1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""
@Author : HuangJian
@Description : 找到月关键词下zr类型的top10asin和ac类型asin
@SourceTable :
1.ods_st_key
2.dim_st_asin_info
3.dwd_st_measure
@SinkTable : dwt_st_top_asin_info
@CreateTime : 2023/02/13 17:01
@UpdateTime : 2023/02/13 17:01
"""
import os
import sys
import re
from functools import reduce
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, IntegerType, DoubleType
from utils.common_util import CommonUtil, DateTypes
class DwtStTopAsinInfo(Templates):
def __init__(self, site_name="us", date_type="week", date_info="2022-1"):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save = f"dwt_st_top_asin_info"
self.spark = self.create_spark_object(
app_name=f"{self.db_save}, {self.site_name}, {self.date_type}, {self.date_info}")
self.partitions_num = 10
self.reset_partitions(partitions_num=self.partitions_num)
self.partitions_by = ['site_name', 'date_type', 'date_info']
self.get_date_info_tuple()
self.get_year_month_days_dict(year=int(self.year))
# 获取周流程的周tuple整合数据
self.complete_date_info_tuple = CommonUtil.transform_week_tuple(self.spark, self.date_type, self.date_info)
self.df_st_key = self.spark.sql(f"select 1+1;")
self.df_st_asin_zr = self.spark.sql(f"select 1+1;")
self.df_st_asin_ac = self.spark.sql(f"select 1+1;")
self.df_st_zr = self.spark.sql(f"select 1+1;")
self.df_st_ac = self.spark.sql(f"select 1+1;")
self.df_zr_info = self.spark.sql(f"select 1+1;")
self.df_ac_info = self.spark.sql(f"select 1+1;")
self.df_save = self.spark.sql(f"select 1+1;")
self.date_sql = self.date_sql_padding()
def date_sql_padding(self):
if self.site_name == 'us':
if self.date_type == DateTypes.month_week.name:
date_sql = f" and date_type='{self.date_type}' and date_info = '{self.date_info}'"
elif self.date_type == DateTypes.month.name and self.date_info >= '2023-10':
date_sql = f" and date_type='{self.date_type}' and date_info = '{self.date_info}'"
else:
date_sql = f"and date_type='week' and date_info in {self.complete_date_info_tuple}"
elif self.site_name in ['uk', 'de'] and self.date_type == DateTypes.month.name and self.date_info >= '2024-05':
date_sql = f" and date_type='{self.date_type}' and date_info = '{self.date_info}'"
else:
date_sql = f" and date_type='week' and date_info in {self.complete_date_info_tuple}"
print(date_sql)
return date_sql
def read_data(self):
print("1.1 读取st的key: ods_st_key表")
sql = f"select search_term,cast(st_key as int) as search_term_id from ods_st_key where site_name = '{self.site_name}' "
print("sql:", sql)
self.df_st_key = self.spark.sql(sqlQuery=sql)
print("1.3 读取关键词的zr类型数据: ods_search_term_zr")
sql = f"""select
search_term,
asin,
page_row as zr_rank,
'zr' as data_type,date_info from ods_search_term_zr
where
site_name='{self.site_name}' {self.date_sql} and page_row <=10 ;"""
print("sql:", sql)
self.df_st_asin_zr = self.spark.sql(sqlQuery=sql).cache()
print("1.4 读取关键词的ac类型数据: ods_search_term_ac")
sql = f"""select search_term,
asin,
null as zr_rank,
'ac' as data_type
from (
select
search_term,
asin,
row_number() over (partition by search_term order by date_info desc, updated_time asc) as ac_rank
from ods_search_term_ac
where site_name = '{self.site_name}' {self.date_sql} and page = 1) t1
where t1.ac_rank = 1;"""
print("sql:", sql)
self.df_st_asin_ac = self.spark.sql(sqlQuery=sql).cache()
def handle_data(self):
self.handle_st_asin_duplicated()
self.handle_st_asin_join()
# 日期字段补全
self.df_save = self.df_save.withColumn("created_time",
F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS'))
self.df_save = self.df_save.withColumn("updated_time",
F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS'))
# 补全分区字段
self.df_save = self.df_save.withColumn("site_name", F.lit(self.site_name))
self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info))
def handle_st_asin_duplicated(self):
self.df_zr_info = self.df_st_asin_zr.select("search_term", "date_info")
# 对zr类型搜索词进行去重:按搜索词取日期最大 得到最后出现该搜索词日期
window_zr = Window.partitionBy(['search_term']).orderBy(
self.df_zr_info.date_info.desc()
)
self.df_zr_info = self.df_zr_info \
.withColumn("zr_rank_row", F.row_number().over(window=window_zr))
self.df_zr_info = self.df_zr_info.filter("zr_rank_row=1")
self.df_zr_info = self.df_zr_info.drop("zr_rank_row")
# self.df_st_asin_zr = self.df_st_asin_zr.cache()
# 得到最近日期zr类型的st-asin
self.df_st_asin_zr = self.df_zr_info.join(
self.df_st_asin_zr, on=['search_term', 'date_info'], how="inner")
self.df_st_asin_zr = self.df_st_asin_zr.drop("date_info")
# 对zr类型的同周期下进行去重按照st-asin-rank
self.df_st_asin_zr = self.df_st_asin_zr.drop_duplicates(['search_term', 'asin', 'zr_rank'])
# 对zr词进行二次排序
self.df_st_asin_zr = self.df_st_asin_zr.groupby(['search_term', 'asin', 'data_type']).agg(
F.max('zr_rank').alias('max_zr_rank')
)
print(self.df_st_asin_zr.columns)
window_zr_rank = Window.partitionBy(['search_term']).orderBy(
self.df_st_asin_zr.max_zr_rank.asc()
)
self.df_st_asin_zr = self.df_st_asin_zr.withColumn('zr_rank', F.row_number().over(window=window_zr_rank))
self.df_st_asin_zr = self.df_st_asin_zr.filter("zr_rank <= 10")
self.df_st_asin_zr = self.df_st_asin_zr.drop('max_zr_rank')
def handle_st_asin_join(self):
# 将zr类型关键词和ac类型关键词union
df_st_asin_union = self.df_st_asin_zr.unionByName(self.df_st_asin_ac, allowMissingColumns=False)
# st关联获取search_term_id
self.df_save = df_st_asin_union.join(
self.df_st_key, on=['search_term'], how="inner"
)
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季, 比如: 2022-1
handle_obj = DwtStTopAsinInfo(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()