spider_self_asin_detail.py 33.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
import copy
import json
import os
import re
import ast
import sys
import threading
import time
import logging
import traceback
import zlib
import pandas as pd
import numpy as np
import redis
from datetime import datetime
sys.path.append("/opt/module/spark-3.2.0-bin-hadoop3.2/demo/py_demo/")
sys.path.append(os.path.dirname(sys.path[0]))  # 上级目录
from sqlalchemy import create_engine
from utils.templates import Templates
# from ..utils.templates import Templates
from utils.templates_mysql import TemplatesMysql
# from ..utils.templates_mysql import TemplatesMysql
from pyspark.sql.types import IntegerType
from pyspark.sql import functions as F
from pyspark.sql.types import *
from psycopg2.errors import NumericValueOutOfRange
from sqlalchemy.exc import OperationalError, DataError, PendingRollbackError
from utils.mysql_db import sql_connect, sql_update_many, sql_delete, get_country_engine
from pyspark.sql import SparkSession


class SpiderAsinDetail(Templates):

    def __init__(self, site_name='us', date_type="day", date_info='2022-10-01', consumer_type='lastest', topic_name="us_asin_detail", batch_size_history=100000):
        super(SpiderAsinDetail, self).__init__()
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.consumer_type = consumer_type  # 消费实时还是消费历史
        # 通过date_type 获取 topic
        self.get_topic_name()
        # 通过date_type 获取 schema
        self.init_schema()
        # self.topic_name = topic_name  # 主题名字
        self.batch_size_history = batch_size_history
        self.db_save = f'spider_asin_detail'
        self.spark = self.create_spark_object(app_name=f"{self.db_save}: {self.site_name},{self.date_type}, {self.date_info}")
        # self.schema = self.init_schema()

        # 连接mysql
        self.engine = get_country_engine(self.site_name)
        self.pg14_engine = self.get_14pg_country_engine(self.site_name)
        sql_connect(self.site_name)
        logging.basicConfig(format='%(asctime)s %(name)s %(levelname)s %(message)s',
                            level=logging.INFO)
        self.df_type_dict = {
            "asin_vartion_list": '',
            "img_list": '',
            "asin_detail": '',
        }

    def judge_spider_asin_detail_is_finished(self):
        while True:
            try:
                sql = f'SELECT * from workflow_progress WHERE page="ASIN详情" and site_name="{self.site_name}" and date_type="{self.date_type}" and date_info="{self.date_info}" and status_val=3'
                df = pd.read_sql(sql, con=self.engine)
                if df.shape[0] == 1:
                    print(f"ASIN详情状态为3, 抓取完成并终止程序, site_name:{self.site_name}, date_type:{self.date_type}, date_info:{self.date_info}")
                    self.spark.stop()
                    quit()  # 退出程序
                break
            except Exception as e:
                print(e, traceback.format_exc())
                time.sleep(10)
                self.engine = self.get_connection()

    def init_schema(self):
        if self.date_type == "month":
            self.schema = StructType([
                StructField("asin", StringType(), True),
                StructField("week", StringType(), True),
                StructField("month", StringType(), True),
                StructField("asin_vartion_list", StringType(), True),
                StructField("img_list", StringType(), True),
                StructField("title", StringType(), True),
                StructField("img_url", StringType(), True),
                StructField("rating", StringType(), True),
                StructField("total_comments", StringType(), True),
                StructField("price", FloatType(), True),
                StructField("rank", StringType(), True),
                StructField("category", StringType(), True),
                StructField("launch_time", StringType(), True),
                StructField("volume", StringType(), True),
                StructField("weight", StringType(), True),
                StructField("page_inventory", IntegerType(), True),
                StructField("buy_box_seller_type", IntegerType(), True),
                StructField("title_len", IntegerType(), True),
                StructField("img_num", IntegerType(), True),
                StructField("img_type", StringType(), True),
                StructField("activity_type", StringType(), True),
                StructField("one_two_val", StringType(), True),
                StructField("three_four_val", StringType(), True),
                StructField("eight_val", StringType(), True),
                StructField("qa_num", IntegerType(), True),
                StructField("five_star", IntegerType(), True),
                StructField("four_star", IntegerType(), True),
                StructField("three_star", IntegerType(), True),
                StructField("two_star", IntegerType(), True),
                StructField("one_star", IntegerType(), True),
                StructField("low_star", IntegerType(), True),
                StructField("together_asin", StringType(), True),
                StructField("brand", StringType(), True),
                StructField("ac_name", StringType(), True),
                StructField("material", StringType(), True),
                StructField("node_id", StringType(), True),
                StructField("data_type", IntegerType(), True),
                StructField("sp_num", StringType(), True),
                StructField("describe", StringType(), True),
                StructField("date_info", StringType(), True),
                StructField("weight_str", StringType(), True),
                StructField("package_quantity", StringType(), True),
                StructField("pattern_name", StringType(), True),
                StructField("seller_id", StringType(), True),
                StructField("variat_num", IntegerType(), True),
                StructField("site_name", StringType(), True),
                StructField("best_sellers_rank", StringType(), True),
                StructField("best_sellers_herf", StringType(), True),
                StructField("account_url", StringType(), True),
                StructField("account_name", StringType(), True),
                StructField("parentAsin", StringType(), True),
                StructField("asinUpdateTime", StringType(), True),
                StructField("spider_int", StringType(), True),
                StructField("follow_sellers", StringType(), True),
            ])
            if self.site_name == "us":
                self.detail_col = [
                    'asin', 'img_url', 'title', 'title_len', 'price', 'rating', 'total_comments', 'buy_box_seller_type',
                    'page_inventory', 'category', 'volume', 'weight', 'rank', 'launch_time', 'img_num',
                    'img_type', 'activity_type', 'one_two_val', 'three_four_val', 'eight_val', 'qa_num',
                    'one_star', 'two_star', 'three_star', 'four_star', 'low_star', 'together_asin', 'brand', 'ac_name',
                    'material', 'node_id', 'data_type', 'sp_num', 'asinUpdateTime',
                    'describe', 'date_info', 'five_star', 'weight_str', 'package_quantity', 'pattern_name', 'spider_int',
                    'follow_sellers'
                ]
            else:
                self.detail_col = [
                    'asin', 'img_url', 'title', 'title_len', 'price', 'rating', 'total_comments', 'buy_box_seller_type',
                    'page_inventory', 'category', 'volume', 'weight', 'rank', 'launch_time', 'img_num',
                    'img_type', 'activity_type', 'one_two_val', 'three_four_val', 'five_six_val', 'eight_val', 'qa_num',
                    'one_star', 'two_star', 'three_star', 'four_star', 'low_star', 'together_asin', 'brand', 'ac_name',
                    'material', 'node_id', 'data_type', 'sp_num', 'asinUpdateTime',
                    'describe', 'date_info', 'five_star', 'weight_str', 'package_quantity', 'pattern_name', 'spider_int',
                    'follow_sellers'
                ]
        elif self.date_type == 'week':
            self.schema = StructType([
                StructField("asin", StringType(), True),
                StructField("img_url", StringType(), True),
                StructField("week", StringType(), True),
                StructField("month", StringType(), True),
                StructField("asin_vartion_list", StringType(), True),
                StructField("img_list", StringType(), True),
                StructField("title", StringType(), True),
                StructField("title_len", IntegerType(), True),
                StructField("price", FloatType(), True),
                StructField("rating", StringType(), True),

                StructField("total_comments", StringType(), True),
                StructField("buy_box_seller_type", IntegerType(), True),
                StructField("page_inventory", IntegerType(), True),
                StructField("category", StringType(), True),
                StructField("volume", StringType(), True),
                StructField("weight", StringType(), True),
                StructField("rank", StringType(), True),
                StructField("launch_time", StringType(), True),

                StructField("category_state", IntegerType(), True),
                StructField("img_num", IntegerType(), True),
                StructField("img_type", StringType(), True),
                StructField("activity_type", StringType(), True),
                StructField("one_two_val", StringType(), True),
                StructField("three_four_val", StringType(), True),
                StructField("five_six_val", StringType(), True),
                StructField("eight_val", StringType(), True),

                StructField("qa_num", IntegerType(), True),
                StructField("one_star", IntegerType(), True),
                StructField("two_star", IntegerType(), True),
                StructField("three_star", IntegerType(), True),
                StructField("four_star", IntegerType(), True),
                StructField("low_star", IntegerType(), True),
                StructField("together_asin", StringType(), True),
                StructField("brand", StringType(), True),

                StructField("ac_name", StringType(), True),
                StructField("material", StringType(), True),
                StructField("node_id", StringType(), True),
                StructField("data_type", IntegerType(), True),
                StructField("sp_num", StringType(), True),
                StructField("describe", StringType(), True),
                StructField("date_info", StringType(), True),
                StructField("five_star", IntegerType(), True),

                StructField("weight_str", StringType(), True),
                StructField("package_quantity", StringType(), True),
                StructField("pattern_name", StringType(), True),
                StructField("asinUpdateTime", StringType(), True),
                StructField("follow_sellers", StringType(), True),
            ])
            self.detail_col = [
                'asin', 'img_url', 'title', 'title_len', 'price', 'rating', 'total_comments', 'buy_box_seller_type',
                'page_inventory', 'category', 'volume', 'weight', 'rank', 'launch_time', 'category_state', 'img_num',
                'img_type', 'activity_type', 'one_two_val', 'three_four_val', 'five_six_val', 'eight_val', 'qa_num',
                'one_star', 'two_star', 'three_star', 'four_star', 'low_star', 'together_asin', 'brand', 'ac_name',
                'material', 'node_id', 'data_type', 'sp_num','describe', 'date_info', 'five_star', 'weight_str',
                'package_quantity', 'pattern_name', 'asinUpdateTime', 'follow_sellers'
            ]
        elif self.date_type == "day":
            self.schema = StructType([
                StructField("asin_vartion_list", StringType(), True),
                StructField("img_list", StringType(), True),
                StructField("asin", StringType(), True),
                StructField("img_url", StringType(), True),
                StructField("title", StringType(), True),
                StructField("title_len", IntegerType(), True),
                StructField("price", StringType(), True),
                StructField("rating", StringType(), True),
                StructField("total_comments", StringType(), True),
                StructField("buy_box_seller_type", IntegerType(), True),
                StructField("page_inventory", IntegerType(), True),
                StructField("category", StringType(), True),
                StructField("volume", StringType(), True),
                StructField("weight", StringType(), True),
                StructField("rank", StringType(), True),
                StructField("launch_time", StringType(), True),

                StructField("video_url", StringType(), True),
                StructField("add_url", StringType(), True),
                StructField("material", StringType(), True),

                StructField("img_num", IntegerType(), True),
                StructField("img_type", StringType(), True),
                StructField("qa_num", StringType(), True),
                StructField("brand", StringType(), True),
                StructField("ac_name", StringType(), True),
                StructField("node_id", StringType(), True),
                StructField("sp_num", StringType(), True),

                StructField("mpn", StringType(), True),
                StructField("online_time", StringType(), True),
                StructField("describe", StringType(), True),
                StructField("one_star", StringType(), True),
                StructField("two_star", StringType(), True),
                StructField("three_star", StringType(), True),
                StructField("four_star", StringType(), True),
                StructField("five_star", StringType(), True),
                StructField("low_star", IntegerType(), True),

                StructField("asin_type", StringType(), True),
                StructField("is_coupon", StringType(), True),
                StructField("search_category", StringType(), True),
                StructField("weight_str", StringType(), True),
                StructField("date_info", StringType(), True),
                StructField("site", StringType(), True),

                StructField("account_name", StringType(), True),
                StructField("other_seller_name", StringType(), True),
                StructField("bsr_date_info", StringType(), True),
                StructField("account_id", StringType(), True),
                StructField("package_quantity", StringType(), True),
                StructField("pattern_name", StringType(), True),
                StructField("together_asin", StringType(), True),
                StructField("activity_type", StringType(), True),
                StructField("one_two_val", StringType(), True),
                StructField("three_four_val", StringType(), True),
                StructField("five_six_val", StringType(), True),
                StructField("eight_val", StringType(), True),
                StructField("product_description", StringType(), True),
                StructField("asinUpdateTime", StringType(), True),
                StructField("follow_sellers", StringType(), True),
            ])
            self.detail_col = [
                'asin', 'img_url', 'title', 'title_len', 'price', 'rating', 'total_comments', 'buy_box_seller_type',
                'page_inventory', 'category', 'volume', 'weight', 'rank', 'launch_time', 'video_url', 'add_url',
                'material', 'img_num', 'img_type', 'qa_num', 'brand', 'ac_name', 'node_id', 'sp_num', 'mpn',
                'online_time', 'describe', 'one_star', 'two_star', 'three_star', 'four_star', 'five_star',
                'low_star', 'asin_type', 'is_coupon', 'search_category', 'weight_str', 'date_info', 'site',
                'account_name', 'other_seller_name', 'bsr_date_info', 'account_id', 'package_quantity',
                'pattern_name', 'together_asin', 'activity_type', 'one_two_val', 'three_four_val', 'five_six_val',
                'eight_val', 'product_description', 'asinUpdateTime', 'follow_sellers'
            ]

    def get_topic_name(self):
        # 需要注意表名问题
        if self.date_type == "month":
            # 月表主题
            self.topic_name = f"{self.site_name}_asin_detail_month"
        elif self.date_type == "week":
            # 周表主题
            self.topic_name = f"{self.site_name}_asin_detail"
        elif self.date_type == "day":
            # 天表主题
            self.topic_name = f"{self.site_name}_self_asin_detail"
        else:
            print("date_type传参有问题,中断程序")
            quit()

    def get_14pg_country_engine(self, site_name="us"):
        h14_pg_us = {
            "user": "postgres",
            "password": "fazAqRRVV9vDmwDNRNb593ht5TxYVrfTyHJSJ3BS",
            # "host": "61.145.136.61",
            "host": "192.168.10.223",
            "port": "5432",
            # "port": 54328,
            "database": "selection",
        }
        if site_name == 'us' or site_name == 'mx' or site_name == 'ca':
            h14_pg_us["database"] = f"selection"
            db_ = 'postgresql+psycopg2://{}:{}@{}:{}/{}'.format(*h14_pg_us.values())
        # elif site_name == "keepa":
        #     db_ = 'mysql+pymysql://{}:{}@{}:{}/{}?charset={}'.format(*h6_pg_us.values())
        else:
            h14_pg_us["database"] = f"selection_{site_name}"
            db_ = 'postgresql+psycopg2://{}:{}@{}:{}/{}'.format(*h14_pg_us.values())
        engine = create_engine(db_, encoding='utf-8')  # , pool_recycle=3600
        return engine

    def field_length_dispose(self, df):
        df.price = df.price.apply(lambda x: round(x, 2) if x is not None else None)  # 截取字符
        df.ac_name = df.ac_name.apply(lambda x: str(x)[:100] if x is not None else None)  # 截取字符
        df.brand = df.brand.apply(lambda x: str(x)[:100] if x is not None else None)  # 截取字符
        df.title = df.title.apply(lambda x: str(x)[:400] if x is not None else None)  # 截取字符
        df.category = df.category.apply(lambda x: str(x)[:400] if x is not None else None)  # 截取字符
        df.img_url = df.img_url.apply(lambda x: str(x)[:400] if x is not None else None)  # 截取字符
        df.material = df.material.apply(lambda x: str(x)[:150] if x is not None else None)  # 截取字符
        df.volume = df.volume.apply(lambda x: str(x)[:50] if x is not None else None)  # 截取字符
        if self.date_type in ["month", "week"]:
            df.package_quantity = df.package_quantity.apply(lambda x: str(x)[:50] if x is not None else None)  # 截取字符
            df.pattern_name = df.pattern_name.apply(lambda x: str(x)[:50] if x is not None else None)  # 截取字符
        df.weight_str = df.weight_str.apply(lambda x: str(x)[:250] if x is not None else None)  # 截取字符
        return df

    def img_save(self, df):
        logging.info("img处理")
        # 获取对应表字段
        if "site" not in df.keys():
            df["site"] = self.site_name
            logging.info("site is not null")
        df["site"] = df['site'].fillna(self.site_name)
        # df.drop_duplicates(subset=["asin", "site"], inplace=True)
        for name, group in df.groupby(['site']):
            asins = list(set(group["asin"]))
            logging.info(f"img处理 站点{name[0]}  ")
            if name[0] not in ['us', 'de', 'uk', 'it', 'es', 'fr', 'mx', 'ca']:
                logging.info("非8大站点跳过")
                continue
            if name[0] != "us":
                chunk_size = 1000
                split_list = [asins[i:i + chunk_size] for i in range(0, len(asins), chunk_size)]
                with self.pg14_engine.begin() as conn:
                    # Printing the split chunks
                    for chunk in split_list:
                        if len(chunk) == 1:
                            sql_del = f"delete from {name[0]}_asin_image where asin in ('{tuple(chunk)[0]}');"
                        else:
                            sql_del = f"delete from {name[0]}_asin_image where asin in {tuple(chunk)};"
                        logging.info(f"sql: {sql_del[0:100]}")
                        conn.execute(sql_del)
                        logging.info(f"清理{name[0]}_asin_image 表中数据   {chunk[0:10]} 清理{name[0]}_asin_image 表中数据")
            del group["site"]
            logging.info(f"数量为:{group.shape}")
            try:
                group.to_sql(name=f'{name[0]}_asin_image', con=self.pg14_engine, if_exists='append', index=False)
                logging.info(f"入库{name[0]}_asin_image成功 {group.head(10)}")
            except DataError as e:
                logging.info(f"img入库字段超过长度 {e}")
                group.to_csv(f"/root/{name[0]}_asin_image_{time.time()}.csv")

    def variat_save(self, df):
        df.drop_duplicates(subset=["asin", "parent_asin"], inplace=True)
        asins = list(set(df["parent_asin"]))
        logging.info(f"{df}")
        table = f'{self.site_name}_variat'
        if asins:
            chunk_size = 1000
            split_list = [asins[i:i + chunk_size] for i in range(0, len(asins), chunk_size)]
            for chunk in split_list:
                if len(chunk) == 1:
                    sql_del = f"delete from `{table}` where parent_asin in ('{tuple(chunk)[0]}');"
                else:
                    sql_del = f"delete from `{table}` where parent_asin in {tuple(chunk)};"
                logging.info(f"sql: {sql_del[0:100]}")
                for i in range(5):
                    row_id = sql_delete(sql_del)
                    if row_id == -1:
                        logging.info(f"删除失败 {table} 表中数据 {chunk}")
                        continue
                    else:
                        logging.info(f"清理 {table} 表中数据   {chunk[0:10]} 清理 {table} 表中数据")
                        break
        df['color'] = df['color'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
        df['size'] = df['size'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
        df['style'] = df['style'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
        df['column_2'] = df['column_2'].apply(lambda x: x.encode('utf-8', 'ignore').decode('utf-8')[:180] if x else None)
        logging.info(f"数量为:{df.shape}")
        for i in range(3):
            try:
                df.to_sql(name=f'{table}', con=self.engine, if_exists='append', index=False)
                logging.info(f"入库 {table} 成功 {df.head(10)}")
                break
            except PendingRollbackError as e:
                logging.info(f"链接错误  重试{e}")
                continue

    def handle_data_df(self, df=pd.DataFrame, df_type='asin_vartion_list', columns=[]):
        # 根据不同表类型解析df对象
        df[df_type] = df[df_type].apply(json.loads)
        # 对对应数据进行处理,将df_type内列表展开
        exploded_list = df[df_type].explode()
        # 展开后转换为一个大列表
        df_type_list = [i for i in exploded_list.tolist() if not isinstance(i, float)]
        df_type_list = [i for i in df_type_list if isinstance(i, list)]
        if df_type_list:
            df = pd.DataFrame(df_type_list, columns=columns)
            return df
        else:
            return None

    def save_data_asin_detail(self, df):
        df.drop_duplicates(['asin'], inplace=True)
        # 这个要看 self.date_type是否有其他类型   并且数据中有这个字段  可能有坑
        for name, group in df.groupby([self.date_type]):
            logging.info(f"需要处理的 data_info {name[0]}")
            # 获取年
            # y = str(time.localtime().tm_year)
            y = self.date_info.split("-")[0]
            data_time = y + "_" + name[0]

            asins = list(group["asin"])
            # 详情入库表名
            detail_table_data_info = f"{self.site_name}_asin_detail_month_{data_time}" if self.date_type == "month" else f"{self.site_name}_asin_detail_{data_time}"
            logging.info(f"表名:{detail_table_data_info}")
            if asins:
                if self.date_type == "month":
                    logging.info("month data not delete")
                else:
                    chunk_size = 5000
                    split_list = [asins[i:i + chunk_size] for i in range(0, len(asins), chunk_size)]
                    with self.pg14_engine.begin() as conn:
                        for chunk in split_list:
                            if len(chunk) == 1:
                                sql_del = f"delete from {detail_table_data_info} where asin= '{chunk[0]}';"
                            else:
                                sql_del = f"delete from {detail_table_data_info} where asin in {tuple(chunk)};"
                            for i in range(5):
                                try:
                                    start_time = time.time()
                                    conn.execute(sql_del)
                                    end_time = time.time()
                                    logging.info(f"清理 {detail_table_data_info} 表中 {chunk[0:10]} 数据, 耗时:{end_time-start_time}s")
                                    break
                                except OperationalError as e:
                                    logging.info(f"数据库链接 失败{e}")
                                    time.sleep(3)
                                    continue
                # 测试报错代码
                logging.info(f"detail keys {group.keys()}")
                logging.info(f"{self.detail_col}")
                logging.info(f"{group.shape} {detail_table_data_info}")
                group = copy.deepcopy(group)
                group = group[self.detail_col]
                group.rename(columns={"asinUpdateTime": "created_time"}, inplace=True)
                group = self.field_length_dispose(group)
                logging.info(f"{group.keys()}")
                logging.info(f"{group.shape}")
                # df.rename(columns={"asinUpdateTime": "created_at"}, inplace=True)
                try:
                    group.to_sql(name=f'{detail_table_data_info}', con=self.pg14_engine, if_exists='append', index=False)
                    logging.info(f"入库 {detail_table_data_info} 成功 {group.head(10)}")
                except DataError as e:
                    logging.info(f"详情入库字段超过长度:{e}")
                    group.to_csv(f"/root/{detail_table_data_info}_{time.time()}.csv")


    def save_data_common(self, df, df_type):
        if df_type == 'asin_vartion_list':
            logging.info(f"asin_vartion_list 处理")
            if df.shape[0]:
                vartion_columns = ['asin', 'color', 'parent_asin', 'size', 'state', 'style', 'column_2']
                vartion_df = self.handle_data_df(df, df_type='asin_vartion_list', columns=vartion_columns)
                if vartion_df.shape[0]:
                    self.variat_save(df=vartion_df)
        elif df_type == 'img_list':
            logging.info(f"img_list 处理")
            if df.shape[0]:
                img_columns = ['asin', 'img_url', 'img_order_by', 'data_type']
                img_df = self.handle_data_df(df, df_type='img_list', columns=img_columns)
                if img_df.shape[0]:
                    self.img_save(df=img_df)
        elif df_type == 'asin_detail':
            logging.info(f"asin_detail 处理")
            self.save_data_asin_detail(df=df)

    def save_data(self, df):
        threads = []
        for df_type in self.df_type_dict.keys():
            thread = threading.Thread(target=self.save_data_common, args=(df, df_type))
            threads.append(thread)
            thread.start()
        for thread in threads:
            thread.join()
        logging.info("线程处理完成")

    def data_save(self, df):
        if not isinstance(df, pd.DataFrame):
            logging.info("df 不是一个 DataFrame 对象")
            df = df.toPandas()
        if df.shape[0]:
            logging.info(f"{df.keys()}")
            logging.info(f"----------------------------")
            if self.date_type == "day":
                logging.info(f"天数据处理")
                img_columns = ['asin', 'img_url', 'img_order_by', 'data_type']
                img_df = self.handle_data_df(df, df_type='asin_vartion_list', columns=img_columns)
                if img_df.shape[0]:
                    self.img_save(df=img_df)
                vartion_columns = ['asin', 'color', 'parent_asin', 'size', 'state', 'style', 'column_2']
                vartion_df = self.handle_data_df(df, df_type='asin_vartion_list', columns=vartion_columns)
                if vartion_df.shape[0]:
                    self.variat_save(df=vartion_df)
                df = df[self.detail_col]
                df['site'] = df['site'].fillna(self.site_name)
                df.drop_duplicates(['asin', 'site'], inplace=True)
                now_date = time.strftime("%Y-%m-%d", time.gmtime(time.time()))
                detail_table_data_info = f"{self.site_name}_self_asin_detail"
                for name, group in df.groupby(['site']):
                    asins = list(group["asin"])
                    # 详情入库表名
                    if asins:
                        if len(asins) == 1:
                            sql_del = f"delete from `{detail_table_data_info}` where `asin`= '{asins[0]}' and `site`='{name[0]}' and created_at>='{now_date}';"
                        else:
                            sql_del = f"delete from `{detail_table_data_info}` where `asin` in {tuple(asins)} and `site`='{name[0]}' and created_at>='{now_date}';"
                        logging.info(f"{name}, {sql_del}")
                        sql_delete(sql_del)
                        logging.info(f"清理 {detail_table_data_info} 表中 {asins[0:10]} 数据")
                df.to_sql(name=f'{detail_table_data_info}', con=self.engine, if_exists='append', index=False)
                logging.info(f"入库 {detail_table_data_info} 成功 {df.head(10)}")
            else:
                # 过滤date_info不符合的
                # new_df = df[df[self.date_type] == self.date_info.split("-")[-1]]  # self.date_type week
                # logging.info(f"过滤{self.date_type} 不为: {self.date_info.split('-')[-1]} \n 过滤后 {new_df.shape}")
                new_df = df
                if new_df.shape[0]:
                    self.save_data(new_df)
                else:
                    logging.info(f"过滤后 无数据处理{new_df}")
        else:
            logging.info(f"{df.shape}")

    def handle_kafka_history(self, kafka_df):
        self.data_save(kafka_df)

    def handle_kafka_stream(self, kafka_df, epoch_id):
        self.data_save(kafka_df)


if __name__ == '__main__':
    site_name = sys.argv[1]  # 参数1:站点
    date_type = sys.argv[2]  # 参数2:类型:week/4_week/month/quarter/day
    date_info = sys.argv[3]  # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
    consumer_type = sys.argv[4]  # 参数4:实时 lastest 历史 history
    # us day date_info 2023-11-07
    handle_obj = SpiderAsinDetail(site_name=site_name, date_type=date_type, date_info=date_info, consumer_type=consumer_type, batch_size_history=10000)
    handle_obj.run_kafka()

# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_self_asin_detail.py uk week 2023-46 lastest > amazon_week_uk.log 2>&1 &

# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 2g --executor-cores 4 --num-executors 2 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_self_asin_detail.py us month 2023-12 lastest

# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_self_asin_detail.py uk week 2023-46 history

# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 2g --executor-cores 1 --num-executors 1 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_self_asin_detail.py us day 2023-11-16 lastest

# for i in `ps -ef|grep "spider_asin_detail.py" |awk '{print $2}' `; do kill -9 $i ; done;

# 历史
# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 20g --executor-cores 4 --num-executors 2 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_asin_detail.py de week 2023-46 history > amazon_week_history_de.log 2>&1 &
# 实时
# /opt/module/spark/bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:3.1.3 --master yarn --driver-memory 2g --executor-memory 2g --executor-cores 4 --num-executors 2 --queue spark /opt/module/spark/demo/py_demo/my_kafka/spider_asin_detail.py de week 2023-48 lastest > amazon_week_de.log 2>&1 &