common_util.py
79.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
import calendar
import json
import os
import sys
from datetime import timedelta
from enum import Enum
from typing import Dict
import requests
from textblob import Word
sys.path.append(os.path.dirname(sys.path[0]))
from pyspark.sql import functions as F
from pyspark.sql.dataframe import DataFrame
from pyspark.sql.session import SparkSession
from pyspark.sql.types import *
from pyspark.sql import Window
from utils.db_util import DBUtil
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from utils.ssh_util import SSHUtil
from utils.es_util import EsUtils
from utils.DolphinschedulerHelper import DolphinschedulerHelper
from datetime import datetime
from yswg_utils.common_udf import udf_parse_amazon_orders
from utils.StarRocksHelper import StarRocksHelper
class DateTypes(Enum):
"""
日期格式枚举
"""
day = "day"
last30day = "last30day"
week = "week"
month = "month"
month_week = "month_week"
month_old = "month_old"
last365day = "last365day"
year = "year"
class CommonUtil(object):
__SITE_SET__ = {'us', 'uk', 'de', 'fr', 'es', 'it', 'au', 'ca'}
__sqoop_home__ = "/opt/module/sqoop-1.4.6/bin/sqoop"
__sqoop_1_4_7_home__ = "/mnt/opt/module/sqoop-1.4.7/bin/sqoop"
__python_home__ = "/opt/module/anaconda3/envs/pyspark/bin/python3.8"
__desploy_home__ = "/opt/module/spark/demo/py_demo"
# __hive_home__ = "/opt/module/hive/bin/hive"
__hive_home__ = "/opt/datasophon/hive-3.1.0/bin/hive"
__hadoop_home__ = "/opt/module/hadoop/bin/hadoop"
__msg_usr__ = ['wujicang', 'huangjian', 'fangxingjun', 'chenjianyun', 'wangrui4']
_date_time_format = "yyyy-MM-dd HH:mm:ss"
_py_date_time_format = '%Y-%m-%d %H:%M:%S'
_py_date_format = '%Y-%m-%d'
__start_time_of_morning_str__ = "08:00"
__end_time_of_morning_str__ = "12:30"
__start_time_of_afternoon_str__ = "14:00"
__end_time_of_afternoon_str__ = "19:00"
__export_process_map__ = {
"新ABA流程": ['dwt_aba_st_analytics.py', 'dwd_st_volume_fba.py', 'dwt_aba_st_analytics_report_pg.py',
'dwt_aba_last_change_rate.py', 'dwt_st_market_pg.py'],
"反查搜索词": ['dwt_st_asin_reverse.py'],
"店铺流程": ['dwt_fb_asin_info.py', 'dwt_fb_base_report.py', 'dwt_fb_category_report.py', 'dwt_fb_top20_asin_info.py'],
"流量选品": ['es_flow_asin.py']
}
u_parse_amazon_orders = F.udf(udf_parse_amazon_orders, IntegerType())
"""
一般工具类
"""
@classmethod
def to_int(cls, obj, defval=None):
"""
安全转为 int
:param obj:
:param defval: 默认值
:return:
"""
if CommonUtil.notBlank(obj):
return int(obj)
return defval
@classmethod
def to_float(cls, obj, defval=None):
"""
安全转为 float
:param obj:
:param defval:默认值
:return:
"""
if CommonUtil.notBlank(obj):
return float(obj)
return defval
@classmethod
def to_str(cls, obj, defval=None):
"""
安全转为 str
:param obj:
:param defval:默认值
:return:
"""
if CommonUtil.notBlank(obj):
return str(obj)
return defval
@staticmethod
def reset_partitions(site_name, partitions_num=10):
"""
按不同站点划分分区数量
:param site_name: 站点名称
:param partitions_num: 自定义分区数量
:return: partitions_num
"""
print("重置分区数")
if site_name in ['us']:
partitions_num = partitions_num
elif site_name in ['uk', 'de']:
partitions_num = partitions_num // 2 if partitions_num // 2 > 0 else 1
elif site_name in ['es', 'fr', 'it']:
partitions_num = partitions_num // 4 if partitions_num // 4 > 0 else 1
return partitions_num
@staticmethod
def split_month_week_date(date_type, date_info):
"""
对month类型和week类型date_info进行拆解
:param date_type: 分区类型
:param date_info: 入参时间
:return: d1 d2
"""
if date_type == DateTypes.week.name:
year, week = date_info.split('-')
return int(year), int(week)
elif date_type == DateTypes.month.name:
year, month = date_info.split('-')
return int(year), int(month)
elif date_type == DateTypes.month_week.name:
year, month = date_info.split('-')
return int(year), int(month)
@staticmethod
def safeIndex(list: list, index: int, default: object = None):
"""
安全获取list的索引对应的值
:param list: 列表
:param index: 索引
:param default: 默认值
:return:
"""
if (index <= len(list) - 1):
return list[index]
return default
@staticmethod
def get_calDay_by_dateInfo(spark_session: SparkSession, date_type: str, date_info: str):
"""
根据不同日期维度,获取当前维度下的最后一天
:param spark_session: sparksession对象
:param date_type: 日期类型
:param date_info: 日期值
:return: cal_date:根据不同日期维度,获取当前维度下的最后一天
"""
assert date_type is not None, "date_type不能为空!"
assert date_info is not None, "date_info不能为空!"
df_date = spark_session.sql(f"select * from dim_date_20_to_30;")
df = df_date.toPandas()
if date_type in [DateTypes.day.name, DateTypes.last30day.name]:
cal_day = date_info
# 如果为 周、月则取该周、月的最后一日,作为新品计算基准日
elif date_type in [DateTypes.week.name, DateTypes.month.name]:
sorted_df = df.loc[df[f'year_{date_type}'] == f"{date_info}"].sort_values('date', ascending=False)
cal_day = sorted_df.head(1)['date'].iloc[0]
elif date_type == '4_week':
sorted_df = df.loc[(df.year_week == f"{date_info}")].sort_values('date', ascending=False)
cal_day = sorted_df.head(1)['date'].iloc[0]
elif date_type == DateTypes.month_week.name:
current_date = datetime.now().date()
cal_day = current_date.strftime("%Y-%m-%d")
else:
return None
print("cal_day:", str(cal_day))
return str(cal_day)
@staticmethod
def get_rel_exception_info():
import sys
exc_type, exc_value, exc_traceback = sys.exc_info()
print(exc_traceback)
return exc_type, f"""{exc_value} in {exc_traceback.tb_frame.f_code.co_filename} {exc_traceback.tb_lineno} line"""
@staticmethod
def get_sys_arg(index: int, defVal: object):
"""
获取main系统输入参数脚标从1开始
:param index: 索引
:param defVal: 默认值
:return:
"""
return CommonUtil.safeIndex(sys.argv, index, defVal)
@staticmethod
def listNotNone(listVal: list = None):
"""
判断是否是空数组
"""
return listVal is not None or len(listVal) > 0
@staticmethod
def notNone(obj: object = None):
"""
判断是否是None
"""
return obj is not None
@staticmethod
def notBlank(strVal: str = None):
"""
判断是否是空字符串
"""
return strVal is not None and strVal != ''
@staticmethod
def get_day_offset(day: str, offset: int):
"""
获取日期偏移值
:param day: 类似 2022-11-01
:param offset: 偏移值
:return: 过去或将来的时间
"""
pattern = "%Y-%m-%d"
rel_day = datetime.strptime(day, pattern)
d = rel_day + timedelta(days=offset)
return d.strftime(pattern)
@staticmethod
def get_month_offset(month: str, offset: int):
"""
获取月份偏移值
:param month: 类似 2022-11
:param offset: 偏移值
:return: 过去或将来的月份
"""
year_int = int(CommonUtil.safeIndex(month.split("-"), 0, None))
month_int = int(CommonUtil.safeIndex(month.split("-"), 1, None))
if offset > 0:
for i in range(0, offset):
year_int, month_int = calendar._nextmonth(year_int, month_int)
if offset < 0:
for i in range(0, abs(offset)):
year_int, month_int = calendar._prevmonth(year_int, month_int)
return datetime(year_int, month_int, 1).strftime("%Y-%m")
@staticmethod
def reformat_date(date_str: str, from_format: str, to_format: str):
"""
重新格式化日期
:param date_str:
:param from_format:
:param to_format:
:return:
"""
return datetime.strptime(date_str, from_format).strftime(to_format)
@staticmethod
def format_now(from_format: str):
now = datetime.now()
return datetime.strftime(now, from_format)
@staticmethod
def format_timestamp(timestamp: int, format: str = _py_date_time_format):
"""
格式化毫秒级别时间戳
:param timestamp:
:param format:
:return:
"""
from datetime import datetime
return datetime.strftime(datetime.fromtimestamp(timestamp / 1000), format)
@staticmethod
def calculate_date_offset(date1, date2):
"""
计算日期偏移量
:param date1: 日期1 格式:%Y-%m-%d
:param date2: 日期2 格式:%Y-%m-%d
:return: 日期差值
"""
if date1 is None or date2 is None:
return None
date_format = "%Y-%m-%d"
try:
# 将日期字符串转换为 datetime 对象
datetime1 = datetime.strptime(date1, date_format)
datetime2 = datetime.strptime(date2, date_format)
# 计算日期的偏移量
offset = abs((datetime2 - datetime1).days)
return offset
except ValueError:
# 日期字符串格式不正确
return None
@staticmethod
def list_to_insql(arr: list):
"""
数组转为in中的sql
:param arr:
:return:
"""
return str.join(",", list(map(lambda item: f"'{item}'", arr)))
@staticmethod
def arr_to_spark_col(arr: list):
"""
python数组转为df中的数组
"""
return F.array(list(map(lambda item: F.lit(item), arr)))
@staticmethod
def build_es_option(site_name="us"):
"""
构建spark导出用 es参数
"""
site_port = {
"us": 9200,
"uk": 9201,
"de": 9201,
}
return {
"es.nodes": "120.79.147.190",
"es.port": site_port[site_name],
"es.net.http.auth.user": "elastic",
"es.net.http.auth.pass": "selection2021.+",
"es.nodes.wan.only": True,
"es.index.auto.create": True
}
@staticmethod
def str_compress(strLines: str):
"""
多行字符串压缩
:param strLines:
:return:
"""
strArr = []
splitArr = strLines.splitlines()
for s in splitArr:
strArr.append(s.strip())
return ' '.join(strArr)
@staticmethod
def build_export_sh(site_name: str,
db_type: str,
hive_tb: str,
export_tb: str,
col: list,
partition_dict: dict,
num_mappers=20
):
conn_info = DBUtil.get_connection_info(db_type, site_name)
cols = str.join(",", col)
if len(partition_dict.keys()) > 0:
p_keys = str.join(",", partition_dict.keys())
p_values = str.join(",", partition_dict.values())
return f"""
{CommonUtil.__sqoop_home__} export -D mapred.job.queue.name=default -D mapred.task.timeout=0 \\
--connect {conn_info['url']} \\
--username {conn_info['username']} \\
--password {conn_info['pwd']} \\
--table {export_tb} \\
--input-fields-terminated-by '\\001' \\
--hcatalog-database big_data_selection \\
--hcatalog-table {hive_tb} \\
--hcatalog-partition-keys {p_keys} \\
--hcatalog-partition-values {p_values} \\
--input-null-string '\\\\N' \\
--input-null-non-string '\\\\N' \\
--num-mappers {num_mappers} \\
--columns {cols} \\
--outdir "/tmp/sqoop/"
"""
return f"""
{CommonUtil.__sqoop_home__} export -D mapred.job.queue.name=default -D mapred.task.timeout=0 \\
--connect {conn_info['url']} \\
--username {conn_info['username']} \\
--password {conn_info['pwd']} \\
--table {export_tb} \\
--input-fields-terminated-by '\\001' \\
--hcatalog-database big_data_selection \\
--hcatalog-table {hive_tb} \\
--input-null-string '\\\\N' \\
--input-null-non-string '\\\\N' \\
--num-mappers {num_mappers} \\
--columns {cols} \\
--outdir "/tmp/sqoop/"
"""
@staticmethod
def build_import_sh_tmp_inner(conn_info: Dict,
query: str,
hive_tb_name: str,
map_num: int = 1,
split_by: str = None
):
"""
直接导入到临时内部临时表用于一次性计算用
:param conn_info:
:param query:
:param hive_tb_name:
:return:
"""
default_db = 'big_data_selection'
cmd = f"""
{CommonUtil.__sqoop_home__} yswg_import -D mapred.job.queue.name=default -D mapred.task.timeout=0 \\
--connect {conn_info['url']} \\
--username {conn_info['username']} \\
--password {conn_info['pwd']} \\
--query "{query}" \\
--mapreduce-job-name f"sqoop_task{hive_tb_name}" \\
--hcatalog-database {default_db} \\
--create-hcatalog-table \\
--hcatalog-table {hive_tb_name} \\
--fields-terminated-by '\\t' \\
--hive-drop-import-delims \\
--null-string '\\\\N' \\
--null-non-string '\\\\N' \\
--m {map_num} \\
--split-by {split_by} \\
--outdir "/tmp/sqoop/"
"""
return cmd
@staticmethod
def build_hive_import_sh(site_name: str,
db_type: str,
query: str,
hive_table: str,
partition_dict: dict
):
"""
导入到 hive 内部表指定分区 注意使用 orcfile 格式进行压缩
"""
default_db = 'big_data_selection'
conn_info = DBUtil.get_connection_info(db_type, site_name)
# 对query中的特殊字符自动转义
query = query.strip()
query = query.replace("`", r"\`")
keys = ",".join(partition_dict.keys())
values = ",".join(partition_dict.values())
return f"""
{CommonUtil.__sqoop_home__} yswg_import -D mapred.job.queue.name=default -D mapred.task.timeout=0 \\
--connect {conn_info['url']} \\
--username {conn_info['username']} \\
--password {conn_info['pwd']} \\
--query "{query}" \\
--mapreduce-job-name f"sqoop_task{hive_table}" \\
--hcatalog-database {default_db} \\
--hcatalog-table {hive_table} \\
--hcatalog-partition-keys {keys} \\
--hcatalog-partition-values {values} \\
--hcatalog-storage-stanza "stored as orcfile" \\
--m 1 \\
--outdir "/tmp/sqoop/"
"""
@staticmethod
def build_import_sh(site_name: str,
db_type: str,
query: str,
hdfs_path: str,
map_num: int = 1,
key: str = None
):
"""
导入到hdfs外部表
:param site_name:
:param db_type:
:param query:
:param hdfs_path:
:param map_num:
:param key:
:return:
"""
conn_info = DBUtil.get_connection_info(db_type, site_name)
# 对query中的特殊字符自动转义
query = query.strip()
query = query.replace("`", r"\`")
start_name = CommonUtil.get_start_name_from_hdfs_path(hdfs_path)
if start_name:
start_name = "sqoop_task:"+start_name
else:
start_name = "sqoop_task"
return f"""
{CommonUtil.__sqoop_home__} yswg_import -D mapred.job.queue.name=default -D mapred.task.timeout=0 --append \\
--connect {conn_info['url']} \\
--username {conn_info['username']} \\
--password {conn_info['pwd']} \\
--target-dir {hdfs_path} \\
--mapreduce-job-name "{start_name}" \\
--query "{query}" \\
--fields-terminated-by '\\t' \\
--hive-drop-import-delims \\
--null-string '\\\\N' \\
--null-non-string '\\\\N' \\
--compress \\
-m {map_num} \\
--split-by {key} \\
--compression-codec lzop \\
--outdir "/tmp/sqoop/"
"""
@staticmethod
def after_import(hdfs_path: str, hive_tb: str):
"""
导入hdfs后对hive表进行压缩和分区修复
:param hdfs_path:
:param hive_tb:
:return:
"""
cmd = rf"""
{CommonUtil.__hadoop_home__} jar \
/opt/module/hadoop/share/hadoop/common/hadoop-lzo-0.4.20.jar \
com.hadoop.compression.lzo.DistributedLzoIndexer -Dmapreduce.job.queuename=default -Dmapreduce.framework.name=local\
{hdfs_path}
"""
print("lzo 压缩中")
print(cmd)
client = SSHUtil.get_ssh_client()
SSHUtil.exec_command_async(client, cmd, ignore_err=False)
print(f"修复表{hive_tb}中")
cmd = rf"""{CommonUtil.__hive_home__} -e "set hive.msck.path.validation=ignore; msck repair table big_data_selection.{hive_tb};" """
print(cmd)
SSHUtil.exec_command_async(client, cmd, ignore_err=False)
client.close()
pass
@staticmethod
def hive_cmd_exec(cmd: str):
"""
使用命令行直接执行执行hive命令
"""
import os
hive_cmd = rf"""{CommonUtil.__hive_home__} -e '{cmd}' """
print(f"执行hive命令中{hive_cmd}")
os.system(hive_cmd)
# client = SSHUtil.get_ssh_client()
# SSHUtil.exec_command_async(client, hive_cmd, ignore_err=False)
# client.close()
pass
@staticmethod
def orctable_concatenate(hive_table: str,
partition_dict: Dict,
innerFlag: bool = False,
min_part_num: int = 5,
max_retry_time: int = 10):
# 查看有多少分区小文件
path = CommonUtil.build_hdfs_path(hive_table, partition_dict, innerFlag)
part_list = HdfsUtils.read_list(path)
if part_list is None:
return
retry_time = 0
partition = []
for key in partition_dict.keys():
partition.append(f""" {key}="{partition_dict.get(key)}" """)
default_db = 'big_data_selection'
partition_str = ",".join(partition)
while len(part_list) > min_part_num and retry_time <= max_retry_time:
# 先进行修复
# CommonUtil.hive_cmd_exec(f"""msck repair table {default_db}.{hive_table};""")
if len(partition_dict) == 0:
# 表进行小文件合并
CommonUtil.hive_cmd_exec(f"""alter table {default_db}.{hive_table} concatenate;""")
else:
# 分区进行小文件合并
CommonUtil.hive_cmd_exec(f"""alter table {default_db}.{hive_table} partition ({partition_str}) concatenate;""")
part_list = HdfsUtils.read_list(path)
pass
pass
@staticmethod
def check_schema(spark_session: SparkSession, df_schema: DataFrame, save_tb_name: str, filter_cols: list = None):
"""
schema验证,可验证数仓中save_table与传入的df的schema的差异
:param spark_session: spark任务对象
:param df_schema: 需要比较的df
:param save_tb_name: 存储表
:param filter_cols: 不参与比较的字段过滤,不想参与比较的字段可以写在该list中;
:return:DataFrame:返回有差异的字段数据的DataFrame
"""
# 基础不比较的过滤字段
base_filter_cols = ['site_name', 'date_type', 'date_info']
sql = f"select * from {save_tb_name} limit 0"
tb_schema = spark_session.sql(sql).schema
# filter_cols 用于维护不参与对比的字段
if filter_cols is None:
filter_cols = base_filter_cols
else:
filter_cols = base_filter_cols.extend(filter_cols)
list1 = []
list2 = []
for item in tb_schema.fields:
if item.name not in filter_cols:
list1.append((item.name, item.dataType.simpleString()))
for item in df_schema.schema.fields:
if item.name not in filter_cols:
list2.append((item.name, item.dataType.simpleString()))
df1 = spark_session.createDataFrame(list1, ('name', 'type'))
df2 = spark_session.createDataFrame(list2, ('name', 'type'))
show_df = df1.join(df2, "name", how="outer").select(
df1.name.alias("hive_column"),
df1.type.alias("hive_column_type"),
df2.name.alias("df_column"),
df2.type.alias("df_column_type"),
).cache()
show_df.show(n=300, truncate=False)
# 筛选出两表不一致字段展示
show_df_diff = show_df.filter('hive_column is null or df_column is null')
show_df_diff.show(n=300, truncate=False)
# 如果为空说明没有不一致字段,则为true,否则有不一致字段为false
schema_flag = show_df_diff.count() == 0
return schema_flag
@staticmethod
def check_ods_sync_schema(spark_session: SparkSession, import_table: str, db_type: str, site_name: str,
hive_table: str, msg_usr: list = __msg_usr__):
"""
校验ods层schema是否变动--检查的是ods与hive的schema
:param spark_session: spark任务对象
:param import_table: ods层对应导入表
:param db_type: ods导入链接类型 mysql / pgsql
:param site_name: 站点
:param hive_table: 对应导入的hive ods表
:param msg_usr: 通知人list--不填写则默认群发
"""
schema_sql = f"select * from {import_table} limit 0"
conn_info = DBUtil.get_connection_info(db_type, site_name)
df_schema = SparkUtil.read_jdbc_query(
session=spark_session,
url=conn_info["url"],
pwd=conn_info["pwd"],
username=conn_info["username"],
query=schema_sql
)
schema_flag = CommonUtil.check_schema(spark_session, df_schema, hive_table)
# Todo 这里发送消息提醒的验证需要进一步确认
if not schema_flag:
msg = f"{hive_table} 与 {import_table} 数据得schema不一致,请查看日志!! "
CommonUtil.send_wx_msg(msg_usr, f"\u26A0 {hive_table}同步schema校验异常 \u26A0", msg)
pass
@staticmethod
def check_tb_schema_same(spark_session: SparkSession, tb1_name: str, tb2_name: str):
"""
检查两个表表结构是不是一样的
:param tb1_name: 表1
:param tb2_name: 表2
:return:
"""
tb_schema1 = spark_session.sql(f"select * from {tb1_name} limit 0")
tb_schema2 = spark_session.sql(f"select * from {tb2_name} limit 0")
list1 = []
list2 = []
for i, item in enumerate(tb_schema1.schema.fields):
list1.append((item.name, item.dataType.simpleString(), i))
for i, item in enumerate(tb_schema2.schema.fields):
list2.append((item.name, item.dataType.simpleString(), i))
df1 = spark_session.createDataFrame(list1, ('name', 'type', "index"))
df2 = spark_session.createDataFrame(list2, ('name', 'type', "index"))
show_df = df2.join(df1, "index", how="left").select(
df2['index'].alias("index"),
df2.name.alias(f"表2{tb2_name}字段"),
df2.type.alias(f"表2{tb2_name}类型"),
df1.name.alias(f"表1{tb1_name}字段"),
df1.type.alias(f"表1{tb1_name}类型"),
F.when(df1['name'] == df2['name'], F.lit(1)).otherwise(0).alias("是否一致")
)
# 如果最小值返回的为0,则为false:说明有不一致的;如果最小值为1,则为true:说明没有不一致
schema_flag = bool(show_df.select(F.min("是否一致").alias("result")).first().asDict()['result'])
if not schema_flag:
show_df.show(n=300, truncate=False)
return schema_flag
@staticmethod
def check_schema_before_import(db_type: str,
site_name: str,
query: str,
hive_tb_name: str,
msg_usr: list = __msg_usr__,
partition_dict: Dict = None):
"""
导入前进行原始表数据检查,以及导入query顺序检查
:param db_type: 原始表db链接类型
:param site_name: 站点
:param query: 导入时查询语句
:param hive_tb_name: 导入的hive表名称
:param msg_usr: 异常消息通知人
:param partition_dict: 同步条件dict
:return: empty_flag、schema_flag
"""
if partition_dict is not None:
msg_params = ""
for key, value in partition_dict.items():
if value is not None:
msg_params += f"{value} "
else:
msg_params = ""
spark_session = SparkUtil.get_spark_session("check_schema")
rel_query = query.strip()
rel_query = rel_query.replace(f"and \$CONDITIONS", "")
if "limit" in rel_query:
rel_query = rel_query[:rel_query.find("limit")]
rel_query = f"""{rel_query} limit 1"""
conn_info = DBUtil.get_connection_info(db_type, site_name)
import_tb_schema = SparkUtil.read_jdbc_query(
session=spark_session,
url=conn_info["url"],
pwd=conn_info["pwd"],
username=conn_info["username"],
query=rel_query
)
# 如果为空则为true,否则false
empty_flag = import_tb_schema.count() == 0
if empty_flag:
person_in_charge = ",".join(msg_usr)
msg = f"任务信息:{hive_tb_name} {msg_params}\n负责人:{person_in_charge}"
msg_usr = msg_usr + ['chenyuanjie', 'chenjianyun', 'leichao', 'chenbo']
CommonUtil.send_wx_msg(msg_usr, "\u26A0 数据同步异常", msg)
spark_session.stop()
raise Exception(msg)
sql = f"select * from {hive_tb_name} limit 0"
tb_schema = spark_session.sql(sql)
list1 = []
list2 = []
for i, item in enumerate(tb_schema.schema.fields):
list1.append((item.name, item.dataType.simpleString(), i))
for i, item in enumerate(import_tb_schema.schema.fields):
list2.append((item.name, item.dataType.simpleString(), i))
df1 = spark_session.createDataFrame(list1, ('name', 'type', "index"))
df2 = spark_session.createDataFrame(list2, ('name', 'type', "index"))
show_df = df2.join(df1, "index", how="left").select(
df2['index'].alias("index"),
df2.name.alias(f"导入表字段"),
df2.type.alias(f"导入表类型"),
df1.name.alias(f"hive表{hive_tb_name}字段"),
df1.type.alias(f"hive表{hive_tb_name}类型"),
F.when(df1['name'] == df2['name'], F.lit(1)).otherwise(0).alias("是否一致")
)
show_df.show(n=300, truncate=False)
# 如果最小值返回的为0,则为false:说明有不一致的;如果最小值为1,则为true:说明没有不一致
schema_flag = bool(show_df.select(F.min("是否一致").alias("result")).first().asDict()['result'])
if not schema_flag:
person_in_charge = ",".join(msg_usr)
msg = f"任务信息:{hive_tb_name} {msg_params}\n负责人:{person_in_charge}"
msg_usr = msg_usr + ['chenyuanjie', 'chenjianyun', 'leichao', 'chenbo']
CommonUtil.send_wx_msg(msg_usr, "\u26A0 数据同步异常", msg)
spark_session.stop()
raise Exception(msg)
spark_session.stop()
return empty_flag, schema_flag
@staticmethod
def check_import_sync_num(db_type: str,
partition_dict: Dict,
import_query: str,
hive_tb_name: str,
msg_usr: list = __msg_usr__):
"""
导入前进行原始表数据检查,以及导入query顺序检查
:param db_type: 原始表db链接类型
:param partition_dict: 入参dict
:param import_query: 导入的原始表查询query
:param hive_tb_name: 导入的hive表名称
:param msg_usr: 异常消息通知人
:return:
"""
spark_session = SparkUtil.get_spark_sessionV3("check_sync_num")
site_name = partition_dict.get("site_name")
conn_info = DBUtil.get_connection_info(db_type, site_name)
# 根据query解析可以获取真实where 条件
import_query = import_query.replace(f"and \$CONDITIONS", "").strip()
table_where_query = import_query.split("from")[1]
select_count_query = "select count(1) as import_total_num from"
import_count_sql = select_count_query + table_where_query
print(import_count_sql)
import_tb_df = SparkUtil.read_jdbc_query(
session=spark_session,
url=conn_info["url"],
pwd=conn_info["pwd"],
username=conn_info["username"],
query=import_count_sql
)
import_tb_count = import_tb_df.collect()[0]['import_total_num']
# 解析partition_dict获取分区查询条件
partition_conditions = []
msg_params = ""
for key, value in partition_dict.items():
if value is not None:
partition_conditions.append(f"{key} = '{value}'")
msg_params += f"{value} "
# 拼接分区查询语句
partition_query = f"SELECT count(1) as hive_total_num FROM {hive_tb_name}"
if partition_conditions:
partition_query += f" WHERE {' AND '.join(partition_conditions)}"
hive_tb_count = spark_session.sql(partition_query).collect()[0]['hive_total_num']
# 判断两者数量是否一致
total_num_flag = bool(import_tb_count == hive_tb_count)
print(f"import_total_num:{import_tb_count}")
print(f"{hive_tb_name} total_num:{hive_tb_count}")
if not total_num_flag:
person_in_charge = ",".join(msg_usr)
msg = f"任务信息:{hive_tb_name} {msg_params}\n负责人:{person_in_charge}"
msg_usr = msg_usr + ['chenyuanjie', 'chenjianyun', 'leichao', 'chenbo']
CommonUtil.send_wx_msg(msg_usr, "\u26A0 数据同步异常", msg)
spark_session.stop()
raise Exception(msg)
spark_session.stop()
@staticmethod
def check_fields_and_warning(hive_tb_name: str, partition_dict: Dict):
"""
对配置表(hive_field_verify_config) 配置的相应表和相应字段进行校验
:param hive_tb_name:校验表的表名
:param partition_dict:校验表的分区条件
:param msg_usr:异常消息通知人
:return:
"""
# 获取计算分区
msg_params = ""
for key, value in partition_dict.items():
if value is not None:
msg_params += f"{value} "
base_msg = f"{hive_tb_name} {msg_params} "
site_name = partition_dict.get("site_name")
date_type = partition_dict.get("date_type")
spark_session = SparkUtil.get_spark_sessionV3("check_fields_rule")
# 获取维护的字段验证配置表数据
config_table_query = f"""select * from hive_field_verify_config
where table_name ='{hive_tb_name}'
and site_name = '{site_name}'
and use_flag = 1 """
conn_info = DBUtil.get_connection_info('mysql', 'us')
check_field_df = SparkUtil.read_jdbc_query(
session=spark_session,
url=conn_info["url"],
pwd=conn_info["pwd"],
username=conn_info["username"],
query=config_table_query
)
check_field_list = check_field_df.select('field_name', 'verify_desc', 'verify_type', 'config_json',
'msg_usr_list').collect()
if not check_field_list:
print("============================无验证匹配条件跳过验证===================================")
return
for row in check_field_list:
field_name = row['field_name']
verify_type = row['verify_type']
config_json = json.loads(row['config_json'])
msg_usr = row['msg_usr_list']
msg_usr_list = [user.strip() for user in msg_usr.split(",")] if msg_usr else []
if verify_type == "空值率验证":
query = CommonUtil.generate_null_ratio_query(table_name=hive_tb_name,
field_name=field_name,
partition_dict=partition_dict)
ratio_df = spark_session.sql(query).cache()
ratio_num = float(ratio_df.collect()[0]['null_ratio'])
waring_max = float(config_json['max'])
ratio_df = ratio_df.select(
F.col('field_name').alias('校验字段'),
F.lit(verify_type).alias('校验类型'),
F.col('null_ratio').alias('校验字段空值率'),
F.lit(waring_max).alias('空值率阈值'),
F.when((F.col('null_ratio') < waring_max), 1).otherwise(0).alias('是否验证通过')
)
ratio_df.show(10, truncate=False)
if ratio_num >= waring_max:
# 进行微信推送
msg = f"{base_msg} 字段:{field_name}的{verify_type}不通过,请注意该字段的使用!!"
CommonUtil.send_wx_msg(msg_usr_list, f"\u26A0 {hive_tb_name} {msg_params}数据{verify_type}异常",
msg)
elif verify_type == "最大最小值验证":
query = CommonUtil.generate_min_max_query(table_name=hive_tb_name,
field_name=field_name,
partition_dict=partition_dict)
ratio_df = spark_session.sql(query).cache()
field_max_vale = float(ratio_df.collect()[0]['max_value'])
field_min_vale = float(ratio_df.collect()[0]['min_value'])
waring_max = float(config_json['max'])
waring_min = float(config_json['min'])
ratio_df = ratio_df.select(
F.col('field_name').alias('校验字段'),
F.lit(verify_type).alias('校验类型'),
F.col('max_value').alias('校验字段最大值'),
F.col('min_value').alias('校验字段最小值'),
F.lit(waring_max).alias('最大值上限'),
F.lit(waring_min).alias('最小值下限'),
F.when((F.col('max_value') <= waring_max) | (F.col('min_value') >= waring_min), 1).otherwise(
0).alias('是否验证通过')
)
ratio_df.show(10, truncate=False)
if field_max_vale > waring_max:
# 进行微信推送
msg = f"{base_msg} 字段:{field_name}的最大值上限验证不通过,请注意该字段的使用!!"
CommonUtil.send_wx_msg(msg_usr_list, f"\u26A0 {hive_tb_name} {msg_params}数据{verify_type}异常",
msg)
if field_min_vale < waring_min:
# 进行微信推送
msg = f"{base_msg} 字段:{field_name}的最小值下限验证不通过,请注意该字段的使用!!"
CommonUtil.send_wx_msg(msg_usr_list, f"\u26A0 {hive_tb_name} {msg_params}数据{verify_type}异常",
msg)
# elif verify_type == "数据量合法验证":
# sql_condition = config_json['sql_condition']
# partition_conf_list = config_json['partition_conf']
# for conf in partition_conf_list:
# conf_site_name = conf["site_name"]
# conf_date_type = conf["date_type"]
#
# if site_name == conf_site_name and date_type == conf_date_type:
# base_count = conf["base_count"]
# break
# assert base_count is not None, f"未配置{field_name}验证周期{date_type}的基准值,请检查!"
#
# query = CommonUtil.generate_total_cal_query(table_name=hive_tb_name,
# field_name=field_name,
# partition_dict=partition_dict,
# sql_condition=sql_condition)
# ratio_df = spark_session.sql(query).cache()
# verify_total_count = int(ratio_df.collect()[0]['verify_total_count'])
# waring_max = int(base_count * config_json['max_rate'])
# waring_min = int(base_count * config_json['min_rate'])
# ratio_df = ratio_df.select(
# F.lit(row['verify_desc']).alias('验证描述'),
# F.lit(verify_type).alias('验证类型'),
# F.col('field_name').alias('校验字段'),
# F.col('verify_total_count').alias('校验字段统计值'),
# F.lit(waring_max).alias('最大临界值上限'),
# F.lit(waring_min).alias('最小临界值下限'),
# F.when((F.col('verify_total_count') <= waring_max) | (F.col('verify_total_count') >= waring_min),
# F.lit(1)).otherwise(F.lit(0)).alias('是否验证通过')
# )
#
# ratio_df.show(10, truncate=False)
# if verify_total_count > waring_max:
# # 进行微信推送
# msg = f"{base_msg} 字段:{field_name}的值{verify_total_count}超出限定最大值:{waring_max},请注意该字段的使用!!"
# CommonUtil.send_wx_msg(msg_usr_list, f"\u26A0 {hive_tb_name} {msg_params}数据{verify_type}异常",
# msg)
# if verify_total_count < waring_min:
# # 进行微信推送
# msg = f"{base_msg} 字段:{field_name}的值:{verify_total_count}低于限定最小值:{waring_min},请注意该字段的使用!!"
# CommonUtil.send_wx_msg(msg_usr_list, f"\u26A0 {hive_tb_name} {msg_params}数据{verify_type}异常",
# msg)
pass
@staticmethod
def format_df_with_template(spark_session: SparkSession, save_df: DataFrame, save_tb_name: str,
roundDouble: bool = False):
"""
insert into 之前对data_frame 进行自动对齐 及 schema检查
:param spark_session:
:param save_df:
:param save_tb_name:
:param roundDouble: 是否对double字段进行round截取
:return:
"""
sql = f"select * from {save_tb_name} limit 0"
template_df = spark_session.sql(sql)
if roundDouble:
round_val = 4
for field in save_df.schema.fields:
if field.dataType == DoubleType():
col_name = field.name
print(f"{col_name}从{field.dataType}保留小数位数为{round_val}中...")
save_df = save_df.withColumn(col_name, F.round(F.col(col_name), round_val))
return template_df.unionByName(save_df, allowMissingColumns=False)
@staticmethod
def auto_transfer_type(spark_session: SparkSession, save_df: DataFrame, hive_tb: str, transfer_dict: Dict = None):
"""
自动进行类型转换 默认对和hive字段类型不同的进行转换,如果是Double类型则自动转为 DecimalType(10, 3);
需要特殊处理的传入transfer_dict
:param spark_session:
:param save_df:
:param hive_tb:
:param transfer_dict:
:return:
"""
sql = f"select * from {hive_tb} limit 0"
tmp_dict = transfer_dict or {}
tb_schema = spark_session.sql(sql).schema
for field1 in save_df.schema.fields:
for field2 in tb_schema.fields:
col_name = field1.name
hive_col_name = field2.name
if col_name == hive_col_name:
transfer_flag = (field1.dataType != field2.dataType)
transfer_type = field2.dataType
if field2.dataType == DoubleType():
transfer_type = tmp_dict.get(col_name) or DecimalType(10, 3)
transfer_flag = True
if transfer_flag:
print(f"{col_name}从{field1.dataType}转化为{transfer_type}")
save_df = save_df.withColumn(col_name, F.col(col_name).cast(transfer_type))
return save_df
@staticmethod
def select_partitions_df(spark_session: SparkSession, tb_name: str):
"""
获取表分区df
"""
df = spark_session.sql(f"show partitions {tb_name}")
partitions = df.select("partition").rdd.flatMap(lambda x: x).collect()
values = []
for index in range(0, len(partitions)):
item = partitions[index]
obj = {}
for sp in item.split("/"):
val = sp.split("=")
obj[val[0]] = val[1]
values.append(obj)
return spark_session.createDataFrame(values)
@staticmethod
def select_col_all(df: DataFrame):
"""
选择df的所有的列
"""
return [df[col_name].alias(col_name) for col_name in df.columns]
@staticmethod
def df_export_csv(spark_session: SparkSession, export_df: DataFrame, csv_name: str, limit: int = 20 * 10000):
# output 不进行压缩
compress_flag = spark_session.conf.get("mapred.output.compress")
spark_session.sql("set mapred.output.compress=false")
csv_path = f"/tmp/csv/{csv_name}"
# 最多导出20w行
tmp_export_df = export_df.limit(limit)
tmp_export_df.repartition(1).write.mode("overwrite").option("header", True).csv(csv_path)
# 合并为一个文件
client = HdfsUtils.get_hdfs_cilent()
src_path = list(filter(lambda path: str(path).endswith("csv"), client.list(csv_path)))[0]
rel_path = f"{csv_path}.csv"
client.delete(rel_path, True)
client.rename(f"{csv_path}/{src_path}", rel_path)
client.delete(csv_path, True)
print("======================csv生成hdfs文件路径如下======================")
print(rel_path)
spark_session.sql(f"set mapred.output.compress={compress_flag}")
return rel_path
@classmethod
def transform_week_tuple(cls, spark_session: SparkSession, date_type: str, date_info: str):
"""
对周流程进行日期转换,返回日期元祖:如传入month,则返回该月下所有的周
周流程的week元祖获取
:param spark_session: spark对象
:param date_type: 日期类型date_type
:param date_info: 具体日期date_info
:return: complete_date_info_tuple: 周数据元祖
"""
complete_date_info_tuple = tuple()
df_date = spark_session.sql(f"select * from dim_date_20_to_30 ;")
df = df_date.toPandas()
if date_type == 'week':
complete_date_info_tuple = f"('{date_info}')"
elif date_type == '4_week':
print(date_info)
df_loc = df.loc[(df.year_week == f"{date_info}") & (df.week_day == 1)]
cur_id = list(df_loc.id)[0]
df_loc = df.loc[df.id == int(cur_id)]
week1 = list(df_loc.year_week)[0]
df_loc = df.loc[df.id == int(cur_id) - 7]
week2 = list(df_loc.year_week)[0]
df_loc = df.loc[df.id == int(cur_id) - 14]
week3 = list(df_loc.year_week)[0]
df_loc = df.loc[df.id == int(cur_id) - 21]
week4 = list(df_loc.year_week)[0]
complete_date_info_tuple = (week1, week2, week3, week4)
elif date_type == 'month':
df_loc = df.loc[(df.year_month == f"{date_info}") & (df.week_day == 1)]
complete_date_info_tuple = tuple(df_loc.year_week)
print("complete_date_info_tuple:", complete_date_info_tuple)
return complete_date_info_tuple
@classmethod
def create_tmp_tb(cls, spark_session: SparkSession, ddl: str, tb_name: str, drop_exist: bool = False):
# 默认执行ddl创建表会生成 spark.sql.sources.schema.numParts 语句需要删除
if drop_exist:
print(f"drop table {tb_name}")
spark_session.sql(f"drop table if exists {tb_name}")
print(f"创建临时表中:ddl sql 为")
print(ddl)
spark_session.sql(ddl)
sql = f'show tblproperties {tb_name};'
tblproperties_df = spark_session.sql(sql)
print(tblproperties_df)
keys = tblproperties_df.select("key").rdd.flatMap(lambda ele: ele).collect()
del_key = []
for key in keys:
if str(key).startswith("spark.sql.create.version") or str(key).startswith("spark.sql.sources.schema"):
del_key.append(f"'{key}'")
if len(del_key) > 0:
del_sql = f"""alter table {tb_name} unset tblproperties ({",".join(del_key)});"""
spark_session.sql(del_sql)
return True
@classmethod
def save_or_update_table(cls, spark_session: SparkSession,
hive_tb_name: str,
partition_dict: Dict,
df_save: DataFrame,
drop_exist_tmp_flag=True
):
"""
插入或更新表的分区
:param spark_session:
:param hive_tb_name:实际保存表名
:param partition_dict:
:param df_save:
:param drop_exist_tmp_flag: 是否创建表前先删除临时表 如果不删除则在备份表插入分区数据
:return:
"""
partition_by = list(partition_dict.keys())
if HdfsUtils.path_exist(CommonUtil.build_hdfs_path(hive_tb_name, partition_dict)):
table_copy = f"{hive_tb_name}_copy"
CommonUtil.create_tmp_tb(
spark_session,
ddl=f"""create table if not exists {table_copy} like {hive_tb_name}""",
tb_name=table_copy,
drop_exist=drop_exist_tmp_flag
)
print(f"当前存储的临时表名为:{table_copy},分区为{partition_by}", )
if not drop_exist_tmp_flag:
flag = CommonUtil.check_tb_schema_same(spark_session, tb1_name=hive_tb_name, tb2_name=table_copy)
if not flag:
raise Exception(f"{table_copy}表结构同{hive_tb_name}不一致,交换分区后可能存在错位现象,请检查!!")
# 插入前先删除copy表的数据再save到cp表
path = CommonUtil.build_hdfs_path(hive_tb=table_copy, partition_dict=partition_dict, innerFlag=True)
if HdfsUtils.path_exist(path):
HdfsUtils.delete_hdfs_file(path)
df_save.write.saveAsTable(name=table_copy, format='hive', mode='append', partitionBy=partition_by)
# 交换表名
CommonUtil.exchange_partition_data(
spark_session=spark_session,
tb_src=hive_tb_name,
partition_dict_src=partition_dict,
tb_target=table_copy,
partition_dict_target=partition_dict
)
else:
# 不存在则直接插入
df_save.write.saveAsTable(name=hive_tb_name, format='hive', mode='append', partitionBy=partition_by)
print("success")
pass
@classmethod
def exchange_partition_data(cls, spark_session: SparkSession,
tb_src: str,
partition_dict_src: Dict,
tb_target: str,
partition_dict_target: Dict,
):
"""
交换两个分区表数据
:param spark_session: spark_session
:param tb_src: 分区表A
:param partition_dict_src: 分区dict
:param tb_target:分区表B
:param partition_dict_target:分区dict
:return:
"""
location1: str = spark_session.sql(
f"""describe formatted {tb_src};"""
).where("col_name = 'Location' ").first().asDict().get("data_type").replace("hdfs://nameservice1:8020", "")
location2: str = spark_session.sql(
f"""describe formatted {tb_target};"""
).where("col_name = 'Location' ").first().asDict().get("data_type").replace("hdfs://nameservice1:8020", "")
for key in partition_dict_src.keys():
location1 = location1 + f"/{key}={partition_dict_src.get(key)}"
for key in partition_dict_target.keys():
location2 = location2 + f"/{key}={partition_dict_target.get(key)}"
assert HdfsUtils.path_exist(location1), f"分区【{location1}】不存在!"
assert HdfsUtils.path_exist(location2), f"分区【{location2}】不存在!"
HdfsUtils.exchange_path(path_one=location1, path_two=location2)
return True
@classmethod
def get_next_val(cls, date_type: str, date_info: str):
"""
根据时间类型获取下一个值
:param date_type:
:param date_info:
:return:
"""
if date_type == DateTypes.day.name:
result = cls.get_day_offset(date_info, 1)
elif date_type == DateTypes.week.name:
engine = DBUtil.get_db_engine("mysql", "us")
with engine.connect() as connection:
sql = f"""
select year_week
from date_20_to_30
where year_week > '{date_info}'
order by year_week
limit 1 """
print("================================执行sql================================")
print(sql)
result = connection.execute(sql)
next_week = result.cursor.fetchone()[0]
result = next_week
elif date_type == DateTypes.month.name:
result = cls.get_month_offset(date_info, 1)
else:
raise Exception(f"时间类型{date_type}不支持")
return result
@classmethod
def build_ddl_form_df(cls, df: DataFrame, partition_list: list, tb_name: str):
"""
df 生成 ddl sql
:param df:
:param partition_list:
:param tb_name:
:return:
"""
df.schema.fieldNames()
part = partition_list
type_dict = {
DoubleType(): "double",
DecimalType(): "double",
StringType(): "string",
LongType(): "int",
IntegerType(): "int",
}
line1 = []
line2 = []
for field in df.schema.fields:
type = type_dict.get(field.dataType)
if field.name in part:
line2.append(f"{field.name} {type}")
else:
line1.append(f"{field.name} {type}")
str1 = ",\n".join(line1)
str2 = ",\n".join(line2)
ddl = f"""
create table {tb_name}
(
{str1}
)
partitioned by
(
{str2}
)
row format serde 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
stored as
inputformat 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
outputformat 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
"""
return ddl
@classmethod
def get_rel_date_type(cls, tb_name: str, date_type: str):
assert tb_name is not None, "表名不能为空!"
# 需要特殊处理的就算这些表支持 month_old 其他的不支持
tmp_list = [
'dim_st_detail',
'dwd_st_measure',
'dwd_st_asin_measure',
'dwd_asin_measure',
'dwd_st_volume_fba',
'dwt_st_market',
'dws_st_num_stats',
'dwt_aba_st_analytics'
]
# if date_type in ['month_old'] and date_info < '2023-10':
if date_type in ['month_old'] and tb_name not in tmp_list:
return 'month'
return date_type
@staticmethod
def build_hdfs_path(hive_tb: str, partition_dict: Dict = None, innerFlag: bool = False):
"""
构建对应的表名称
:param hive_tb:
:param partition_dict:
:param innerFlag:
:return:
"""
suffix = ""
if partition_dict is not None:
tmp = []
for key in partition_dict.keys():
tmp.append(f"{key}={partition_dict.get(key)}")
suffix += "/".join(tmp)
hdfs_path = None
if innerFlag:
if partition_dict is not None:
hdfs_path = f"/user/hive/warehouse/big_data_selection.db/{hive_tb}/{suffix}"
else:
hdfs_path = f"/user/hive/warehouse/big_data_selection.db/{hive_tb}"
else:
allow = ['ods', 'dim', 'dwd', 'dws', 'dwt', 'tmp']
prefix = None
for tmp in allow:
if hive_tb.startswith(tmp):
prefix = tmp
pass
assert prefix is not None, f"{hive_tb}表名不合规,请检查!"
if partition_dict is not None:
hdfs_path = f"/home/big_data_selection/{prefix}/{hive_tb}/{suffix}"
else:
hdfs_path = f"/home/big_data_selection/{prefix}/{hive_tb}"
return hdfs_path
@staticmethod
def send_wx_msg(users: list, title: str, content: str, msgtype: str = "textcard" ):
"""
通过选品wx消息推送接口,推送消息到oa
:param users: 填写需要推送的微信用户名list
:param title: 推送的标题(如果msgtype采用markdown形式,则不附带标题)
:param content: 推送的主体内容
:param msgtype: 推送的消息类型(textcard:默认卡片类型;markdown:markdaown结构)
"""
if users is not None:
accounts = ",".join(users)
# 排除users_list=[''] 无需发送
if bool(accounts):
host = "http://120.79.147.190:8080"
url = f'{host}/soundasia_selection/dolphinScheduler/sendMessage'
data = {
'account': accounts,
'title': title,
'content': content,
'msgtype': msgtype
}
try:
requests.post(url=url, data=data, timeout=15)
except:
pass
return True
@classmethod
def print_hive_ddl(cls,
db_type: str,
site_name: str,
from_tb: str,
hive_tb: str,
partition_dict: Dict
):
engine = DBUtil.get_db_engine(db_type, site_name)
hdfs_path = cls.build_hdfs_path(hive_tb, partition_dict)
cols = []
with engine.connect() as connection:
sql = f"""
select a.attname col_name,
d.description col_desc,
concat_ws('', t.typname, SUBSTRING(format_type(a.atttypid, a.atttypmod) from '\(.*\)')) as col_type
from pg_class c
left join pg_attribute a on a.attrelid = c.oid
left join pg_type t on t.oid = a.atttypid
left join pg_description d on d.objoid = a.attrelid and d.objsubid = a.attnum
where 1 = 1
and a.attnum > 0
and c.relname in (select tablename from pg_tables where schemaname = 'public')
and c.relname = '{from_tb}'
and t.typname is not null
order by c.relname, a.attnum;
"""
for row in list(connection.execute(sql)):
col_name = row['col_name']
col_desc = row['col_desc']
col_type = row['col_type']
if "int" in col_type:
hive_col_type = 'int'
elif "varchar" in col_type or "text" in col_type:
hive_col_type = 'string'
elif "numeric" in col_type:
hive_col_type = 'double'
elif "float8" in col_type:
hive_col_type = 'double'
elif "date" in col_type:
hive_col_type = 'string'
elif "timestamp" in col_type:
hive_col_type = 'string'
else:
hive_col_type = 'string'
cols.append(f"{col_name}\t{hive_col_type}\tcomment\t'{col_desc}'")
print("================================执行sql================================")
partitioned_by = []
for key in partition_dict.keys():
partitioned_by.append(f"{key} string comment 'you comment' ")
col_str = ",\n".join(cols)
ddl = f"""
create external table {hive_tb}
(
{col_str}
)
partitioned by ({",".join(partitioned_by)})
row format serde 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
stored as
inputformat 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
outputformat 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
location 'hdfs://nameservice1:8020{hdfs_path}';
alter table {hive_tb}
set tblproperties ('comment' = '{hive_tb}表注释');
"""
print(ddl)
return ddl
@staticmethod
def drop_part(hive_tb: str, partition_dict: Dict):
"""
删除hive分区数据默认是外部表 不仅仅是删除数据还是删除hive的分区
:param hive_tb:
:param partition_dict:
:return:
"""
tmparr = []
for key in partition_dict.keys():
tmparr.append(f"{key} = '{partition_dict.get(key)}'")
part_str = ','.join(tmparr)
hive_ddl = f"""alter table big_data_selection.{hive_tb} drop if exists partition ({part_str});"""
cmd = rf"""{CommonUtil.__hive_home__} -e "{hive_ddl}" """
print(f"=============================删除分区中==============================")
print(cmd)
client = SSHUtil.get_ssh_client()
SSHUtil.exec_command_async(client, cmd, ignore_err=False)
client.close()
path = CommonUtil.build_hdfs_path(hive_tb=hive_tb, partition_dict=partition_dict)
print(f"=============================删除分区数据中==============================")
print(path)
HdfsUtils.delete_hdfs_file(path)
pass
@staticmethod
def generate_null_ratio_query(table_name: str, field_name: str, partition_dict: Dict):
"""
构建空值率计算query
:param table_name: hive表名称
:param field_name: 需要验证空值率字段
:param partition_dict:校验表的分区条件
:return: query: 计算空值率的query
"""
# 计算空值率sql
query = f"""SELECT '{field_name}' AS field_name,
COUNT(1) AS total_count,
COUNT(CASE WHEN {field_name} IS NULL THEN 1 WHEN {field_name} = -1 THEN 1 END) AS null_count,
COUNT(CASE WHEN {field_name} IS NOT NULL THEN 1 WHEN {field_name} != -1 THEN 1 END) AS not_null_count,
ROUND(COUNT(CASE WHEN {field_name} IS NULL THEN 1 WHEN {field_name} = -1 THEN 1 END) / COUNT(1), 4) AS null_ratio
FROM {table_name} """
# 解析partition_dict获取分区查询条件
partition_conditions = []
for key, value in partition_dict.items():
if value is not None:
partition_conditions.append(f"{key} = '{value}'")
# 拼接where条件
if partition_conditions:
query += f" WHERE {' AND '.join(partition_conditions)}"
return query
@staticmethod
def generate_min_max_query(table_name: str, field_name: str, partition_dict: Dict):
"""
构建最大最小值计算query
:param table_name: hive表名称
:param field_name: 需要验证空值率字段
:param partition_dict:校验表的分区条件
:return: query: 计算空值率的query
"""
query = f"SELECT '{field_name}' AS field_name, " \
f"MIN({field_name}) AS min_value, " \
f"MAX({field_name}) AS max_value " \
f"FROM {table_name}"
# 解析partition_dict获取分区查询条件
partition_conditions = []
for key, value in partition_dict.items():
if value is not None:
partition_conditions.append(f"{key} = '{value}'")
# 拼接where条件
if partition_conditions:
query += f" WHERE {' AND '.join(partition_conditions)}"
return query
@staticmethod
def generate_total_cal_query(table_name: str, field_name: str, partition_dict: Dict, sql_condition: str):
"""
计算带条件判断的单字段总数query
:param table_name: hive表名称
:param field_name: 需要验证空值率字段
:param partition_dict:校验表的分区条件
:param sql_condition:其他过滤条件补充
:return: query: 计算返回使用query
"""
query = f"SELECT '{field_name}' AS field_name, " \
f"count({field_name}) AS verify_total_count " \
f"FROM {table_name}"
# 解析partition_dict获取分区查询条件
partition_conditions = []
for key, value in partition_dict.items():
if value is not None:
partition_conditions.append(f"{key} = '{value}'")
# 拼接where条件
if partition_conditions:
query += f" WHERE {' AND '.join(partition_conditions)}"
# 拼接外部查询条件
if sql_condition:
query += f" AND {sql_condition} "
return query
@staticmethod
def judge_is_work_hours(site_name: str = 'us', date_type: str = None, date_info: str = None,
principal: str = "wangrui4, huangjian", priority: int = 1, export_tools_type: int = 1,
belonging_to_process: str = None):
"""
导出任务时间约束:控制数据导出任务在非上班时间段进行
:param site_name: 站点
:param date_type: 调度类型
:param date_info: 调度周期
:param principal: 流程维护人员(与企业微信对应)
:param priority: 优先级(耗时短的给小的数字,耗时长的给大的数字,非反查搜索词≤3)
:param export_tools_type: 导出工具(1:sqoop, 2:elasticsearch)
:param belonging_to_process: 所属流程
:return:
"""
exec_env = "/opt/module/anaconda3/envs/pyspark/bin/python3.8"
# 获取流程的id,看该任务是否流程启动
process_id = None
ds_result = DolphinschedulerHelper.get_running_process_task()
if CommonUtil.notNone(ds_result):
process_id = str(ds_result.get('process_df_id'))
# 获取最后一个参数判断是否使用测试导入
test_flag = CommonUtil.get_sys_arg(len(sys.argv) - 1, None)
if test_flag == 'test' or process_id is None:
print("为测试导出或者本地导出,无需监控!")
return
# 获取脚本名称
script_name = sys.argv[0].split("/")[-1]
print("当前执行的脚本是:" + script_name)
script_path = ''
if export_tools_type == 1:
script_path = "/opt/module/spark/demo/py_demo/sqoop_export/" + script_name
elif export_tools_type == 2:
script_path = "/opt/module/spark/demo/py_demo/export_es/" + script_name
arguments = sys.argv[1:]
arguments_str = ''
if len(arguments) > 0:
arguments_str = ' '.join(arguments)
# 获取执行命令
commands = exec_env + " " + script_path + " " + arguments_str
# 拼接流程命名,进行后期检查导出任务分组
process_name = process_id if belonging_to_process is None else process_id + "|" + belonging_to_process
print("执行脚本命令的语句是:" + commands)
exec_sql = f"""
INSERT INTO export_command_records
(site_name, date_type, date_info, script_name, commands, status, principal, priority, export_tools_type, belonging_to_process)
VALUES
('{site_name}', '{date_type}', '{date_info}', '{script_name}', '{commands}', 1, '{principal}', {priority}, {export_tools_type}, '{process_name}')
ON CONFLICT (commands) DO UPDATE
SET
site_name = excluded.site_name,
date_type = excluded.date_type,
date_info = excluded.date_info,
script_name = excluded.script_name,
status = excluded.status,
principal = excluded.principal,
priority = excluded.priority,
export_tools_type = excluded.export_tools_type,
belonging_to_process = excluded.belonging_to_process;
"""
print("exec_sql:" + exec_sql)
DBUtil.exec_sql("postgresql_cluster", "us", exec_sql)
sys.exit(0)
@staticmethod
def modify_export_workflow_status(update_workflow_sql: str, site_name: str = 'us',
date_type: str = None,
date_info: str = None):
"""
根据流程名称检查导出流程是否完成,更改workflow工作流工具类
:param update_workflow_sql: 更改workflow工作流的更新语句
:param site_name: 站点名称
:param date_type: 日期维度类型
:param date_info: 日期
:return:
"""
# 获取最后一个参数判断是否使用测试导入
test_flag = CommonUtil.get_sys_arg(len(sys.argv) - 1, None)
if test_flag == 'test':
print("测试导出,无需监控!")
return
mysql_engine = DBUtil.get_db_engine('mysql', 'us')
pg_engine = DBUtil.get_db_engine('postgresql_cluster', 'us')
# 获取脚本名称
script_name = sys.argv[0].split("/")[-1]
get_process_sql = f"""select belonging_to_process from export_command_records
where site_name='{site_name}'
and date_type = '{date_type}'
and date_info = '{date_info}'
and script_name = '{script_name}'
and status != 3
"""
with pg_engine.connect() as connection:
result = connection.execute(get_process_sql).first()
belonging_to_process = result['belonging_to_process'] if result else None
if belonging_to_process is None:
print("export_command_records库中未记录该流程,无需监控!")
return
exec_sql = f"""update export_command_records set status = 3
where script_name='{script_name}'
and belonging_to_process = '{belonging_to_process}'
"""
DBUtil.engine_exec_sql(pg_engine, exec_sql)
# 检查导出脚本是否都已完成
check_process_sql = f"""select count(script_name) as uncompleted_num from export_command_records
where belonging_to_process = '{belonging_to_process}'
and status != 3
"""
with pg_engine.connect() as connection:
uncompleted_num = connection.execute(check_process_sql).scalar()
# 看是否导出都已经完成,如果不为3(成功的数量)都为0了,则说明全部导完
if int(uncompleted_num) == 0:
print("执行流程更改:" + exec_sql)
assert update_workflow_sql is not None, "流程更新语句不能为空!!请检查!"
DBUtil.engine_exec_sql(mysql_engine, update_workflow_sql)
else:
print("当前流程下仍有脚本未执行完成!暂未更改流程状态!")
# 关闭连接
mysql_engine.dispose()
pg_engine.dispose()
@staticmethod
def judge_not_working_hour():
"""
判断当前时间是不是用户上班时间
:return:
"""
from datetime import datetime
now = datetime.now()
hour_minute = CommonUtil.format_now("%H:%M")
if now.weekday() + 1 in [1, 2, 3, 4, 5]:
if ('08:20' <= hour_minute <= '12:35') or ('13:30' <= hour_minute <= '18:50'):
return False
return True
else:
return True
@staticmethod
def convert_singular_plural(word):
"""
单词单复数转换,与java一致的转换词库textblob库支持
:param word: 需要进行单复数转换的词
:return:convert_word 根据传入的单词word解析单复数词性后,返回转换词
"""
if not word:
return None
word_object = Word(word)
singular_form = word_object.singularize()
plural_form = word_object.pluralize()
# 判断word到底原始词性是单数还是复数,决定返回转换后的值
convert_word = plural_form if word == singular_form else singular_form
return convert_word
@staticmethod
def list_build_sqlin_condition(word_list):
"""
将list转换成 where condition in (a,x,c) 子条件语句
:param word_list: 需要组装成in语句的列表
:return: condition: 组装好后的 in的子条件语句如 (a,b,x)
"""
# 检查列表长度
if len(word_list) == 1:
condition = f"'({word_list[0]})'"
else:
condition = tuple(word_list)
return condition
@staticmethod
def get_start_name_from_hdfs_path(hdfs_path: str):
locate_index = ['ods', 'dim', 'dwd', 'dws', 'dwt', 'tmp']
hidden_param = ['site_name', 'date_type', 'date_info']
for locate_word in locate_index:
word_index = hdfs_path.find(locate_word)
if word_index != -1:
break
if word_index != -1:
content_extract = hdfs_path[word_index + 4:] # 4 是 "xxx/" 的长度
content_extract = content_extract.replace("/", ":")
for hidden_word in hidden_param:
content_extract = content_extract.replace(hidden_word + "=", "")
return content_extract
else:
return None
@classmethod
def get_asin_variant_attribute(cls, df_asin_detail: DataFrame, df_asin_measure: DataFrame, partition_num: int=80, use_type: int=0):
"""
Param df_asin_detail: asin详情DataFrame(
字段要求:
必须有asin,
asin_vartion_list(Kafka中有,schema参照:StructField("asin_vartion_list", ArrayType(ArrayType(StringType()), True), True)),
buy_sales(kafka中有,schema参照: StructField("buy_sales", StringType(), True))
);
Param df_asin_measure: asin度量信息DataFrame(
字段要求:
必须有asin、asin_zr_counts, asin_adv_counts, asin_st_counts, asin_amazon_orders,
asin_zr_flow_proportion, asin_ao_val
);
Param partition_num: 运行并行度(根据脚本运行资源设置)
Param use_type: 使用类型(0:默认,插件; 1:流量选品)
return :
1. dwd_asin_measure必须携带的:
asin、asin_zr_counts, asin_adv_counts, asin_st_counts, asin_amazon_orders, asin_zr_flow_proportion, asin_ao_val
2. 处理得到的:
matrix_ao_val, matrix_flow_proportion, asin_amazon_orders, variant_info(变体asin列表)
3. 流量选品特定的: color, size, style
4. dwd_asin_measure自行携带的字段
"""
# 1.关联获取ao、各类型数量、流量占比信息、月销信息等
df_asin_detail = df_asin_detail.repartition(partition_num)
df_asin_measure = df_asin_measure.repartition(partition_num)
df_asin_detail = df_asin_detail.join(
df_asin_measure, on=['asin'], how='left'
)
# 2.解析亚马逊月销信息
df_asin_detail = df_asin_detail.withColumn(
"bought_month",
F.when(F.col("buy_sales").isNotNull(), cls.u_parse_amazon_orders(F.col("buy_sales"))).otherwise(F.lit(None))
)
df_asin_detail = df_asin_detail.withColumn("asin_amazon_orders", F.coalesce(F.col("bought_month"), F.col("asin_amazon_orders"))).drop("bought_month")
# 3.统计母体ao和流量占比
df_with_variant_attribute = df_asin_detail.filter(F.expr("size(asin_vartion_list) > 0"))
df_explode_variant_attribute = df_with_variant_attribute.select(
"asin", F.explode("asin_vartion_list").alias("variant_attribute")
).select(
"asin", F.col("variant_attribute")[0].alias("variant_asin"), F.col("variant_attribute")[1].alias("color"),
F.col("variant_attribute")[3].alias("size"), F.col("variant_attribute")[5].alias("style")
)
df_variant_asin_detail = df_asin_measure.select(F.col("asin").alias("variant_asin"), "asin_zr_counts", "asin_adv_counts", "asin_st_counts")
df_explode_variant_attribute = df_explode_variant_attribute.repartition(partition_num)
df_explode_variant_attribute_detail = df_explode_variant_attribute.join(
df_variant_asin_detail, on=["variant_asin"], how="inner"
)
df_explode_variant_attribute_agg = df_explode_variant_attribute_detail.groupby(['asin']).agg(
F.sum("asin_zr_counts").alias("sum_zr_counts"),
F.sum("asin_adv_counts").alias("sum_adv_counts"),
F.sum("asin_st_counts").alias("sum_st_counts"),
F.collect_set(F.col("variant_asin")).alias("variant_info")
)
df_explode_variant_attribute_agg = df_explode_variant_attribute_agg.repartition(partition_num)
df_explode_variant_attribute_agg = df_explode_variant_attribute_agg.withColumn(
"matrix_flow_proportion",
F.when(F.col("sum_st_counts").isNotNull(), F.round(F.col("sum_zr_counts") / F.col("sum_st_counts"), 4))
).withColumn(
"matrix_ao_val",
F.when(F.col("sum_zr_counts").isNotNull(), F.round(F.col("sum_adv_counts") / F.col("sum_zr_counts"), 3))
).drop("sum_zr_counts", "sum_adv_counts", "sum_st_counts")
df_asin_detail = df_asin_detail.join(
df_explode_variant_attribute_agg, on=['asin'], how='left'
)
df_asin_detail = df_asin_detail.withColumn(
"matrix_ao_val", F.coalesce(F.col("matrix_ao_val"), F.col("asin_ao_val"))
).withColumn(
"matrix_flow_proportion", F.coalesce(F.col("matrix_flow_proportion"), F.col("asin_zr_flow_proportion"))
)
# 4.解析变体属性信息(颜色、 尺寸、 风格等)
if use_type == 1:
df_asin_attribute = df_explode_variant_attribute.filter(F.col("asin") == F.col("variant_asin")).drop("variant_asin")
df_asin_detail = df_asin_detail.join(
df_asin_attribute, on=['asin'], how='left'
)
return df_asin_detail
@staticmethod
def unified_variant_asin_basic_detail(df_asin_detail: DataFrame, columns_list: list, partition_num: int=80, use_type: int=0):
"""
Param: df_asin_detail 每批次ASIN详情数据;
Param: columns_list 变体ASIN间共用属性字段(根据场景传入指定的字段);
Param: partition_num 分区数(根据任务运行申请的资源配置)
Parm: use_type 使用场景:0:插件,1:流量选品
Return: df_asin_detail ASIN详情数据
df_latest_asin_detail_with_parent 每一批ASIN详情数据中最新的变体ASIN公用属性信息
"""
if use_type == 0:
df_asin_detail = df_asin_detail.withColumnRenamed("parentAsin", "parent_asin")
df_asin_detail = df_asin_detail.repartition(partition_num)
# 将公用属性字段切换名称,防止冲突
renamed_columns = [F.col(c).alias(f"new_{c}") for c in columns_list]
df_with_parent_asin = df_asin_detail.filter("parent_asin is not null").select("parent_asin", "asinUpdateTime", *renamed_columns)
# 获取每一批ASIN详情数据中有parent_asin信息且最新爬取的ASIN详情作为共用属性
parent_asin_window = Window.partitionBy("parent_asin").orderBy(F.desc_nulls_last("asinUpdateTime"))
df_with_parent_asin = df_with_parent_asin.withColumn("ct_rank", F.row_number().over(window=parent_asin_window))
df_with_parent_asin = df_with_parent_asin.repartition(partition_num)
df_latest_asin_detail_with_parent = df_with_parent_asin.filter("ct_rank = 1").drop("ct_rank", "asinUpdateTime")
# 将每一批ASIN详情数据中相同变体ASIN之间属性统一
df_asin_detail = df_asin_detail.join(df_latest_asin_detail_with_parent, on=['parent_asin'], how='left')
# 丢弃原有属性字段,使用统一后的属性
for column in columns_list:
df_asin_detail = df_asin_detail.withColumn(column, F.coalesce(F.col(f"new_{column}"), F.col(column))).drop(f"new_{column}")
df_latest_asin_detail_with_parent = df_latest_asin_detail_with_parent.withColumnRenamed(f"new_{column}", f"{column}")
return df_asin_detail, df_latest_asin_detail_with_parent