1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import calendar
import sys
from datetime import datetime, timedelta
# def download_nltk_data():
# print("download_nltk_data")
# print(os.path.exists("/home/nltk_data"))
# if not os.path.exists("/home/nltk_data"):
# # 下载到
# os.system("mkdir /home/nltk_data && cd /home/nltk_data && hdfs dfs -get /lib/nltk_data.zip && unzip nltk_data.zip")
# pass
# pass
class UdfUtil(object):
__SITE_SET__ = {'us', 'uk', 'de', 'fr', 'es', 'it', 'au', 'ca'}
"""
一般工具类
"""
@staticmethod
def reset_partitions(site_name, partitions_num=10):
"""
按不同站点划分分区数量
:param site_name: 站点名称
:param partitions_num: 自定义分区数量
:return: partitions_num
"""
print("重置分区数")
if site_name in ['us']:
partitions_num = partitions_num
elif site_name in ['uk', 'de']:
partitions_num = partitions_num // 2 if partitions_num // 2 > 0 else 1
elif site_name in ['es', 'fr', 'it']:
partitions_num = partitions_num // 4 if partitions_num // 4 > 0 else 1
return partitions_num
@staticmethod
def safeIndex(list: list, index: int, default: object = None):
"""
安全获取list的索引对应的值
:param list: 列表
:param index: 索引
:param default: 默认值
:return:
"""
if (index <= len(list) - 1):
return list[index]
return default
@staticmethod
def get_sys_arg(index: int, defVal: object):
"""
获取main系统输入参数脚标从1开始
:param index: 索引
:param defVal: 默认值
:return:
"""
return UdfUtil.safeIndex(sys.argv, index, defVal)
@staticmethod
def notNone(obj: object = None):
"""
判断是否是None
"""
return obj is not None
@staticmethod
def notBlank(strVal: str = None):
"""
判断是否是空字符串
"""
return strVal is not None and strVal != ''
@staticmethod
def get_day_offset(day: str, offset: int):
"""
获取日期偏移值
:param day: 类似 2022-11-01
:param offset: 偏移值
:return: 过去或将来的时间
"""
pattern = "%Y-%m-%d"
rel_day = datetime.strptime(day, pattern)
d = rel_day + timedelta(days=offset)
return d.strftime(pattern)
@staticmethod
def get_month_offset(month: str, offset: int):
"""
获取月份偏移值
:param month: 类似 2022-11
:param offset: 偏移值
:return: 过去或将来的月份
"""
year_int = int(UdfUtil.safeIndex(month.split("-"), 0, None))
month_int = int(UdfUtil.safeIndex(month.split("-"), 1, None))
if offset > 0:
for i in range(0, offset):
year_int, month_int = calendar._nextmonth(year_int, month_int)
if offset < 0:
for i in range(0, abs(offset)):
year_int, month_int = calendar._prevmonth(year_int, month_int)
return datetime(year_int, month_int, 1).strftime("%Y-%m")
@staticmethod
def reformat_date(date_str: str, from_format: str, to_format: str):
"""
重新格式化日期
:param date_str:
:param from_format:
:param to_format:
:return:
"""
return datetime.strptime(date_str, from_format).strftime(to_format)
@staticmethod
def word_tokenize(title: str):
"""
分词器
"""
# import nltk
# nltk.data.path.append(os.path.join(SparkFiles.get("yswg_utils"), "nltk_data"))
from nltk.tokenize import word_tokenize
result = word_tokenize(title, "english")
# 过滤标点如下
# filter_arr = [
# " ", "\t", "\r", "\n", "(", ")", ",", ",", "[", "]", "、", "-", ":", "&", "|", "+", "``", "''",
# ]
# result = list(filter(lambda x: x not in filter_arr, result))
return result
@staticmethod
def is_number(str):
"""
判断一个字符是否是数字
:param str:
:return:
"""
import re
return re.match(r"^-?\d+\.?\d+$", str) is not None
@staticmethod
def check_utf8_and_convert(word: str):
"""
判断一个英文字符是否是utf-8编码的 即不包含乱码字符及中文 ,如果包含的话则从gbk编码转为utf-8编码
:param str:
:return:
"""
import re
# 检查是否包含有中文 如果有中文的话大概率是乱码 从gbk转为utf-8
pattern = re.compile(r'[\u4e00-\u9fa5]')
errword = pattern.findall(word)
if len(errword) > 0:
try:
return word.encode("gbk").decode("utf-8")
except:
try:
word.encode("big5").decode("utf-8")
except:
pass
return word
_alphaCharsStr = 'A-Za-z\\xAA\\xB5\\xBA\\xC0-\\xD6\\xD8-\\xF6\\xF8-\u02C1\u02C6-\u02D1\u02E0-\u02E4\u02EC\u02EE\u0370-\u0374\u0376\u0377\u037A-\u037D\u037F\u0386\u0388-\u038A\u038C\u038E-\u03A1\u03A3-\u03F5\u03F7-\u0481\u048A-\u052F\u0531-\u0556\u0559\u0561-\u0587\u05D0-\u05EA\u05F0-\u05F2\u0620-\u064A\u066E\u066F\u0671-\u06D3\u06D5\u06E5\u06E6\u06EE\u06EF\u06FA-\u06FC\u06FF\u0710\u0712-\u072F\u074D-\u07A5\u07B1\u07CA-\u07EA\u07F4\u07F5\u07FA\u0800-\u0815\u081A\u0824\u0828\u0840-\u0858\u08A0-\u08B4\u0904-\u0939\u093D\u0950\u0958-\u0961\u0971-\u0980\u0985-\u098C\u098F\u0990\u0993-\u09A8\u09AA-\u09B0\u09B2\u09B6-\u09B9\u09BD\u09CE\u09DC\u09DD\u09DF-\u09E1\u09F0\u09F1\u0A05-\u0A0A\u0A0F\u0A10\u0A13-\u0A28\u0A2A-\u0A30\u0A32\u0A33\u0A35\u0A36\u0A38\u0A39\u0A59-\u0A5C\u0A5E\u0A72-\u0A74\u0A85-\u0A8D\u0A8F-\u0A91\u0A93-\u0AA8\u0AAA-\u0AB0\u0AB2\u0AB3\u0AB5-\u0AB9\u0ABD\u0AD0\u0AE0\u0AE1\u0AF9\u0B05-\u0B0C\u0B0F\u0B10\u0B13-\u0B28\u0B2A-\u0B30\u0B32\u0B33\u0B35-\u0B39\u0B3D\u0B5C\u0B5D\u0B5F-\u0B61\u0B71\u0B83\u0B85-\u0B8A\u0B8E-\u0B90\u0B92-\u0B95\u0B99\u0B9A\u0B9C\u0B9E\u0B9F\u0BA3\u0BA4\u0BA8-\u0BAA\u0BAE-\u0BB9\u0BD0\u0C05-\u0C0C\u0C0E-\u0C10\u0C12-\u0C28\u0C2A-\u0C39\u0C3D\u0C58-\u0C5A\u0C60\u0C61\u0C85-\u0C8C\u0C8E-\u0C90\u0C92-\u0CA8\u0CAA-\u0CB3\u0CB5-\u0CB9\u0CBD\u0CDE\u0CE0\u0CE1\u0CF1\u0CF2\u0D05-\u0D0C\u0D0E-\u0D10\u0D12-\u0D3A\u0D3D\u0D4E\u0D5F-\u0D61\u0D7A-\u0D7F\u0D85-\u0D96\u0D9A-\u0DB1\u0DB3-\u0DBB\u0DBD\u0DC0-\u0DC6\u0E01-\u0E30\u0E32\u0E33\u0E40-\u0E46\u0E81\u0E82\u0E84\u0E87\u0E88\u0E8A\u0E8D\u0E94-\u0E97\u0E99-\u0E9F\u0EA1-\u0EA3\u0EA5\u0EA7\u0EAA\u0EAB\u0EAD-\u0EB0\u0EB2\u0EB3\u0EBD\u0EC0-\u0EC4\u0EC6\u0EDC-\u0EDF\u0F00\u0F40-\u0F47\u0F49-\u0F6C\u0F88-\u0F8C\u1000-\u102A\u103F\u1050-\u1055\u105A-\u105D\u1061\u1065\u1066\u106E-\u1070\u1075-\u1081\u108E\u10A0-\u10C5\u10C7\u10CD\u10D0-\u10FA\u10FC-\u1248\u124A-\u124D\u1250-\u1256\u1258\u125A-\u125D\u1260-\u1288\u128A-\u128D\u1290-\u12B0\u12B2-\u12B5\u12B8-\u12BE\u12C0\u12C2-\u12C5\u12C8-\u12D6\u12D8-\u1310\u1312-\u1315\u1318-\u135A\u1380-\u138F\u13A0-\u13F5\u13F8-\u13FD\u1401-\u166C\u166F-\u167F\u1681-\u169A\u16A0-\u16EA\u16F1-\u16F8\u1700-\u170C\u170E-\u1711\u1720-\u1731\u1740-\u1751\u1760-\u176C\u176E-\u1770\u1780-\u17B3\u17D7\u17DC\u1820-\u1877\u1880-\u18A8\u18AA\u18B0-\u18F5\u1900-\u191E\u1950-\u196D\u1970-\u1974\u1980-\u19AB\u19B0-\u19C9\u1A00-\u1A16\u1A20-\u1A54\u1AA7\u1B05-\u1B33\u1B45-\u1B4B\u1B83-\u1BA0\u1BAE\u1BAF\u1BBA-\u1BE5\u1C00-\u1C23\u1C4D-\u1C4F\u1C5A-\u1C7D\u1CE9-\u1CEC\u1CEE-\u1CF1\u1CF5\u1CF6\u1D00-\u1DBF\u1E00-\u1F15\u1F18-\u1F1D\u1F20-\u1F45\u1F48-\u1F4D\u1F50-\u1F57\u1F59\u1F5B\u1F5D\u1F5F-\u1F7D\u1F80-\u1FB4\u1FB6-\u1FBC\u1FBE\u1FC2-\u1FC4\u1FC6-\u1FCC\u1FD0-\u1FD3\u1FD6-\u1FDB\u1FE0-\u1FEC\u1FF2-\u1FF4\u1FF6-\u1FFC\u2071\u207F\u2090-\u209C\u2102\u2107\u210A-\u2113\u2115\u2119-\u211D\u2124\u2126\u2128\u212A-\u212D\u212F-\u2139\u213C-\u213F\u2145-\u2149\u214E\u2183\u2184\u2C00-\u2C2E\u2C30-\u2C5E\u2C60-\u2CE4\u2CEB-\u2CEE\u2CF2\u2CF3\u2D00-\u2D25\u2D27\u2D2D\u2D30-\u2D67\u2D6F\u2D80-\u2D96\u2DA0-\u2DA6\u2DA8-\u2DAE\u2DB0-\u2DB6\u2DB8-\u2DBE\u2DC0-\u2DC6\u2DC8-\u2DCE\u2DD0-\u2DD6\u2DD8-\u2DDE\u2E2F\u3005\u3006\u3031-\u3035\u303B\u303C\u3041-\u3096\u309D-\u309F\u30A1-\u30FA\u30FC-\u30FF\u3105-\u312D\u3131-\u318E\u31A0-\u31BA\u31F0-\u31FF\u3400-\u4DB5\u4E00-\u9FD5\uA000-\uA48C\uA4D0-\uA4FD\uA500-\uA60C\uA610-\uA61F\uA62A\uA62B\uA640-\uA66E\uA67F-\uA69D\uA6A0-\uA6E5\uA717-\uA71F\uA722-\uA788\uA78B-\uA7AD\uA7B0-\uA7B7\uA7F7-\uA801\uA803-\uA805\uA807-\uA80A\uA80C-\uA822\uA840-\uA873\uA882-\uA8B3\uA8F2-\uA8F7\uA8FB\uA8FD\uA90A-\uA925\uA930-\uA946\uA960-\uA97C\uA984-\uA9B2\uA9CF\uA9E0-\uA9E4\uA9E6-\uA9EF\uA9FA-\uA9FE\uAA00-\uAA28\uAA40-\uAA42\uAA44-\uAA4B\uAA60-\uAA76\uAA7A\uAA7E-\uAAAF\uAAB1\uAAB5\uAAB6\uAAB9-\uAABD\uAAC0\uAAC2\uAADB-\uAADD\uAAE0-\uAAEA\uAAF2-\uAAF4\uAB01-\uAB06\uAB09-\uAB0E\uAB11-\uAB16\uAB20-\uAB26\uAB28-\uAB2E\uAB30-\uAB5A\uAB5C-\uAB65\uAB70-\uABE2\uAC00-\uD7A3\uD7B0-\uD7C6\uD7CB-\uD7FB\uF900-\uFA6D\uFA70-\uFAD9\uFB00-\uFB06\uFB13-\uFB17\uFB1D\uFB1F-\uFB28\uFB2A-\uFB36\uFB38-\uFB3C\uFB3E\uFB40\uFB41\uFB43\uFB44\uFB46-\uFBB1\uFBD3-\uFD3D\uFD50-\uFD8F\uFD92-\uFDC7\uFDF0-\uFDFB\uFE70-\uFE74\uFE76-\uFEFC\uFF21-\uFF3A\uFF41-\uFF5A\uFF66-\uFFBE\uFFC2-\uFFC7\uFFCA-\uFFCF\uFFD2-\uFFD7\uFFDA-\uFFDC'
@staticmethod
def snowball_stem_word(string: str, ignore_stopwords: bool = False):
"""
此处后面可能需要维护一个近义词词典
对输入的英文短语 利用 snowball 进行词性还原和分词,返回还原后的词及分词list及命中的停止词即介词;
停止词文件是相关资源文件在指定目录下
代码模仿 snowball 官方推荐代码 https://snowballstem.org/demo.html#English
:param string: 返回的词性还原后的字符串词干
:param ignore_stopwords: 是否忽略停止词
:return:
"""
import re
from nltk.stem.snowball import SnowballStemmer
stemmer = SnowballStemmer("english", ignore_stopwords=ignore_stopwords)
result = ''
i = 0
pattern = f"([{UdfUtil._alphaCharsStr}']+)"
hint_word = []
hint_stop_word = []
for word_match in re.finditer(pattern, string):
word = word_match.group()
first_index = word_match.span()[0]
stem_word = stemmer.stem(word)
if stem_word not in stemmer.stopwords:
result += re.sub("/[ &<>\n]/g", " ", string[i:first_index])
hint_word.append(stem_word)
result += stem_word
else:
hint_stop_word.append(stem_word)
i = first_index + len(word)
if i < len(string):
result += string[i:len(string)]
result = result.strip()
return result, hint_word, hint_stop_word