1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
import sys
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from pyspark.storagelevel import StorageLevel
from utils.templates import Templates
# from ..utils.templates import Templates
# from AmazonSpider.pyspark_job.utils.templates_test import Templates
from pyspark.sql.types import StringType, IntegerType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
class DwdStMeasure(Templates):
def __init__(self, site_name='us', date_type="month", date_info='2022-1'):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save_st_asin = f'dwd_st_asin_measure'
self.db_save_st = f'dwd_st_measure'
self.db_save_asin = f'dwd_asin_measure'
self.spark = self.create_spark_object(
app_name=f"{self.db_save_st_asin}, {self.db_save_st}, {self.db_save_asin}: {self.site_name}, {self.date_type}, {self.date_info}")
# self.df_date = self.get_year_week_tuple() # pandas的df对象
self.get_date_info_tuple()
self.df_st_detail = self.spark.sql(f"select 1+1;")
self.df_st_asin = self.spark.sql(f"select 1+1;")
self.df_st_asin_flow = self.spark.sql(f"select 1+1;")
self.df_st_rate = self.spark.sql(f"select 1+1;")
self.df_asin_history = self.spark.sql(f"select 1+1;")
self.df_bs_report = self.spark.sql(f"select 1+1;")
self.df_st_quantity = self.spark.sql(f"select 1+1;")
self.df_st_asin_duplicated = self.spark.sql(f"select 1+1;")
self.df_save_st_asin = self.spark.sql(f"select 1+1;")
self.df_save_asin = self.spark.sql(f"select 1+1;")
self.df_save_st = self.spark.sql(f"select 1+1;")
self.partitions_num = 3
self.reset_partitions(partitions_num=self.partitions_num)
self.partitions_by = ['site_name', 'date_type', 'date_info']
def read_data(self):
print("1.1 读取dim_st_detail表")
sql = f"select search_term, st_rank from dim_st_detail where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info in {self.date_info_tuple}"
print("sql:", sql)
self.df_st_detail = self.spark.sql(sqlQuery=sql).cache()
# self.df_st_detail.show(10, truncate=False)
print("1.1 读取dim_st_asin_info表")
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='day' and date_info in {self.date_info_tuple}"
print("sql:", sql)
self.df_st_asin = self.spark.sql(sqlQuery=sql).cache()
self.df_st_asin = self.df_st_asin.drop_duplicates(["search_term", "asin", "data_type", "date_info"]).cache()
self.df_st_asin_duplicated = self.df_st_asin.drop_duplicates(['search_term', 'asin']).cache()
print("self.df_st_asin:", self.df_st_asin.count())
print("self.df_st_asin_duplicated:", self.df_st_asin_duplicated.count())
# self.df_st_asin.show(10, truncate=False)
# self.df_asin = self.df_st_asin.select("asin").drop_duplicates(["asin"])
# self.df_st = self.df_st_asin.select("search_term").drop_duplicates(["search_term"])
print("1.2 读取ods_rank_flow表")
sql = f"select rank as st_asin_zr_page_rank, rank as st_asin_sp_page_rank, flow as st_asin_zr_rate, flow as st_asin_sp_rate from ods_rank_flow " \
f"where site_name='{self.site_name}'"
self.df_st_asin_flow = self.spark.sql(sql).cache()
# self.df_st_asin_flow.show(10, truncate=False)
print("1.3 读取ods_rank_search_rate_repeat表")
sql = f"select rank as st_rank, search_num as st_search_num, rate as st_search_rate, search_sum as st_search_sum " \
f"from ods_rank_search_rate_repeat where site_name='{self.site_name}';"
self.df_st_rate = self.spark.sql(sql).cache()
# self.df_st_rate.show(10)
# 1.4 获取asin的bs_id, 卖家, 店铺等
print("1.4 读取dim_cal_asin_history_detail表")
sql = f"select asin, asin_rank, bsr_cate_1_id, asin_title " \
f"from dim_cal_asin_history_detail where site_name='{self.site_name}';"
self.df_asin_history = self.spark.sql(sql).cache()
# self.df_asin_history.show(10)
# 1.5 ods_one_category_report
print("1.5 读取ods_one_category_report表")
sql = f"select cate_1_id as bsr_cate_1_id, rank as asin_rank, orders as asin_bsr_orders from ods_one_category_report " \
f"where site_name='{self.site_name}' and dm='2022-11';"
self.df_bs_report = self.spark.sql(sqlQuery=sql).cache()
# self.df_bs_report.show(10, truncate=False)
# 1.6 ods_st_quantity_being_sold
print("1.6 读取ods_st_quantity_being_sold表")
sql = f"select search_term, quantity_being_sold as st_quantity_being_sold from ods_st_quantity_being_sold " \
f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info in {self.date_info_tuple};"
self.df_st_quantity = self.spark.sql(sqlQuery=sql).cache()
def save_data(self):
self.reset_partitions(partitions_num=50)
self.save_data_common(
df_save=self.df_save_st_asin,
db_save=self.db_save_st_asin,
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
self.reset_partitions(partitions_num=10)
self.save_data_common(
df_save=self.df_save_st,
db_save=self.db_save_st,
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
self.reset_partitions(partitions_num=10)
self.save_data_common(
df_save=self.df_save_asin,
db_save=self.db_save_asin,
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
def handle_st_zr_page1_title_rate(self):
df_zr_page1 = self.df_st_asin.filter(
"data_type='zr' and page=1"
)
df_zr_page1 = df_zr_page1.drop_duplicates(["search_term", "asin"])
df_zr_page1 = df_zr_page1.join(
self.df_asin_history
)
def handle_data(self):
self.handle_st_info()
self.handle_st_asin_info()
self.df_save_asin = self.handle_st_asin_counts(cal_type="asin")
self.df_save_st = self.handle_st_asin_counts(cal_type="st")
self.df_save_st = self.df_save_st.join(
self.df_st_detail, on=['search_term'], how='left'
)
self.handle_st_asin_ao()
self.handle_st_asin_orders()
self.handle_st_asin_bsr_orders()
self.df_save_st_asin.show(10, truncate=False)
self.df_save_st.show(10, truncate=False)
self.df_save_asin.show(10, truncate=False)
quit()
def handle_st_info(self):
# 处理在售商品数
self.df_st_quantity = self.df_st_quantity.filter("st_quantity_being_sold > 0").groupby(['search_term']).agg(
{"st_quantity_being_sold": "mean"}
)
self.df_st_quantity = self.df_st_quantity.withColumnRenamed(
"avg(st_quantity_being_sold)", "st_quantity_being_sold"
)
self.df_st_detail = self.df_st_detail.join(
self.df_st_quantity, on=["search_term"], how="left"
).join(
self.df_st_rate, on=["st_rank"], how="left"
)
def handle_st_asin_info(self):
# self.df_save_st_asin = self.df_st_asin.filter("data_type in ('zr', 'sp')").withColumn(
self.df_save_st_asin = self.df_st_asin.withColumn(
"page_rank_data_type", F.concat(F.lit("st_asin_"), self.df_st_asin.data_type, F.lit("_page_rank"))
)
self.df_save_st_asin = self.df_save_st_asin.groupby(["search_term", "asin"]). \
pivot("page_rank_data_type").agg(F.min(f"page_rank"))
self.df_save_st_asin = self.df_save_st_asin. \
join(self.df_st_asin_flow.select("st_asin_zr_page_rank", "st_asin_zr_rate"), on=["st_asin_zr_page_rank"],
how="left"). \
join(self.df_st_asin_flow.select("st_asin_sp_page_rank", "st_asin_sp_rate"), on=["st_asin_sp_page_rank"],
how="left"). \
join(self.df_st_detail, on=["search_term"], how="inner")
# self.df_save_st_asin.show(10, truncate=False)
def handle_st_asin_counts(self, cal_type="asin"):
print(f"计算{cal_type}_counts")
cal_type_complete = "search_term" if cal_type == "st" else cal_type
self.df_st_asin = self.df_st_asin.withColumn(
f"{cal_type}_data_type",
F.concat(F.lit(f"{cal_type}_"), self.df_st_asin.data_type, F.lit(f"_counts"))
)
df = self.df_st_asin.groupby([f'{cal_type_complete}']). \
pivot(f"{cal_type}_data_type").count()
df = df.fillna(0)
# df.show(10, truncate=False)
df = df.withColumn(
f"{cal_type}_sb_counts",
df[f"{cal_type}_sb1_counts"] + df[f"{cal_type}_sb2_counts"] + df[f"{cal_type}_sb3_counts"]
)
df = df.withColumn(
f"{cal_type}_adv_counts",
df[f"{cal_type}_sb_counts"] + df[f"{cal_type}_sp_counts"]
)
df = df.withColumn(f"site_name", F.lit(self.site_name))
df = df.withColumn(f"date_type", F.lit(self.date_type))
df = df.withColumn(f"date_info", F.lit(self.date_info))
# df.show(10, truncate=False)
return df
def handle_st_asin_ao(self):
print("计算st和asin各自维度的ao")
# asin_ao_val
self.df_save_asin = self.df_save_asin.withColumn(
"asin_ao_val", self.df_save_asin.asin_adv_counts / self.df_save_asin.asin_zr_counts
)
self.df_save_asin = self.df_save_asin.fillna({"asin_ao_val": 0})
# st_ao_val和st_ao_val_rate
df_asin_ao = self.df_save_asin.select("asin", "asin_ao_val")
df_st_ao = self.df_save_st_asin.select("search_term", "asin").join(
df_asin_ao, on=['asin'], how='left'
)
df_st_ao = df_st_ao.groupby(["search_term"]).agg({"asin_ao_val": "mean"})
df_st_ao = df_st_ao.withColumnRenamed("avg(asin_ao_val)", "st_ao_val")
self.df_save_st = self.df_save_st.join(
df_st_ao, on=['search_term'], how='left'
)
window = Window.orderBy(self.df_save_st.st_ao_val.asc())
self.df_save_st = self.df_save_st.withColumn("st_ao_val_rate", F.percent_rank().over(window=window))
def handle_st_asin_bsr_orders(self):
self.df_save_st_asin = self.df_save_st_asin.join(
self.df_asin_history, on=['asin'], how='left'
)
self.df_save_st_asin = self.df_save_st_asin.join(
self.df_bs_report, on=['asin_rank', 'bsr_cate_1_id'], how='left'
)
# self.df_st_asin_duplicated.show(10, truncate=False)
df_st_bsr_orders = self.df_save_st_asin.groupby(['search_term']).agg({"asin_bsr_orders": "sum"})
df_st_bsr_orders = df_st_bsr_orders.withColumnRenamed(
"sum(asin_bsr_orders)", "st_bsr_orders"
)
df_asin_bsr_orders = self.df_save_st_asin.select("asin", "asin_bsr_orders").drop_duplicates(['asin'])
# df_st_bsr_orders.show(10, truncate=False)
# df_asin_bsr_orders.show(10, truncate=False)
self.df_save_st = self.df_save_st.join(
df_st_bsr_orders, on='search_term', how='left'
)
self.df_save_asin = self.df_save_asin.join(
df_asin_bsr_orders, on='asin', how='left'
)
def handle_st_asin_orders(self):
print("计算zr, sp预估销量")
# 1. st+asin维度的zr和sp预估销量
self.df_save_st_asin = self.df_save_st_asin.withColumn(
"st_asin_zr_orders",
F.ceil(self.df_save_st_asin.st_asin_zr_rate * self.df_save_st_asin.st_search_sum)
).withColumn(
"st_asin_sp_orders",
F.ceil(self.df_save_st_asin.st_asin_sp_rate * self.df_save_st_asin.st_search_sum)
)
# self.df_save_st_asin.show(10, truncate=False)
self.df_save_st_asin = self.df_save_st_asin.select(
"search_term", "asin", "st_asin_zr_orders", "st_asin_sp_orders",
)
self.df_save_st_asin = self.df_save_st_asin.groupby(["search_term", "asin"]).agg(
{
"st_asin_zr_orders": "mean",
"st_asin_sp_orders": "mean",
}
)
self.df_save_st_asin = self.df_save_st_asin.withColumnRenamed(
"avg(st_asin_zr_orders)", "st_asin_zr_orders"
).withColumnRenamed(
"avg(st_asin_sp_orders)", "st_asin_sp_orders"
)
self.df_save_st_asin = self.df_save_st_asin.withColumn(f"site_name", F.lit(self.site_name))
self.df_save_st_asin = self.df_save_st_asin.withColumn(f"date_type", F.lit(self.date_type))
self.df_save_st_asin = self.df_save_st_asin.withColumn(f"date_info", F.lit(self.date_info))
print("self.df_save_st_asin:", self.df_save_st_asin.count())
# self.df_save_st_asin.show(10, truncate=False)
# 2. st维度的zr和sp预估销量
df_st_orders = self.df_save_st_asin.groupby(['search_term']).agg(
{
"st_asin_zr_orders": "sum",
"st_asin_sp_orders": "sum",
}
)
df_st_orders = df_st_orders.withColumnRenamed(
"sum(st_asin_zr_orders)", "st_zr_orders"
).withColumnRenamed(
"sum(st_asin_sp_orders)", "st_sp_orders"
)
self.df_save_st = self.df_save_st.join(
df_st_orders, on=['search_term'], how='left'
)
# 3. asin维度的zr和sp预估销量
df_asin_orders = self.df_save_st_asin.groupby(['asin']).agg(
{
"st_asin_zr_orders": "mean",
"st_asin_sp_orders": "mean",
}
)
df_asin_orders = df_asin_orders.withColumnRenamed(
"avg(st_asin_zr_orders)", "asin_zr_orders"
).withColumnRenamed(
"avg(st_asin_sp_orders)", "asin_sp_orders"
)
self.df_save_asin = self.df_save_asin.join(
df_asin_orders, on=['asin'], how='left'
)
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:day/week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-月-日/年-周/年-月/年-季, 比如: 2022-1
handle_obj = DwdStMeasure(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()