("img_type", StringType(), True),
StructField("activity_type", StringType(), True),
StructField("one_two_val", StringType(), True),
StructField("three_four_val", StringType(), True),
StructField("eight_val", StringType(), True),
StructField("qa_num", IntegerType(), True),
StructField("five_star", IntegerType(), True),
StructField("four_star", IntegerType(), True),
StructField("three_star", IntegerType(), True),
StructField("two_star", IntegerType(), True),
StructField("one_star", IntegerType(), True),
StructField("low_star", IntegerType(), True),
StructField("together_asin", StringType(), True),
StructField("brand", StringType(), True),
StructField("ac_name", StringType(), True),
StructField("material", StringType(), True),
StructField("node_id", StringType(), True),
StructField("data_type", IntegerType(), True),
StructField("sp_num", StringType(), True),
StructField("describe", StringType(), True),
StructField("date_info", StringType(), True),
StructField("weight_str", StringType(), True),
StructField("package_quantity", StringType(), True),
StructField("pattern_name", StringType(), True),
StructField("seller_id", StringType(), True),
StructField("variat_num", IntegerType(), True),
StructField("site_name", StringType(), True),
StructField("best_sellers_rank", StringType(), True),
StructField("best_sellers_herf", StringType(), True),
StructField("account_url", StringType(), True),
StructField("account_name", StringType(), True),
StructField("parentAsin", StringType(), True),
StructField("asinUpdateTime", StringType(), True),
StructField("spider_int", StringType(), True),
StructField("follow_sellers", StringType(), True),
])
if self.site_name == "us":
self.detail_col = [
'asin', 'img_url', 'title', 'title_len', 'price', 'rating', 'total_comments', 'buy_box_seller_type',
'page_inventory', 'category', 'volume', 'weight', 'rank', 'launch_time', 'img_num',
'img_type', 'activity_type', 'one_two_val', 'three_four_val', 'eight_val', 'qa_num',
'one_star', 'two_star', 'three_star', 'four_star', 'low_star', 'together_asin', 'brand', 'ac_name',
'material', 'node_id', 'data_type', 'sp_num', 'asinUpdateTime',
'describe', 'date_info', 'five_star', 'weight_str', 'package_quantity', 'pattern_name', 'spider_int',
'follow_sellers'
]
else:
self.detail_col = [
'asin', 'img_url', 'title', 'title_len', 'price', 'rating', 'total_comments', 'buy_box_seller_type',
'page_inventory', 'category', 'volume', 'weight', 'rank', 'launch_time', 'img_num',
'img_type', 'activity_type', 'one_two_val', 'three_four_val', 'five_six_val', 'eight_val', 'qa_num',
'one_star', 'two_star', 'three_star', 'four_star', 'low_star', 'together_asin', 'brand', 'ac_name',
'material', 'node_id', 'data_type', 'sp_num', 'asinUpdateTime',
'describe', 'date_info', 'five_star', 'weight_str', 'package_quantity', 'pattern_name', 'spider_int',
'follow_sellers'
]
elif self.date_type == 'week':
self.schema = StructType([
StructField("asin", StringType(), True),
StructField("img_url", StringType(), True),
StructField("week", StringType(), True),
StructField("month", StringType(), True),
StructField("asin_vartion_list", StringType(), True),
StructField("img_list", StringType(), True),
StructField("title", StringType(), True),
StructField("title_len", IntegerType(), True),
StructField("price", FloatType(), True),
StructField("rating", StringType(), True),
StructField("total_comments", StringType(), True),
StructField("buy_box_seller_type", IntegerType(), True),
StructField("page_inventory", IntegerType(), True),
StructField("category", StringType(), True),
StructField("volume", StringType(), True),
StructField("weight", StringType(), True),
StructField("rank", StringType(), True),
StructField("launch_time", StringType(), True),
StructField("category_state", IntegerType(), True),
StructField("img_num", IntegerType(), True),
StructField("img_type", StringType(), True),
StructField("activity_type", StringType(), True),
StructField("one_two_val", StringType(), True),
StructField("three_four_val", StringType(), True),
StructField("five_six_val", StringType(), True),
StructField("eight_val", StringType(), True),
StructField("qa_num", IntegerType(), True),
StructField("one_star", IntegerType(), True),
StructField("two_star", IntegerType(), True),
StructField("three_star", IntegerType(), True),
StructField("four_star", IntegerType(), True),
StructField("low_star", IntegerType(), True),
StructField("together_asin", StringType(), True),
StructField("brand", StringType(), True),
StructField("ac_name", StringType(), True),
StructField("material", StringType(), True),
StructField("node_id", StringType(), True),
StructField("data_type", IntegerType(), True),
StructField("sp_num", StringType(), True),
StructField("describe", StringType(), True),
StructField("date_info", StringType(), True),
StructField("five_star", IntegerType(), True),
StructField("weight_str", StringType(), True),
StructField("package_quantity", StringType(), True),
StructField("pattern_name", StringType(), True),
StructField("asinUpdateTime", StringType(), True),
StructField("follow_sellers", StringType(), True),
])
self.detail_col = [
'asin', 'img_url', 'title', 'title_len', 'price', 'rating', 'total_comments', 'buy_box_seller_type',
'page_inventory', 'category', 'volume', 'weight', 'rank', 'launch_time', 'category_state', 'img_num',
'img_type', 'activity_type', 'one_two_val', 'three_four_val', 'five_six_val', 'eight_val', 'qa_num',
'one_star', 'two_star', 'three_star', 'four_star', 'low_star', 'together_asin', 'brand', 'ac_name',
'material', 'node_id', 'data_type', 'sp_num','describe', 'date_info', 'five_star', 'weight_str',
'package_quantity', 'pattern_name', 'asinUpdateTime', 'follow_sellers'
]
elif self.date_type == "day":
self.schema = StructType([
StructField("asin_vartion_list", StringType(), True),
StructField("img_list", StringType(), True),
StructField("asin", StringType(), True),
StructField("img_url", StringType(), True),
StructField("title", StringType(), True),
StructField("title_len", IntegerType(), True),
StructField("price", StringType(), True),
StructField("rating", StringType(), True),
StructField("total_comments", StringType(), True),
StructField("buy_box_seller_type", IntegerType(), True),
StructField("page_inventory", IntegerType(), True),
StructField("category", StringType(), True),
StructField("volume", StringType(), True),
StructField("weight", StringType(), True),
StructField("rank", StringType(), True),
StructField("launch_time", StringType(), True),
StructField("video_url", StringType(), True),
StructField("add_url", StringType(), True),
StructField("material", StringType(), True),
StructField("img_num", IntegerType(), True),
StructField("img_type", StringType(), True),
StructField("qa_num", StringType(), True),
StructField("brand", StringType(), True),
StructField("ac_name", StringType(), True),
StructField("node_id", StringType(), True),
StructField("sp_num", StringType(), True),
StructField("mpn", StringType(), True),
StructField("online_time", StringType(), True),
StructField("describe", StringType(), True),
StructField("one_star", StringType(), True),
StructField("two_star", StringType(), True),
StructField("three_star", StringType(), True),
StructField("four_star", StringType(), True),
StructField("five_star", StringType(), True),
StructField("low_star", IntegerType(), True),
StructField("asin_type", StringType(), True),
StructField("is_coupon", StringType(), True),
StructField("search_category", StringType(), True),
StructField("weight_str", StringType(), True),
StructField("date_info", StringType(), True),
StructField("site", StringType(), True),
StructField("account_name", StringType(), True),
StructField("other_seller_name", StringType(), True),
StructField("bsr_date_info", StringType(), True),
StructField("account_id", StringType(), True),
StructField("package_quantity", StringType(), True),
StructField("pattern_name", StringType(), True),
StructField("together_asin", StringType(), True),
StructField("activity_type", StringType(), True),
StructField("one_two_val", StringType(), True),
StructField("three_four_val", StringType(), True),
StructField("five_six_val", StringType(), True),
StructField("eight_val", StringType(), True),
StructField("product_description", StringType(), True),
StructField("asinUpdateTime", StringType(), True),
StructField("follow_sellers", StringType(), True),
])
self.detail_col = [
'asin', 'img_url', 'title', 'title_len', 'price', 'rating', 'total_comments', 'buy_box_seller_type',
'page_inventory', 'category', 'volume', 'weight', 'rank', 'launch_time', 'video_url', 'add_url',
'material', 'img_num', 'img_type', 'qa_num', 'brand', 'ac_name', 'node_id', 'sp_num', 'mpn',
'online_time', 'describe', 'one_star', 'two_star', 'three_star', 'four_star', 'five_star',
'low_star', 'asin_type', 'is_coupon', 'search_category', 'weight_str', 'date_info', 'site',
'account_name', 'other_seller_name', 'bsr_date_info', 'account_id', 'package_quantity',
'pattern_name', 'together_asin', 'activity_type', 'one_two_val', 'three_four_val', 'five_six_val',
'eight_val', 'product_description', 'asinUpdateTime', 'follow_sellers'
]
def get_topic_name(self):
# 需要注意表名问题
if self.date_type == "month":
# 月表主题
self.topic_name = f"{self.site_name}_asin_detail_month"
elif self.date_type == "week":
# 周表主题
self.topic_name = f"{self.site_name}_asin_detail"
elif self.date_type == "day":
# 天表主题
self.topic_name = f"{self.site_name}_self_asin_detail"
else:
print("date_type传参有问题,中断程序")
quit()
def get_14pg_country_engine(self, site_name="us"):
h14_pg_us = {
"user": "postgres",
"password": "fazAqRRVV9vDmwDNRNb593ht5TxYVrfTyHJSJ3BS",
# "host": "61.145.136.61",
"host": "192.168.10.223",
"port": "5432",
# "port": 54328,
"database": "selection",
}
if site_name == 'us' or site_name == 'mx' or site_name == 'ca':
h14_pg_us["database"] = f"selection"
db_ = 'postgresql+psycopg2://{}:{}@{}:{}/{}'.format(*h14_pg_us.values())
# elif site_name == "keepa":
# db_ = 'mysql+pymysql://{}:{}@{}:{}/{}?charset={}'.format(*h6_pg_us.values())
else:
h14_pg_us["database"] = f"selection_{site_name}"
db_ = 'postgresql+psycopg2://{}:{}@{}:{}/{}'.format(*h14_pg_us.values())
engine = create_engine(db_, encoding='utf-8') # , pool_recycle=3600
return engine
def field_length_dispose(self, df):
df.price = df.price.apply(lambda x: round(x, 2) if x is not None else None) # 截取字符
df.ac_name = df.ac_name.apply(lambda x: str(x)[:100] if x is not None else None) # 截取字符
df.brand = df.brand.apply(lambda x: str(x)[:100] if x is not None else None) # 截取字符
df.title = df.title.apply(lambda x: str(x)[:400] if x is not None else None) # 截取字符
df.category = df.category.apply(lambda x: str(x)[:400] if x is not None else None) # 截取字符
df.img_url = df.img_url.apply(lambda x: str(x)[:400] if x is not None else None) # 截取字符
df.material = df.material.apply(lambda x: str(x)[:150] if x is not None else None) # 截取字符
df.volume = df.volume.apply(lambda x: str(x)[:50] if x is not None else None) # 截取字符
if self.date_type in ["month", "week"]:
df.package_quantity = df.package_quantity.apply(lambda x: str(x)[:50] if x is not None else None) # 截取字符
df.pattern_name = df.pattern_name.apply(lambda x: str(x)[:50] if x is not None else None) # 截取字符
df.weight_str = df.weight_str.apply(lambda x: str(x)[:250] if x is not None else None) # 截取字符
return df
def img_save(self, df):
logging.info("img处理")
# 获取对应表字段
if "site" not in df.keys():
df["site"] = self.site_name
logging.info("site is not null")
df["site"] = df['site'].fillna(self.site_name)
# df.drop_duplicates(subset=["asin", "site"], inplace=True)
for name, group in df.groupby(['site']):
asins = list(set(group["asin"]))
logging.info(f"img处理 站点{name[0]} ")
if name[0] not in ['us', 'de', 'uk', 'it', 'es', 'fr', 'mx', 'ca']:
logging.info("非8大站点跳过")
continue
if name[0] != "us":
chunk_size = 1000
split_list = [asins[i:i + chunk_size] for i in range(0, len(asins), chunk_size)]
with self.pg14_engine.begin() as conn:
# Printing the split chunks
for chunk in split_list:
if len(chunk) == 1:
sql_del = f"delete from {name[0]}_asin_image where asin in ('{tuple(chunk)[0]}');"
else:
sql_del = f"delete from {name[0]}_asin_image where asin in {tuple(chunk)};"
logging.info(f"sql: {sql_del[0:100]}")
conn.execute(sql_del)
logging.info(f"清理{name[0]}_asin_image 表中数据 {chunk[0:10]} 清理{name[0]}_asin_image 表中数据")
del group["site"]
logging.info(f"数量为:{group.shape}")
try:
group.to_sql(name=f'{name[0]}_asin_image', con=self.pg14_engine, if_exists='append', index=False)
logging.info(f"入库{name[0]}_asin_image成功 {group.head(10)}")
except DataError as e:
logging.info(f"img入库字段超过长度 {e}")
group.to_csv(f"/root/{name[0]}_asin_image_{time.time()}.csv")
def variat_save(self, df):
df.drop_duplicates(subset=["asin", "parent_asin"], inplace=True)
asins = list(set(df["parent_asin"]))
logging.info(f"{df}")
table = f'{self.site_name}_variat'
if asins:
chunk_size = 1000
split_list = [asins[i:i + chunk_size] for i in range(0, len(asins), chunk_size)]
for chunk in split_list:
if len(chunk) == 1:
sql_del = f"delete from `{table}` where parent_asin in ('{tuple(chunk)[0]}');"
else:
sql_del = f"delete from `{table}` where parent_asin in {tuple(chunk)};"
logging.info(f"sql: {sql_del[0:100]}")
for i in range(5):
row_id = sql_delete(sql_del)
if row_id == -1:
logging.info(f"删除失败 {table} 表中数据 {chunk}")
continue
else:
logging.info(f"清理 {table} 表中数据 {chunk[0:10]} 清理 {table} 表中数据")
break
df['color'] = df['color'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
df['size'] = df['size'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
df['style'] = df['style'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
df['column_2'] = df['column_2'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
logging.info(f"数量为:{df.shape}")
for i in range(3):
try:
df.to_sql(name=f'{table}', con=self.engine, if_exists='append', index=False)
logging.info(f"入库 {table} 成功 {df.head(10)}")
break
except PendingRollbackError as e:
logging.info(f"链接错误 重试{e}")
continue
def handle_data_df(self, df=pd.DataFrame, df_type='asin_vartion_list', columns=[]):
# 根据不同表类型解析df对象
df[df_type] = df[df_type].apply(json.loads)
# 对对应数据进行处理,将df_type内列表展开
exploded_list = df[df_type].explode()
# 展开后转换为一个大列表
df_type_list = [i for i in exploded_list.tolist() if not isinstance(i, float)]
df_type_list = [i for i in df_type_list if isinstance(i, list)]
if df_type_list:
df = pd.DataFrame(df_type_list, columns=columns)
return df
else:
return None
def save_data_asin_detail(self, df):
df.drop_duplicates(['asin'], inplace=True)
# 这个要看 self.date_type是否有其他类型 并且数据中有这个字段 可能有坑
for name, group in df.groupby([self.date_type]):
logging.info(f"需要处理的 data_info {name[0]}")
# 获取年
# y = str(time.localtime().tm_year)
y = self.date_info.split("-")[0]
data_time = y + "_" + name[0]
asins = list(group["asin"])
# 详情入库表名
detail_table_data_info = f"{self.site_name}_asin_detail_month_{data_time}" if self.date_type == "month" else f"{self.site_name}_asin_detail_{data_time}"
logging.info(f"表名:{detail_table_data_info}")
if asins:
if self.date_type == "month":
logging.info("month data not delete")
else:
chunk_size = 5000
split_list = [asins[i:i + chunk_size] for i in range(0, len(asins), chunk_size)]
with self.pg14_engine.begin() as conn:
for chunk in split_list:
if len(chunk) == 1:
sql_del = f"delete from {detail_table_data_info} where asin= '{chunk[0]}';"
else:
sql_del = f"delete from {detail_table_data_info} where asin in {tuple(chunk)};"
for i in range(5):
try:
start_time = time.time()
conn.execute(sql_del)
end_time = time.time()
logging.info(f"清理 {detail_table_data_info} 表中 {chunk[0:10]} 数据, 耗时:{end_time-start_time}s")
break
except OperationalError as e:
logging.info(f"数据库链接 失败{e}")
time.sleep(3)
continue
# 测试报错代码
logging.info(f"detail keys {group.keys()}")
logging.info(f"{self.detail_col}")
logging.info(f"{group.shape} {detail_table_data_info}")
group = copy.deepcopy(group)
group = group[self.detail_col]
group.rename(columns={"asinUpdateTime": "created_time"}, inplace=True)
group = self.field_length_dispose(group)
logging.info(f"{group.keys()}")
logging.info(f"{group.shape}")
# df.rename(columns={"asinUpdateTime": "created_at"}, inplace=True)
try:
group.to_sql(name=f'{detail_table_data_info}', con=self.pg14_engine, if_exists='append', index=False)
logging.info(f"入库 {detail_table_data_info} 成功 {group.head(10)}")
except DataError as e:
logging.info(f"详情入库字段超过长度:{e}")
group.to_csv(f"/root/{detail_table_data_info}_{time.time()}.csv")
def save_data_common(self, df, df_type):
if df_type == 'asin_vartion_list':
logging.info(f"asin_vartion_list 处理")
if df.shape[0]:
vartion_columns = ['asin', 'color', 'parent_asin', 'size', 'state', 'style', 'column_2']
vartion_df = self.handle_data_df(df, df_type='asin_vartion_list', columns=vartion_columns)
if vartion_df.shape[0]:
self.variat_save(df=vartion_df)
elif df_type == 'img_list':
logging.info(f"img_list 处理")
if df.shape[0]:
img_columns = ['asin', 'img_url', 'img_order_by', 'data_type']
img_df = self.handle_data_df(df, df_type='img_list', columns=img_columns)
if img_df.shape[0]:
self.img_save(df=img_df)
elif df_type == 'asin_detail':
logging.info(f"asin_detail 处理")
self.save_data_asin_detail(df=df)
def save_data(self, df):
threads = []
for df_type in self.df_type_dict.keys():
thread = threading.Thread(target=self.save_data_common, args=(df, df_type))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
logging.info("线程处理完成")
def data_save(self, df):
if not isinstance(df, pd.DataFrame):
logging.info("df 不是一个 DataFrame 对象")
df = df.toPandas()
if df.shape[0]:
logging.info(f"{df.keys()}")
logging.info(f"----------------------------")
if self.date_type == "day":
logging.info(f"天数据处理")
img_columns = ['asin', 'img_url', 'img_order_by', 'data_type']
img_df = self.handle_data_df(df, df_type='asin_vartion_list', columns=img_columns)
if img_df.shape[0]:
self.img_save(df=img_df)
vartion_columns = ['asin', 'color', 'parent_asin', 'size', 'state', 'style', 'column_2']
vartion_df = self.handle_data_df(df, df_type='asin_vartion_list', columns=vartion_columns)
if vartion_df.shape[0]:
self.variat_save(df=vartion_df)
df = df[self.detail_col]
df['site'] = df['site'].fillna(self.site_name)
df.drop_duplicates(['asin', 'site'], inplace=True)
now_date = time.strftime("%Y-%m-%d", time.gmtime(time.time()))
detail_table_data_info = f"{self.site_name}_self_asin_detail"
for name, group in df.groupby(['site']):
asins = list(group["asin"])
# 详情入库表名
if asins:
if len(asins) == 1:
sql_del = f"delete from `{detail_table_data_info}` where `asin`= '{asins[0]}' and `site`='{name[0]}' and created_at>='{now_date}';"
else:
sql_del = f"delete from `{detail_table_data_info}` where `asin` in {tuple(asins)} and `site`='{name[0]}' and created_at>='{now_date}';"
logging.info(f"{name}, {sql_del}")
sql_delete(sql_del)
logging.info(f"清理 {detail_table_data_info} 表中 {asins[0:10]} 数据")
df.to_sql(name=f'{detail_table_data_info}', con=self.engine, if_exists='append', index=False)
logging.info(f"入库 {detail_table_data_info} 成功 {df.head(10)}")
else:
# 过滤date_info不符合的
# new_df = df[df[self.date_type] == self.date_info.split("-")[-1]] # self.date_type week
# logging.info(f"过滤{self.date_type} 不为: {self.date_info.split('-')[-1]} \n 过滤后 {new_df.shape}")
new_df = df
if new_df.shape[0]:
self.save_data(new_df)
else:
logging.info(f"过滤后 无数据处理{new_df}")
else:
logging.info(f"{df.shape}")
def handle_kafka_history(self, kafka_df):
self.data_save(kafka_df)
def handle_kafka_stream(self, kafka_df, epoch_id):
self.data_save(kafka_df)
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter/day
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
consumer_type = sys.argv[4] # 参数4:实时 lastest 历史 history
# us day date_info 2023-11-07
handle_obj = SpiderAsinDetail(site_name=site_name, date_type=date_type, date_info=date_info, consumer_type=consumer_type, batch_size_history=10000)
handle_obj.run_kafka()
# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_self_asin_detail.py uk week 2023-46 lastest > amazon_week_uk.log 2>&1 &
# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 2g --executor-cores 4 --num-executors 2 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_self_asin_detail.py us month 2023-12 lastest
# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_self_asin_detail.py uk week 2023-46 history
# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_self_asin_detail.py us day 2023-11-16 lastest
# for i in `ps -ef|grep "spider_asin_detail.py" |awk '{print $2}' `; do kill -9 $i ; done;
# 历史
# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 20g --executor-cores 4 --num-executors 2 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_asin_detail.py de week 2023-46 history > amazon_week_history_de.log 2>&1 &
# 实时
# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 2g --executor-cores 4 --num-executors 2 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_asin_detail.py de week 2023-48 lastest > amazon_week_de.log 2>&1 &