dwt_fb_base_report.py 19.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
"""
   @Author      : HuangJian
   @Description : 店铺基础信息报表
   @SourceTable :
                  ①ods_seller_account_feedback
                  ②ods_seller_asin_account
                  ③ods_asin_detail_product
                  ④ods_seller_asin_syn
                  ⑤ods_asin_variat

   @SinkTable   : dwt_fb_base_report
   @SinkTable   : dwt_fb_asin_info
   @CreateTime  : 2022/07/05 15:48
   @UpdateTime  : 2022/07/05 15:48
"""

import os
import sys

sys.path.append(os.path.dirname(sys.path[0]))
from utils.hdfs_utils import HdfsUtils
from utils.common_util import CommonUtil, DateTypes
from pyspark.sql.types import StringType, IntegerType, DoubleType
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F
from yswg_utils.common_udf import udf_get_package_quantity
from yswg_utils.common_udf import udf_new_asin_flag
from utils.db_util import DBUtil


class DwtFbBaseReport(object):

    def __init__(self, site_name, date_type, date_info):
        self.site_name = site_name
        self.date_type = date_type
        self.date_info = date_info
        self.hive_tb = "dwt_fb_base_report"
        self.partition_dict = {
            "site_name": site_name,
            "date_type": date_type,
            "date_info": date_info
        }
        # 落表路径校验
        self.hdfs_path = CommonUtil.build_hdfs_path(self.hive_tb, partition_dict=self.partition_dict)

        # 创建spark_session对象相关
        app_name = f"{self.__class__.__name__}:{site_name}:{date_info}"
        self.spark = SparkUtil.get_spark_session(app_name)

        # 获取不同维度日期下的计算日期YYYY-MM-DD
        self.cal_date = CommonUtil.get_calDay_by_dateInfo(self.spark, self.date_type, self.date_info)
        self.last_month = CommonUtil.get_month_offset(date_info, -1)

        # 全局df初始化
        self.df_fb_feedback = self.spark.sql(f"select 1+1;")
        self.df_fb_asin = self.spark.sql(f"select 1+1;")
        self.df_top20_asin = self.spark.sql(f"select 1+1;")
        self.df_asin_history = self.spark.sql(f"select 1+1;")
        self.df_asin_parent = self.spark.sql(f"select 1+1;")
        self.df_fb_agg = self.spark.sql(f"select 1+1;")
        self.df_fb_asin_detail = self.spark.sql(f"select 1+1;")
        self.df_self_seller_id = self.spark.sql(f"select 1+1;")
        self.df_seller_account = self.spark.sql(f"select 1+1;")

        # 初始化UDF函数
        self.udf_new_asin_flag = F.udf(udf_new_asin_flag, IntegerType())
        self.u_judge_package_quantity = F.udf(udf_get_package_quantity, IntegerType())

    def read_data(self):
        # ods_seller_account_feedback 月度店铺报告表主表
        print("获取 ods_seller_account_feedback")
        sql = f"""select cur_fd.seller_id,
       cur_fd.fb_web_asin_num,
       cur_fd.fb_country_name,
       cur_fd.count_30_day_num,
       cur_fd.count_1_year_num,
       cur_fd.count_lifetime_num,
       cur_fd.fb_crawl_date,
       round((count_30_day_num - last_30_day_num) / last_30_day_num, 4)       as count_30_day_rate,
       round((count_1_year_num - last_1_year_num) / last_1_year_num, 4)       as count_1_year_rate,
       round((count_lifetime_num - last_lifetime_num) / last_lifetime_num, 4) as count_life_time_rate
from (select seller_id,
             num                                            as fb_web_asin_num,
             count_30_day as count_30_day_num,      
             count_1_year as count_1_year_num,
             count_lifetime as count_lifetime_num,
             country_name                                     as fb_country_name,
             date_format(updated_at, 'yyyy-MM-dd HH:mm:ss') as fb_crawl_date
      from ods_seller_account_feedback
      where site_name = '{self.site_name}'
        and date_type = '{self.date_type}'
        and date_info = '{self.date_info}'
        and length(seller_id) > 2 ) cur_fd
         left join (select seller_id,
                           count_30_day   as last_30_day_num,
                           count_1_year   as last_1_year_num,
                           count_lifetime as last_lifetime_num
                    from ods_seller_account_feedback
                    where site_name = '{self.site_name}'
                      and date_type = '{self.date_type}'
                      and date_info = '{self.last_month}'
                      and length(seller_id) > 2 ) last_fd
                   on cur_fd.seller_id = last_fd.seller_id"""
        self.df_fb_feedback = self.spark.sql(sqlQuery=sql)
        self.df_fb_feedback = self.df_fb_feedback.drop_duplicates(['seller_id']).cache()
        print(sql)

        # 获取我们内部的店铺与asin的数据库(从搜索词抓下来,店铺与asin的关系表)
        print("获取 ods_seller_asin_account")
        sql = f"""
            select seller_id,asin from ods_seller_asin_account 
            where site_name='{self.site_name}'
             and date_format(created_at,'yyyy-MM-dd') <= '{self.cal_date}' 
        """
        self.df_fb_asin = self.spark.sql(sqlQuery=sql)
        self.df_fb_asin = self.df_fb_asin.drop_duplicates(['seller_id', 'asin'])
        print(sql)

        # 获取店铺top 20 asin信息计算
        print("获取 ods_asin_detail_product")
        sql = f"""
            select 
            seller_id,
            asin,
            price,
            rating,
            total_comments,
            row_num as rank 
            from ods_asin_detail_product
            where site_name = '{self.site_name}'
            and date_type = '{self.date_type}'
            and date_info = '{self.date_info}'
            and row_num <= 20
        """
        self.df_top20_asin = self.spark.sql(sqlQuery=sql)
        self.df_top20_asin = self.df_top20_asin.drop_duplicates(['seller_id', 'asin'])
        print(sql)

        # 获取dim_cal_asin_history提取launch_time用于计算是否新品
        print("获取 dim_cal_asin_history")
        sql = f"""
            select
            asin,
            asin_title,
            asin_img_url,
            asin_price,
            asin_rating,
            asin_total_comments,
            asin_weight,
            asin_volume,
            asin_launch_time
            from dim_cal_asin_history_detail
            where site_name = '{self.site_name}'
        """
        self.df_asin_history = self.spark.sql(sqlQuery=sql)
        print(sql)

        # 获取ods_asin_variat提取parent_asin用于计算是多变体
        print("获取 dim_asin_variation_info")
        sql = f"select asin,parent_asin from dim_asin_variation_info " \
              f"where site_name='{self.site_name}'" \
              f" and asin != parent_asin "
        self.df_asin_parent = self.spark.sql(sqlQuery=sql)
        print(sql)

        # 获取ods_seller_account_syn提取account_name
        print("获取 ods_seller_account_syn")
        sql = f"select seller_id,account_name,id from ods_seller_account_syn " \
              f"where site_name='{self.site_name}'"
        self.df_seller_account = self.spark.sql(sqlQuery=sql)
        # 进行去重
        self.df_seller_account = self.df_seller_account.orderBy(self.df_seller_account.id.desc())
        self.df_seller_account = self.df_seller_account.drop_duplicates(['seller_id'])
        self.df_seller_account = self.df_seller_account.drop('id')
        print(sql)

        # 获取mysql:selection.accounts ,用于排除公司内部店铺
        print("获取 selection.accounts")
        sql = f"""
        select seller_id, 1 as is_self_fb from
            (select distinct seller_id  from selection.accounts) t1
        """
        conn_info = DBUtil.get_connection_info("mysql", "us")
        self.df_self_seller_id = SparkUtil.read_jdbc_query(
            session=self.spark,
            url=conn_info["url"],
            pwd=conn_info["pwd"],
            username=conn_info["username"],
            query=sql
        )

    def handle_fb_top_20(self):
        print("处理asin_detail_product的top20指标")
        self.df_top20_asin = self.df_top20_asin. \
            join(self.df_asin_history.select('asin', 'asin_launch_time'), on='asin', how='left')

        self.df_top20_asin = self.df_top20_asin.withColumn("is_asin_new",
                                                           self.udf_new_asin_flag(F.col('asin_launch_time'),
                                                                                  F.lit(self.cal_date)))
        self.df_top20_asin = self.df_top20_asin.groupby('seller_id').agg(
            F.avg('price').alias('top_20_avg_price'),
            F.avg('rating').alias('top_20_avg_rating'),
            F.avg('total_comments').alias('top_20_avg_total_comments'),
            F.sum('is_asin_new').alias('top_20_new_asin_num')
        )

    def handle_fb_cal_agg(self):
        print("处理店铺基础报表聚合数据")
        df_fb_join = self.df_fb_feedback.select('seller_id').join(
            self.df_fb_asin, on='seller_id', how='left'
        )

        df_fb_join = df_fb_join.join(
            self.df_asin_history, on='asin', how='left'
        ).join(
            self.df_asin_parent, on='asin', how='left'
        )

        # 计算是否新品
        df_fb_join = df_fb_join.withColumn("is_asin_new",
                                           self.udf_new_asin_flag(F.col('asin_launch_time'), F.lit(self.cal_date)))

        # 计算店铺-asin的打包数量
        df_fb_join = df_fb_join.withColumn('asin_package_quantity', self.u_judge_package_quantity(F.col('asin_title')))

        # 打包数量标记 打包数量>=2的商品数标识
        df_fb_join = df_fb_join.withColumn('is_pq_flag', F.when(F.col('asin_package_quantity') >= 2, F.lit(1)))

        # 补充parent_asin-如果为null则说明没有匹配到变体表中的asin,则设定parent_asin为自己
        df_fb_join = df_fb_join.withColumn('parent_asin', F.when(F.col('parent_asin').isNull(), F.col('asin'))
                                           .otherwise(F.col('parent_asin')))
        self.df_fb_asin_detail = df_fb_join.cache()

        fb_counts_agg = self.df_fb_asin_detail.groupby(['seller_id']).agg(
            F.count('asin').alias('fb_asin_total'),
            F.sum('is_asin_new').alias('fb_new_asin_num'),
            F.sum('is_pq_flag').alias('fb_pq_num')
        )

        # 计算新品比率
        fb_counts_agg = fb_counts_agg.withColumn('fb_new_asin_rate',
                                                 F.round(F.col('fb_new_asin_num') / F.col('fb_asin_total'), 4))

        # 计算打包数量比率
        fb_counts_agg = fb_counts_agg.withColumn('fb_pq_rate',
                                                 F.round(F.col('fb_pq_num') / F.col('fb_asin_total'), 4))

        fb_counts_agg = fb_counts_agg.select('seller_id', 'fb_new_asin_num', 'fb_pq_num',
                                             'fb_asin_total', 'fb_new_asin_rate', 'fb_pq_rate')

        # 计算店铺多数量占比 有变体asin数量/(有变体asin数量+单产品asin数量) 逻辑实现
        # 计算多变体比率
        df_variant_radio = self.df_fb_asin_detail.groupby(['seller_id', 'parent_asin']).agg(
            F.count('asin').alias('asin_son_count')
        )

        # 打上多变体标签 如果asin_son_count > 1则说明该店铺该asin存在多变体
        df_variant_radio = df_variant_radio.withColumn('is_variant_flag',
                                                       F.when(F.col('asin_son_count') > 1, F.lit(1)))

        # 按照seller_id再次聚合,得出多变体计算分子分母
        df_variant_radio = df_variant_radio.groupby(['seller_id']).agg(
            F.sum('is_variant_flag').alias('fb_more_variant_num'),
            F.count('parent_asin').alias('fb_variant_asin_total')
        )

        # 得出多变体比率
        df_variant_radio = df_variant_radio.withColumn('fb_variant_rate',
                                                       F.round(F.col('fb_more_variant_num') / F.col(
                                                           'fb_variant_asin_total'), 4))

        df_variant_radio = df_variant_radio.select('seller_id',
                                                   'fb_more_variant_num',
                                                   'fb_variant_asin_total',
                                                   'fb_variant_rate')

        # 合并计算结果
        self.df_fb_agg = self.df_fb_feedback.join(
            fb_counts_agg, on='seller_id', how='left'
        ).join(
            df_variant_radio, on='seller_id', how='left'
        ).join(
            self.df_top20_asin, on='seller_id', how='left'
        )

        # 关联公司店铺df,并标记是否公司内部店铺
        self.df_fb_agg = self.df_fb_agg.join(
            self.df_self_seller_id, on='seller_id', how='left'
        )

        # 没有关联上的赋值为0,则不是公司内部店铺
        self.df_fb_agg = self.df_fb_agg.na.fill({"is_self_fb": 0})

    # 输出数据集-report
    def save_data_report(self):
        # 关联ods_seller_account_syn,带回account_name-采用inner join过滤掉库中无店铺名称的数据
        df_save = self.df_fb_agg.join(self.df_seller_account, on='seller_id', how='inner')

        df_save = df_save.select(
            F.col('seller_id'),
            F.col('account_name'),
            F.col('fb_country_name'),
            F.col('fb_web_asin_num'),
            F.col('is_self_fb'),
            F.round('top_20_avg_price', 4).alias('top_20_avg_price'),
            F.round('top_20_avg_rating', 4).alias('top_20_avg_rating'),
            F.ceil('top_20_avg_total_comments').alias('top_20_avg_total_comments'),
            F.col('top_20_new_asin_num'),
            F.col('count_30_day_num'),
            F.col('count_1_year_num'),
            F.col('count_lifetime_num'),
            F.col('count_30_day_rate'),
            F.col('count_1_year_rate'),
            F.col('count_life_time_rate'),
            F.col('fb_new_asin_num'),
            F.col('fb_asin_total'),
            F.col('fb_new_asin_rate'),
            F.col('fb_variant_rate'),
            F.col('fb_more_variant_num'),
            F.col('fb_variant_asin_total'),
            F.col('fb_pq_rate'),
            F.col('fb_pq_num'),
            F.col('fb_crawl_date'),
            F.when(F.col('fb_country_name').isNull(), F.lit(0))
                .when(F.col('fb_country_name') == self.site_name.upper(), F.lit(1))
                .when(F.col('fb_country_name') == 'CN', F.lit(2))
                .otherwise(F.lit(3)).alias('fb_country_name_type'),
            F.when(F.col('fb_asin_total').isNull(), F.lit(0))
                .when(F.col('fb_asin_total') <= 300, F.lit(1))
                .when(F.col('fb_asin_total') <= 1000, F.lit(2))
                .otherwise(F.lit(3)).alias('fb_account_type'),
            F.when(F.col('fb_asin_total').isNull(), F.lit(0))
                .when(F.col('fb_asin_total') == 0, F.lit(1))
                .when(F.col('fb_asin_total') <= 50, F.lit(2))
                .when(F.col('fb_asin_total') <= 200, F.lit(3))
                .when(F.col('fb_asin_total') <= 500, F.lit(4))
                .when(F.col('fb_asin_total') <= 1000, F.lit(5))
                .when(F.col('fb_asin_total') <= 5000, F.lit(6))
                .when(F.col('fb_asin_total') <= 10000, F.lit(7))
                .otherwise(F.lit(8)).alias('fb_asin_total_type'),
            F.when(F.col('fb_new_asin_num').isNull(), F.lit(0))
                .when(F.col('fb_new_asin_num') == 0, F.lit(1))
                .when(F.col('fb_new_asin_num') <= 5, F.lit(2))
                .when(F.col('fb_new_asin_num') <= 10, F.lit(3))
                .when(F.col('fb_new_asin_num') <= 20, F.lit(4))
                .when(F.col('fb_new_asin_num') <= 30, F.lit(5))
                .when(F.col('fb_new_asin_num') <= 50, F.lit(6))
                .when(F.col('fb_new_asin_num') <= 100, F.lit(7))
                .otherwise(F.lit(8)).alias('fb_new_asin_num_type'),
            F.when(F.col('fb_new_asin_rate').isNull(), F.lit(0))
                .when(F.col('fb_new_asin_rate') == 0, F.lit(1))
                .when(F.col('fb_new_asin_rate') <= 0.05, F.lit(2))
                .when(F.col('fb_new_asin_rate') <= 0.1, F.lit(3))
                .when(F.col('fb_new_asin_rate') <= 0.2, F.lit(4))
                .when(F.col('fb_new_asin_rate') <= 0.5, F.lit(5))
                .otherwise(F.lit(6)).alias('fb_new_asin_rate_type'),
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('created_time'),
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('updated_time'),
            F.lit(None).alias('usr_mask_type'),
            F.lit(None).alias('usr_mask_progress'),
            F.lit(self.site_name).alias('site_name'),
            F.lit(self.date_type).alias('date_type'),
            F.lit(self.date_info).alias('date_info')
        )

        # CommonUtil.check_schema(self.spark, df_save, self.hive_tb)

        print(f"清除hdfs目录中:{self.hdfs_path}")
        HdfsUtils.delete_file_in_folder(self.hdfs_path)

        df_save = df_save.repartition(1)
        partition_by = ["site_name", "date_type", "date_info"]
        print(f"当前存储的表名为:{self.hive_tb},分区为{partition_by}", )
        df_save.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=partition_by)
        print("success")

    # 输出数据集-asin_info
    def save_data_asin_info(self):
        # 只保留新品的详情
        self.df_fb_asin_detail = self.df_fb_asin_detail.filter('is_asin_new = 1')
        # 关联ods_seller_account_syn,带回account_name-采用inner join过滤掉库中无店铺名称的数据;
        df_save_asin = self.df_fb_asin_detail.join(self.df_seller_account, on='seller_id', how='inner')
        df_save_asin = df_save_asin.select(
            F.col('seller_id'),
            F.col('account_name'),
            F.col('asin'),
            F.col('asin_title'),
            F.col('asin_launch_time'),
            F.col('is_asin_new'),
            F.col('asin_package_quantity'),
            F.col('is_pq_flag'),
            F.col('parent_asin'),
            F.col('asin_img_url'),
            F.col('asin_price'),
            F.col('asin_rating'),
            F.col('asin_total_comments'),
            F.col('asin_weight'),
            F.col('asin_volume'),
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('created_time'),
            F.date_format(F.current_timestamp(), 'yyyy-MM-dd HH:mm:SS').alias('updated_time'),
            F.lit(self.site_name).alias('site_name'),
            F.lit(self.date_type).alias('date_type'),
            F.lit(self.date_info).alias('date_info')
        )

        hive_tb_name = 'dwt_fb_asin_info'
        hdfs_path_asin_info = CommonUtil.build_hdfs_path(hive_tb_name, partition_dict=self.partition_dict)
        print(f"清除hdfs目录中:{hdfs_path_asin_info}")
        HdfsUtils.delete_file_in_folder(hdfs_path_asin_info)

        df_save_asin = df_save_asin.repartition(50)
        partition_by = ["site_name", "date_type", "date_info"]
        print(f"当前存储的表名为:{hive_tb_name},分区为{partition_by}", )
        df_save_asin.write.saveAsTable(name=hive_tb_name, format='hive', mode='append', partitionBy=partition_by)
        print("success")

    def run(self):
        self.read_data()
        self.handle_fb_top_20()
        self.handle_fb_cal_agg()
        self.save_data_report()
        self.save_data_asin_info()


if __name__ == '__main__':
    site_name = CommonUtil.get_sys_arg(1, None)
    date_type = CommonUtil.get_sys_arg(2, None)
    date_info = CommonUtil.get_sys_arg(3, None)  # 参数3:年-周/年-月/年-季/年-月-日, 比如: 2022-1
    obj = DwtFbBaseReport(site_name=site_name, date_type=date_type, date_info=date_info)
    obj.run()