1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import os
import sys
from pyspark.storagelevel import StorageLevel
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
# from AmazonSpider.pyspark_job.utils.templates import Templates
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
from pyspark.sql.types import StringType, IntegerType
class DwTStAsinReverse(Templates):
def __init__(self, site_name="us", date_type="week", date_info="2022-1"):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save = f"dwt_st_asin_reverse"
self.spark = self.create_spark_object(app_name=f"{self.db_save}, {self.site_name}, {self.date_type}, {self.date_info}")
self.get_date_info_tuple()
self.get_year_week_tuple()
self.get_year_month_days_dict(year=int(self.year))
self.df_st_asin = self.spark.sql(f"select 1+1;")
self.df_st_asin_flow = self.spark.sql(f"select 1+1;")
self.df_st = self.spark.sql(f"select 1+1;")
self.df_st_measure = self.spark.sql(f"select 1+1;")
self.df_st_key = self.spark.sql(f"select 1+1;")
self.df_st_brand_label = self.spark.sql(f"select 1+1;")
self.df_save = self.spark.sql(f"select 1+1;")
self.df_save_std = self.spark.sql(f"select * from {self.db_save} limit 0;")
self.u_st_type = self.spark.udf.register('u_st_type', self.udf_st_type, StringType())
self.partitions_by = ['site_name', 'date_type', 'date_info']
if self.date_type in ["week"]:
self.reset_partitions(400)
else:
self.reset_partitions(1000)
@staticmethod
def udf_st_type(st_asin_zr_rate, zr_page1_flag, st_search_num, st_click_share_sum, st_conversion_share_sum):
st_type_list = []
if st_asin_zr_rate >= 0.05:
st_type_list.append('1') # 主要流量词
if zr_page1_flag == 1:
if st_search_num < 10000:
st_type_list.append('2') # 精准长尾词
else:
st_type_list.append('3') # 精准流量词
if st_click_share_sum > 0:
if (st_conversion_share_sum - st_click_share_sum) / st_click_share_sum >= 0.2:
st_type_list.append('4') # 转化优质词
else:
st_type_list.append('5') # 转化平稳词
if (st_click_share_sum - st_conversion_share_sum) / st_click_share_sum >= 0.2:
st_type_list.append('6') # 转化流失词
if st_conversion_share_sum > 0:
st_type_list.append('7') # 出单词
if st_click_share_sum > 0 and st_conversion_share_sum == 0:
st_type_list.append('8') # 无效曝光词
return ",".join(st_type_list) if st_type_list else ''
def read_data(self):
print("1 读取st+asin两个维度: dim_st_asin_info表和ods_rank_flow表")
print("1.1 读取dim_st_asin_info表")
# if (int(self.year) == 2022 and int(self.month) < 10) or int(self.year) <= 2021:
# sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
# else:
# sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='day' and date_info in {self.date_info_tuple}" # 测试: and date_info>='2023-01-19'
if date_type in ['month', 'month_week'] and ((self.site_name == 'us' and date_info >= '2023-10') or (self.site_name in ['uk', 'de'] and self.date_info >= '2024-05')):
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}'"
else:
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple}"
print("sql:", sql)
self.df_st_asin = self.spark.sql(sqlQuery=sql)
self.df_st_asin.persist(storageLevel=StorageLevel.MEMORY_ONLY)
# self.df_st_asin = self.spark.sql(sqlQuery=sql).cache()
self.df_st_asin = self.df_st_asin.withColumnRenamed("updated_time", "updated_at")
self.df_st_asin.show(10, truncate=False)
print("1.2 读取ods_rank_flow表")
# sql = f"select rank as page_rank, flow from ods_rank_flow " \
# f"where site_name='{self.site_name}'"
sql = f"select rank as st_asin_zr_page_rank, rank as st_asin_sp_page_rank, flow as st_asin_zr_rate, flow as st_asin_sp_rate from ods_rank_flow " \
f"where site_name='{self.site_name}'"
self.df_st_asin_flow = self.spark.sql(sql).cache()
self.df_st_asin_flow.show(10, truncate=False)
print("1.3 读取dim_st_detail表")
sql = f"select search_term, st_rank, st_search_num, st_search_rate, st_search_sum, " \
f"st_quantity_being_sold, st_click_share_sum, st_conversion_share_sum from dim_st_detail " \
f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
print("sql:", sql)
self.df_st = self.spark.sql(sql).cache()
self.df_st = self.df_st.fillna(0)
self.df_st.show(10, truncate=False)
print("1.4 读取dwd_st_measure表")
sql = f"select search_term, st_adv_counts, st_ao_val, st_zr_page1_title_appear_rate as zr_page1_flag from dwd_st_measure " \
f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
print("sql:", sql)
self.df_st_measure = self.spark.sql(sql).cache()
self.df_st_measure.show(10, truncate=False)
print("1.5 读取ods_st_key表")
sql = f"select st_key, search_term from ods_st_key " \
f"where site_name='{self.site_name}';"
print("sql:", sql)
self.df_st_key = self.spark.sql(sql).cache()
self.df_st_key.show(10, truncate=False)
print("1.6 读取dws_st_brand_info表")
sql = f"select search_term, st_brand_label from dws_st_brand_info " \
f"where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info = '{self.date_info}';"
print("sql:", sql)
self.df_st_brand_label = self.spark.sql(sql).cache()
self.df_st_brand_label.show(10, truncate=False)
def handle_data(self):
self.handle_st_duplicated()
self.handle_st_asin_pivot()
self.handle_st_asin_orders()
self.handle_st_type()
self.handle_st_dtypes()
# self.handle_st_current_page_asin_counts()
self.df_save = self.df_save.withColumn("site_name", F.lit(self.site_name))
self.df_save = self.df_save.withColumn("date_type", F.lit(self.date_type))
self.df_save = self.df_save.withColumn("date_info", F.lit(self.date_info))
self.df_save = self.df_save.drop("zr_page1_flag", "st_click_share_sum", "st_conversion_share_sum")
self.df_save = self.df_save_std.unionByName(self.df_save, allowMissingColumns=True)
# self.df_save.show(20, truncate=False)
print("cols:", self.df_save.columns)
# quit()
def handle_st_duplicated(self):
print("2.2 根据search_term,asin,data_type进行去重, page_rank选择最小值")
window = Window.partitionBy(['search_term', 'asin', 'data_type']).orderBy(
self.df_st_asin.page_rank.asc(),
self.df_st_asin.date_info.desc(),
)
self.df_st_asin = self.df_st_asin. \
withColumn("page_rank_top", F.row_number().over(window=window))
# print("self.df_st_asin_info, 开窗去重前:", self.df_st_asin_info.count())
self.df_st_asin = self.df_st_asin.filter("page_rank_top=1")
# print("self.df_st_asin_info, 开窗去重后:", self.df_st_asin_info.count())
self.df_st_asin = self.df_st_asin.cache()
# self.df_st_asin = self.df_st_asin.persist(storageLevel=StorageLevel.MEMORY_AND_DISK)
# self.df_st_asin.show(10, truncate=False)
def handle_st_asin_pivot(self):
print(f"2.3 根据search_term和asin进行透视表")
self.df_st_asin = self.df_st_asin. \
withColumn("updated_at_data_type",
F.concat(F.lit("st_asin_"), self.df_st_asin.data_type, F.lit("_updated_at"))). \
withColumn("page_data_type",
F.concat(F.lit("st_asin_"), self.df_st_asin.data_type, F.lit("_page"))). \
withColumn("page_row_data_type",
F.concat(F.lit("st_asin_"), self.df_st_asin.data_type, F.lit("_page_row"))). \
withColumn("page_rank_data_type",
F.concat(F.lit("st_asin_"), self.df_st_asin.data_type, F.lit("_page_rank")))
df1 = self.df_st_asin.select("search_term", "asin", "updated_at_data_type", "updated_at"). \
withColumnRenamed("updated_at_data_type", "pivot_key"). \
withColumnRenamed("updated_at", "pivot_value")
df2 = self.df_st_asin.select("search_term", "asin", "page_data_type", "page")
# page_row和page_rank: 只有zr,sp才有
self.df_st_asin = self.df_st_asin.filter("data_type in ('zr', 'sp')")
df3 = self.df_st_asin.select("search_term", "asin", "page_row_data_type", "page_row")
df4 = self.df_st_asin.select("search_term", "asin", "page_rank_data_type", "page_rank")
self.df_save = df1.union(df2).union(df3).union(df4)
df_st_zr_counts = self.df_st_asin.filter("data_type='zr'").groupby(["search_term", "page"]).agg(
F.max('page_row').alias("st_zr_current_page_asin_counts"))
df_st_sp_counts = self.df_st_asin.filter("data_type='sp'").groupby(["search_term", "page"]).agg(
F.max('page_row').alias("st_sp_current_page_asin_counts"))
df_st_zr_counts = df_st_zr_counts.withColumnRenamed("page", "st_asin_zr_page")
df_st_sp_counts = df_st_sp_counts.withColumnRenamed("page", "st_asin_sp_page")
self.df_save = self.df_save.groupby(["search_term", "asin"]). \
pivot(f"pivot_key").agg(F.min(f"pivot_value")). \
join(self.df_st_asin_flow.select("st_asin_zr_page_rank", "st_asin_zr_rate"), on=["st_asin_zr_page_rank"], how="left"). \
join(self.df_st_asin_flow.select("st_asin_sp_page_rank", "st_asin_sp_rate"), on=["st_asin_sp_page_rank"], how="left"). \
join(self.df_st_measure, on=["search_term"], how="left"). \
join(self.df_st_key, on=["search_term"], how="left"). \
join(self.df_st_brand_label, on=["search_term"], how="left"). \
join(self.df_st, on=["search_term"], how="inner").join(
df_st_zr_counts, on=["search_term", "st_asin_zr_page"], how='left'
).join(df_st_sp_counts, on=["search_term", "st_asin_sp_page"], how='left')
# join(self.df_st_measure, on=["search_term"], how="inner"). \
# join(self.df_st_key, on=["search_term"], how="inner"). \
self.df_save = self.df_save.fillna(
{
"st_asin_zr_rate": 0,
"st_asin_sp_rate": 0
}
)
# 释放内存
del self.df_st_asin
self.df_save.persist(storageLevel=StorageLevel.MEMORY_ONLY)
def handle_st_asin_orders(self):
print("2.4 计算zr, sp预估销量")
self.df_save = self.df_save.withColumn(
"st_asin_zr_orders", F.ceil(self.df_save.st_asin_zr_rate * self.df_save.st_search_sum)
).withColumn(
"st_asin_sp_orders", F.ceil(self.df_save.st_asin_sp_rate * self.df_save.st_search_sum)
)
self.df_save = self.df_save.withColumn(
"asin_st_zr_orders", self.df_save.st_asin_zr_orders
).withColumn(
"asin_st_sp_orders", self.df_save.st_asin_sp_orders
)
df_asin_st_zr_orders_sum = self.df_save.groupby(['asin']). \
agg({"st_asin_zr_orders": "sum"})
df_asin_st_sp_orders_sum = self.df_save.groupby(['asin']). \
agg({"st_asin_sp_orders": "sum"})
df_asin_st_zr_orders_sum = df_asin_st_zr_orders_sum.withColumnRenamed("sum(st_asin_zr_orders)", "asin_st_zr_orders_sum")
df_asin_st_sp_orders_sum = df_asin_st_sp_orders_sum.withColumnRenamed("sum(st_asin_sp_orders)", "asin_st_sp_orders_sum")
df_asin_st_zr_orders_sum = df_asin_st_zr_orders_sum.withColumn(f"is_zr_flag", F.lit(1))
df_asin_st_sp_orders_sum = df_asin_st_sp_orders_sum.withColumn(f"is_sp_flag", F.lit(1))
df_st_asin_zr_orders_sum = self.df_save.groupby(['search_term']). \
agg({"st_asin_zr_orders": "sum"})
df_st_asin_zr_orders_sum = df_st_asin_zr_orders_sum.withColumnRenamed("sum(st_asin_zr_orders)", "st_asin_zr_orders_sum")
df_st_asin_zr_orders_sum = df_st_asin_zr_orders_sum.withColumn(f"is_zr_flag", F.lit(1))
df_st_asin_sp_orders_sum = self.df_save.groupby(['search_term']). \
agg({"st_asin_sp_orders": "sum"})
df_st_asin_sp_orders_sum = df_st_asin_sp_orders_sum.withColumnRenamed("sum(st_asin_sp_orders)", "st_asin_sp_orders_sum")
df_st_asin_sp_orders_sum = df_st_asin_sp_orders_sum.withColumn(f"is_sp_flag", F.lit(1))
self.df_save = self.df_save.withColumn("is_zr_flag", F.when(self.df_save.st_asin_zr_page > 0, 1))
self.df_save = self.df_save.withColumn("is_sp_flag", F.when(self.df_save.st_asin_sp_page > 0, 1))
self.df_save = self.df_save. \
join(df_asin_st_zr_orders_sum, on=['asin', "is_zr_flag"], how='left'). \
join(df_asin_st_sp_orders_sum, on=['asin', "is_sp_flag"], how='left'). \
join(df_st_asin_zr_orders_sum, on=['search_term', "is_zr_flag"], how='left'). \
join(df_st_asin_sp_orders_sum, on=['search_term', "is_sp_flag"], how='left')
self.df_save = self.df_save.withColumn(
"st_asin_zr_flow", F.round(self.df_save.st_asin_zr_orders / self.df_save.st_asin_zr_orders_sum, 4)
)
self.df_save = self.df_save.withColumn(
"st_asin_sp_flow", F.round(self.df_save.st_asin_sp_orders / self.df_save.st_asin_sp_orders_sum, 4)
)
self.df_save = self.df_save.withColumn(
"asin_st_zr_flow", F.round(self.df_save.asin_st_zr_orders / self.df_save.asin_st_zr_orders_sum, 4)
)
self.df_save = self.df_save.withColumn(
"asin_st_sp_flow", F.round(self.df_save.asin_st_sp_orders / self.df_save.asin_st_sp_orders_sum, 4)
)
self.df_save = self.df_save.drop("is_zr_flag", "is_sp_flag")
print("self.df_save.columns:", self.df_save.columns)
def handle_st_type(self):
print("2.5 根据search_term,asin等信息进行计算关键词的分类情况")
self.df_save = self.df_save.withColumn(
"st_type", self.u_st_type(
"st_asin_zr_rate", "zr_page1_flag", "st_search_num", "st_click_share_sum", "st_conversion_share_sum"
)
)
def handle_st_dtypes(self):
print("2.5 更改pivot之后的列的数据类型, 保持和hive的数据类型一致")
for col in self.df_save.columns:
if ("_page" in col) or ("_page_row" in col) or ("_page_rank" in col):
print("col:", col)
self.df_save = self.df_save.withColumn(col, self.df_save[f'{col}'].cast("int"))
def handle_st_current_page_asin_counts(self):
df_st_zr_counts = self.df_st_asin.filter("data_type='zr'").groupby(["search_term", "page"]).agg(F.max('page_row').alias("st_zr_current_page_asin_counts"))
df_st_sp_counts = self.df_st_asin.filter("data_type='sp'").groupby(["search_term", "page"]).agg(F.max('page_row').alias("st_sp_current_page_asin_counts"))
df_st_zr_counts = df_st_zr_counts.withColumnRenamed("page", "st_asin_zr_page")
df_st_sp_counts = df_st_sp_counts.withColumnRenamed("page", "st_asin_sp_page")
self.df_save = self.df_save.join(
df_st_zr_counts, on=["search_term", "st_asin_zr_page"], how='left'
).join(
df_st_sp_counts, on=["search_term", "st_asin_sp_page"], how='left'
)
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季, 比如: 2022-1
handle_obj = DwTStAsinReverse(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()