dim_asin_label.py
5.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
@Author : HuangJian
@Description : 时间周期内-asin品牌标签(搜索词前3页asin抓取)
@SourceTable :
①ods_other_search_term_data
@SinkTable : dim_asin_label
@CreateTime : 2023/05/04 15:20
@UpdateTime : 2022/05/04 15:20
"""
import os
import sys
import re
sys.path.append(os.path.dirname(sys.path[0]))
from utils.common_util import CommonUtil, DateTypes
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, ArrayType
from yswg_utils.common_udf import udf_handle_string_null_value as NullUDF
from functools import reduce
class DimAsinLabel(object):
def __init__(self, site_name, date_type, date_info):
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
app_name = f"{self.__class__.__name__}:{site_name}:{date_type}:{date_info}"
self.spark = SparkUtil.get_spark_session(app_name)
self.hive_table = "dim_asin_label"
# 获取周流程的周tuple整合数据
self.complete_date_info_tuple = CommonUtil.transform_week_tuple(self.spark, self.date_type, self.date_info)
self.hdfs_path = f"/home/{SparkUtil.DEF_USE_DB}/dim/{self.hive_table}/site_name={self.site_name}/date_type={self.date_type}/date_info={self.date_info}"
self.partitions_num = CommonUtil.reset_partitions(site_name, 1)
self.df_date = object() # 需要存储的df数据对象
self.date_sql = self.date_sql_padding()
# 初始化全局df
self.df_asin_label = self.spark.sql(f"select 1+1;")
self.handle_string_num_value = F.udf(NullUDF, StringType())
def date_sql_padding(self):
if 'us' == self.site_name:
if self.date_type == DateTypes.month_week.name:
date_sql = f" and date_type='{self.date_type}' and date_info = '{self.date_info}'"
elif self.date_type == DateTypes.month.name and self.date_info >= '2023-10':
date_sql = f" and date_type='{self.date_type}' and date_info = '{self.date_info}'"
else:
date_sql = f"and date_type='week' and date_info in {self.complete_date_info_tuple}"
elif self.site_name in ['uk', 'de']:
if self.date_type == DateTypes.month.name and self.date_info >= '2024-05':
date_sql = f"and date_type='{self.date_type}' and date_info='{self.date_info}'"
elif self.date_type == DateTypes.month_week.name and self.date_info >= '2024-06':
date_sql = f"and date_type='{self.date_type}' and date_info='{self.date_info}'"
else:
date_sql = f"and date_type='week' and date_info in {self.complete_date_info_tuple}"
print(date_sql)
return date_sql
def run(self):
print("======================查询sql如下======================")
# 读取ods_other_search_term_data
sql = f"""
select
asin, label
from
(select
asin,
lower(label) as label,
created_time,
row_number() over(partition by asin, label order by created_time desc) as crank
from ods_other_search_term_data
where site_name = '{self.site_name}' {self.date_sql}
and trim(label) not in ('null', '')
) t
where t.crank = 1
"""
print(sql)
self.df_asin_label = self.spark.sql(sqlQuery=sql).cache()
# 逻辑处理--多asin多标签采用&&&拼接
self.df_asin_label = self.df_asin_label.groupby(["asin"]).agg(
F.collect_set("label").alias("asin_label_list")
)
movie_label_list = ['prime video', 'dvd', 'blu-ray', 'kindle', 'app', 'paperback', 'audible audiobook',
'kindle edition', 'kindle & comixology', 'hardcover', 'comic', 'multi-format', '4k',
'library binding', 'vinyl', 'audio cd', 'mp3 music', 'single issue magazine',
'print magazine', 'unknown binding']
condition = reduce(
lambda acc, keyword: acc | F.expr(f"exists(asin_label_list, x -> x like '%{keyword}%')"),
movie_label_list,
F.lit(False)
)
self.df_asin_label = self.df_asin_label.withColumn("asin_label_type", condition.cast("int"))
# 对无法标记的标签默认填充为0
self.df_asin_label = self.df_asin_label.na.fill({"asin_label_type": 0})
# 补全分区字段
df_save = self.df_asin_label.select(
F.col('asin'),
self.handle_string_num_value('asin_label_list').alias('asin_label_list'),
F.col('asin_label_type'),
F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('created_time'),
F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('updated_time'),
F.lit(self.site_name).alias("site_name"),
F.lit(self.date_type).alias("date_type"),
F.lit(self.date_info).alias("date_info")
)
df_save = df_save.repartition(self.partitions_num)
partition_by = ["site_name", "date_type", "date_info"]
print(f"清除hdfs目录中.....{self.hdfs_path}")
HdfsUtils.delete_file_in_folder(self.hdfs_path)
print(f"当前存储的表名为:{self.hive_table},分区为{partition_by}")
df_save.write.saveAsTable(name=self.hive_table, format='hive', mode='append', partitionBy=partition_by)
print("success")
if __name__ == '__main__':
site_name = CommonUtil.get_sys_arg(1, None)
date_type = CommonUtil.get_sys_arg(2, None)
date_info = CommonUtil.get_sys_arg(3, None)
obj = DimAsinLabel(site_name, date_type, date_info)
obj.run()