dwd_st_volume_fba_old.py
25.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
import json
import os
import re
import sys
sys.path.append(os.path.dirname(sys.path[0]))
from utils.db_util import DBUtil
from utils.common_util import CommonUtil, DateTypes
from utils.hdfs_utils import HdfsUtils
from utils.spark_util import SparkUtil
from pyspark.sql import functions as F
from pyspark.sql.types import MapType, StringType, DecimalType, IntegerType, Row, DoubleType
"""
搜索词 计算=>平均长宽高 => 计算基本利润率相关数据
依赖 dwd_st_asin_measure 表 dim_asin_detail 表
输出为 Dwd_st_volume_fba
支持所有站点 日期类型
# 更新利润率
update us_aba_last_30_day
set gross_profit_fee_sea = tb_2.gross_profit_fee_sea,
gross_profit_fee_air=tb_2.gross_profit_fee_air
from us_aba_profit_gross_last30day tb_2
where tb_2.search_term_id = id
"""
def get_Fba_Fee(longVal: float,
width: float,
high: float,
weight: float,
):
fee_type = 0
fba_fee = 0
if (longVal <= 36 and width <= 28 and high <= 1.6 and weight <= 113.5):
fee_type = 1
fba_fee = 3.22
elif (longVal <= 36 and width <= 28 and high <= 1.6 and weight > 113.5 and weight <= 227):
fee_type = 2
fba_fee = 3.4
elif (longVal <= 36 and width <= 28 and high <= 1.6 and weight > 227 and weight <= 340.5):
fee_type = 3
fba_fee = 3.58
elif (longVal <= 36 and width <= 28 and high <= 1.6 and weight > 340.5 and weight <= 454):
fee_type = 4
fba_fee = 3.77
elif (longVal <= 43 and width <= 34 and high <= 19 and weight <= 113.5):
fee_type = 5
fba_fee = 3.86
elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 113.5 and weight <= 227):
fee_type = 6
fba_fee = 4.08
elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 227 and weight <= 340.5):
fee_type = 7
fba_fee = 4.24
elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 340.5 and weight <= 454):
fee_type = 8
fba_fee = 4.75
elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 454 and weight <= 681):
fee_type = 9
fba_fee = 5.4
elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 681 and weight <= 908):
fee_type = 10
fba_fee = 5.69
elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 908 and weight <= 1135):
fee_type = 11
fba_fee = 6.1
elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 1135 and weight <= 1362):
fee_type = 12
fba_fee = 6.39
elif (longVal <= 43 and width <= 34 and high <= 19 and weight > 1362 and weight <= 9080):
fee_type = 13
fba_fee = 7.33
elif (longVal <= 152.4 and (longVal + 2 * (width + high)) <= 330.2 and weight <= 31780):
fee_type = 14
fba_fee = 10.15
elif (longVal <= 274.32 and (longVal + 2 * (width + high)) <= 419.1 and weight <= 68100):
fee_type = 15
fba_fee = 19.47
elif (longVal <= 274.32 and (longVal + 2 * (width + high)) > 419.1 and weight <= 68100):
fee_type = 16
fba_fee = 90.81
elif (longVal > 274.32 and (longVal + 2 * (width + high)) > 419.1 and weight > 68100):
fee_type = 17
fba_fee = 159.32
return (fee_type, fba_fee)
class DwdStVolumeFba(object):
def __init__(self, site_name, date_type, date_info):
self.site_name = site_name
self.date_info = date_info
self.date_type = date_type
app_name = f"{self.__class__.__name__}:{site_name}:{date_type}:{date_info}"
self.spark = SparkUtil.get_spark_session(app_name)
# # 注册本地静态方法 udf 返回新函数
self.udf_parse_volume_reg = F.udf(self.udf_parse_volume, MapType(StringType(), DecimalType(10, 4)))
self.udf_calc_avg_reg = F.udf(self.udf_calc_avg, DecimalType(10, 4))
self.udf_calc_profit_reg = F.udf(self.udf_calc_profit, MapType(StringType(), StringType()))
self.hive_tb = "dwd_st_volume_fba"
@staticmethod
def udf_parse_volume(asin_volume: str, site_name: str):
"""
解析
:param asin_volume:
:return:
"""
def safeIndex(list: list, index: int, default: object = None):
if index <= len(list) - 1:
return list[index]
return default
def to_float(obj, default: object = None):
try:
return float(obj)
except:
return default
resultArr = []
if asin_volume is not None:
pattern = r"([0-9.]+)"
resultArr = re.findall(pattern, asin_volume, flags=re.IGNORECASE)
# 倒序
resultArr.sort(reverse=True)
longVal = to_float(safeIndex(resultArr, 0, None), None)
width = to_float(safeIndex(resultArr, 1, None), None)
height = to_float(safeIndex(resultArr, 2, None), None)
if site_name == 'us':
# 英寸
rate = 2.54
else:
rate = 1
return {
"long": None if longVal is None else round(rate * longVal, 4),
"width": None if width is None else round(rate * width, 4),
"height": None if height is None else round(rate * height, 4),
}
@staticmethod
def udf_calc_avg(
val1_col=0,
val2_col=0,
val3_col=0,
val1_count=0,
val2_count=0,
val3_count=0
):
val1_col = val1_col or 0
val2_col = val2_col or 0
val3_col = val3_col or 0
val1_count = val1_count or 0
val2_count = val2_count or 0
val3_count = val3_count or 0
arr = [(val1_count, val1_col), (val2_count, val2_col), (val3_count, val3_col)]
# 从小到大排序
arr.sort(key=lambda it: it[0], reverse=False)
val1, count1 = arr[0]
val2, count2 = arr[1]
val3, count3 = arr[2]
if (count1 == count2 and count2 == count3):
return round((val1 + val2 + val3) / 3, 2)
if (count2 / count3 >= 0.3):
return round((val2 + val3) / 2, 2)
else:
return val3
@staticmethod
def udf_sort_val():
"""
长宽高重新排序
:return:
"""
def udf_sort_inner(val1, val2, val3):
# 从大到小排序
arr = [val1 or 0, val2 or 0, val3 or 0, ]
arr.sort(reverse=True)
return {
"long": arr[0],
"width": arr[1],
"height": arr[2],
}
return F.udf(udf_sort_inner, MapType(StringType(), DecimalType()))
@staticmethod
def udf_calc_fba_reg(config_dict: dict):
"""
根据配置表计算fba费用
:param config_dict:
:return:
"""
def udf_calc_fba(one_categoy_id: str, price):
if price is None:
return None
config_row = config_dict.get(str(one_categoy_id))
if config_row is None:
# 默认佣金比例是0.15
return price * 0.15
else:
calc_type = config_row['calc_type']
calc_json = json.loads(config_row['config_json'])
if calc_type == '价格分段':
min = calc_json['min']
rate_1 = calc_json['rate_1']
rate_2 = calc_json['rate_2']
break_val = calc_json['break_val']
if price <= break_val:
return max(min, price * rate_1)
else:
return price * rate_2
elif calc_type == '佣金分段':
min = calc_json['min']
rate_1 = calc_json['rate_1']
rate_2 = calc_json['rate_2']
break_val = calc_json['break_val']
if price * rate_1 <= break_val:
return max(min, price * rate_1)
else:
return price * rate_2
elif calc_type == '最小限制':
rate = calc_json['rate']
min = calc_json['min']
return max(min, price * rate)
pass
elif calc_type == '固定比率':
rate = calc_json['rate']
return price * rate
pass
return F.udf(udf_calc_fba, DoubleType())
@staticmethod
def udf_calc_profit(long, width, high, weight, tmp_cost_all_sea, price):
longVal_before = long or 0
width_before = width or 0
high_before = high or 0
weight_before = weight or 0
tmpCost = tmp_cost_all_sea or 0
price_val = price or 0
fee_type_before, fba_fee_before = get_Fba_Fee(longVal_before, width_before, high_before, weight_before)
cost_sum = tmpCost + fba_fee_before
count = 0
long_result = longVal_before
width_result = width_before
high_result = high_before
fee_type_result = fee_type_before
fba_fee_result = fba_fee_before
breakFlag = False
val_43 = 43
if cost_sum > price_val:
while (long_result >= val_43 and count < 4):
tmpVal1 = long_result / 2
tmpVal2 = high_result * 2
breakFlag = tmpVal1 <= tmpVal2
tmp_list = [tmpVal1, width_result, tmpVal2]
tmp_list.sort(reverse=True)
long_result = tmp_list[0]
width_result = tmp_list[1]
high_result = tmp_list[2]
count = count + 1
fee_type_result, fba_fee_result = get_Fba_Fee(long_result, width_result, high_result, weight_before)
if breakFlag:
break
if breakFlag or (count == 4 and long_result > val_43):
long_result = longVal_before
width_result = width_before
high_result = high_before
fee_type_result = fee_type_before
fba_fee_result = fba_fee_before
# result_list.append()
return {
"long": long_result,
"width": width_result,
"high": high_result,
"fee_type": fee_type_result,
"fba_fee": fba_fee_result,
"long_before": longVal_before,
"width_before": width_before,
"high_before": high_before
}
def get_repartition_num(self):
"""
根据 date_type 设置文件块数
:return:
"""
if self.date_type == DateTypes.day.name:
return 1
if self.date_type == DateTypes.week.name:
return 2
if self.date_type == DateTypes.month.name:
return 2
if self.date_type == DateTypes.last30day.name:
return 2
return 10
def run(self):
sql = f"""
select dsam.search_term,
osk.st_key as search_term_id,
dsam.asin,
asin_volume,
asin_weight,
st_bsr_cate_1_id_new as category_first_id,
st_bsr_cate_current_id_new as category_id,
asin_price
from (
select search_term,
asin
from dwd_st_asin_measure
where date_type = '{CommonUtil.get_rel_date_type('dwd_st_asin_measure', self.date_type)}'
and date_info = '{self.date_info}'
and site_name = '{self.site_name}'
) dsam
left join
(
select search_term,
st_bsr_cate_1_id_new,
st_bsr_cate_current_id_new
from dim_st_detail
where date_type = '{CommonUtil.get_rel_date_type('dim_st_detail', self.date_type)}'
and date_info = '{self.date_info}'
and site_name = '{self.site_name}'
) dsd on dsd.search_term = dsam.search_term
left join
(
select asin,
asin_weight,
asin_volume,
asin_price
from dim_asin_detail
where date_type = '{CommonUtil.get_rel_date_type('dim_asin_detail', self.date_type)}'
and date_info = '{self.date_info}'
and site_name = '{self.site_name}'
) dad on dad.asin = dsam.asin
inner join
(
select search_term,
st_key
from ods_st_key
where site_name = '{self.site_name}'
) osk on osk.search_term = dsam.search_term
"""
print("======================查询sql如下======================")
print(sql)
df_all = self.spark.sql(sql)
# 长宽高重新排序
df_all = df_all.withColumn("tmp_row", self.udf_parse_volume_reg(F.col("asin_volume"), F.lit(self.site_name)))
df_all = df_all.withColumn("long", F.col("tmp_row").getField("long"))
df_all = df_all.withColumn("width", F.col("tmp_row").getField("width"))
df_all = df_all.withColumn("height", F.col("tmp_row").getField("height"))
df_all.drop("tmp_row")
st_agg_one = df_all.groupBy("search_term_id") \
.agg(
F.first("categoy_id").alias("categoy_id"),
F.first("current_categoy_id").alias("current_categoy_id"),
F.first("search_term").alias("search_term"),
F.avg("asin_price").alias("price"),
# 磅 => 克 并过滤无效数据 todo 其他us站点的
F.expr("round(avg(asin_weight * 453.59237),4)").alias("weight")
).select(
F.col("search_term"),
F.col("search_term_id"),
F.col("categoy_id"),
F.col("current_categoy_id"),
F.col("price"),
F.col("weight")
)
long_df = df_all.withColumn("flag",
F.when(F.expr("0 < long and long <= 50"), F.lit(1))
.when(F.expr("50 < long and long <= 100"), F.lit(2))
.when(F.expr("100 < long and long <= 500"), F.lit(3))
.otherwise(None)
) \
.groupBy(F.col("search_term_id")) \
.pivot("flag", [1, 2, 3]) \
.agg(F.avg("long").cast(DecimalType(10, 2)).alias("val"), F.count("flag").alias("row_count")) \
.select(
F.col("search_term_id"),
self.udf_calc_avg_reg(
F.col("1_val"), F.col("2_val"), F.col("3_val"),
F.col("1_row_count"), F.col("2_row_count"), F.col("3_row_count")
).alias("long")
).cache()
width_df = df_all.withColumn("flag",
F.when(F.expr("0 < width and width <= 50"), F.lit(1))
.when(F.expr("50 < width and width <= 100"), F.lit(2))
.when(F.expr("100 < width and width <= 500"), F.lit(3))
.otherwise(None)
) \
.groupBy(F.col("search_term_id")) \
.pivot("flag", [1, 2, 3]) \
.agg(F.avg("width").cast(DecimalType(10, 2)).alias("val"), F.count("flag").alias("row_count")) \
.select(
F.col("search_term_id"),
self.udf_calc_avg_reg(
F.col("1_val"), F.col("2_val"), F.col("3_val"),
F.col("1_row_count"), F.col("2_row_count"), F.col("3_row_count")
).alias("width")
).cache()
height_df = df_all.withColumn("flag",
F.when(F.expr("0 < height and height <= 50"), F.lit(1))
.when(F.expr("50 < height and height <= 100"), F.lit(2))
.when(F.expr("100 < height and height <= 500"), F.lit(3))
.otherwise(None)
) \
.groupBy(F.col("search_term_id")) \
.pivot("flag", [1, 2, 3]) \
.agg(F.avg("height").cast(DecimalType(10, 2)).alias("val"), F.count("flag").alias("row_count")) \
.select(
F.col("search_term_id"),
self.udf_calc_avg_reg(
F.col("1_val"), F.col("2_val"), F.col("3_val"),
F.col("1_row_count"), F.col("2_row_count"), F.col("3_row_count")
).alias("height")
).cache()
st_volume_info = st_agg_one \
.join(long_df, "search_term_id") \
.join(width_df, "search_term_id") \
.join(height_df, "search_term_id") \
.select(
st_agg_one["search_term"],
st_agg_one["search_term_id"],
st_agg_one["categoy_id"],
st_agg_one["current_categoy_id"],
st_agg_one["price"],
st_agg_one["weight"],
long_df["long"],
width_df["width"],
height_df["height"].alias("high")
).fillna({
"long": 0,
"width": 0,
"high": 0,
"categoy_id": 0,
"current_categoy_id": 0,
"price": 0,
"weight": 0
})
conn_info = DBUtil.get_connection_info("postgresql", "us")
config_sql1 = f"""
select categoy_id as one_categoy_id,
categoy_name,
referral_fee_formula,
upfc.calc_type,
upfc.config_json,
adv::decimal(10, 3),
(
select round(avg(return_ratio) / 100, 2)::decimal(10, 3)
from us_aba_profit_category_insights
) as return_ratio
from us_profit_fba_config upfc
left join us_profit_adv upa on upa.category = upfc.categoy_name
"""
df_profit_join = SparkUtil.read_jdbc_query(
session=self.spark,
url=conn_info["url"],
pwd=conn_info["pwd"],
username=conn_info["username"],
query=config_sql1
).cache()
calc_profit_dict = {str(row['one_categoy_id']): row.asDict() for row in df_profit_join.collect()}
config_sql2 = f"""
select rel_category_id as rel_category_id,
ubc.one_category_id as one_category_id,
round(avg(cost), 2)::decimal(10, 3) as cost_rate,
round(avg(avg_cost), 2)::decimal(10, 3) as avg_cost_rate
from (
select upcn.name as header_name,
(replace(cost, '%', '')::decimal) / 100 as cost,
(replace(avg_cost, '%', '') ::decimal) / 100 as avg_cost,
first_name,
last_name,
coalesce(tmp2.id, tmp1.id, upcn.first_id) as rel_category_id
from public.us_profit_cost_new upcn
left join (
select min(id) as id,
replace(en_name, ' ', '') as name
from us_bs_category
where nodes_num = 2
group by en_name
) tmp1 on upcn.first_name = tmp1.name
left join (
select min(id) as id,
replace(en_name, ' ', '') as name
from us_bs_category
where nodes_num > 2
group by en_name
) tmp2 on upcn.last_name = tmp2.name
) tmp
inner join us_bs_category ubc on ubc.id = tmp.rel_category_id
group by one_category_id, rel_category_id
"""
df_cost_join = SparkUtil.read_jdbc_query(
session=self.spark,
url=conn_info["url"],
pwd=conn_info["pwd"],
username=conn_info["username"],
query=config_sql2
).cache()
# 平均成本比例
def_cost_rate = df_cost_join.select(F.avg("cost_rate").cast(DecimalType(10, 3)).alias("cost_rate")).first()[0]
# 平均广告费
def_adv = df_profit_join.select(F.avg("adv").cast(DecimalType(10, 3)).alias("adv")).first()[0]
# 平均退款率
def_return_ratio = df_profit_join.select(F.avg("return_ratio").cast(DecimalType(10, 3)).alias("return_ratio")).first()[0]
# 头程空运 运费比例
freight_air_rate = 8.55
# 头程海运 运费比例
freight_sea_rate = 2.06
df_save = st_volume_info \
.join(df_profit_join, st_volume_info['categoy_id'].eqNullSafe(df_profit_join['one_categoy_id']), "left") \
.join(df_cost_join, st_volume_info['current_categoy_id'].eqNullSafe(df_cost_join['rel_category_id']), "left")
df_save = df_save.select(
st_volume_info["search_term"],
st_volume_info["search_term_id"],
st_volume_info["categoy_id"],
st_volume_info["current_categoy_id"],
st_volume_info["price"],
st_volume_info["long"],
st_volume_info["width"],
st_volume_info["high"],
st_volume_info["weight"],
df_profit_join["return_ratio"],
df_profit_join["adv"],
df_cost_join['cost_rate']
)
df_save = df_save.fillna({
# 无分类 填充退款率 佣金
"return_ratio": float(def_return_ratio),
"cost_rate": float(def_cost_rate),
"adv": float(def_adv),
}).cache()
# 计算公式
df_save = df_save.withColumn("referral_fee",
F.round(self.udf_calc_fba_reg(calc_profit_dict)(F.col("categoy_id"), F.col("price")), 4))
# 头程 海运
df_save = df_save.withColumn("ocean_freight", F.expr(f"weight * {freight_sea_rate} /1000"))
# 头程 空运
df_save = df_save.withColumn("air_delivery_fee", F.expr(f"weight * {freight_air_rate} /1000"))
# 运营费固定 平均售价 * 5%
df_save = df_save.withColumn("operating_costs", F.expr(f"price * 0.05"))
# 成本
df_save = df_save.withColumn("costs", F.expr(f" price * cost_rate "))
# 广告占比 adv
df_save = df_save.withColumn("advertise", F.expr(f" price * adv "))
# 退款率 * 价格 即为退款额
df_save = df_save.withColumn("return_ratio", F.expr(f" price * return_ratio "))
# 除了fba之外的所有的费用
df_save = df_save.withColumn("tmp_cost_all_sea",
F.expr("ocean_freight + referral_fee + return_ratio + costs + advertise + operating_costs"))
# 计算利润率
df_save = df_save.withColumn("tmp_row", self.udf_calc_profit_reg(
F.col("long"),
F.col("width"),
F.col("high"),
F.col("weight"),
F.col("tmp_cost_all_sea"),
F.col("price"),
))
df_save = df_save.withColumn("fba_fee", F.col("tmp_row").getField("fba_fee"))
df_save = df_save.withColumn("gross_profit_fee_sea",
F.expr(
"(price-(ocean_freight +referral_fee+return_ratio +costs+advertise+operating_costs + fba_fee))/price")
.cast(DecimalType(10, 3)))
df_save = df_save.withColumn("gross_profit_fee_air",
F.expr(
"(price-(air_delivery_fee +referral_fee+return_ratio +costs+advertise+operating_costs + fba_fee))/price")
.cast(DecimalType(10, 3)))
df_save = df_save.select(
F.col("search_term"),
F.col("search_term_id"),
F.col("categoy_id"),
st_volume_info["current_categoy_id"],
F.col("weight").cast(DecimalType(10, 3)),
F.col("price").cast(DecimalType(10, 3)),
F.col("referral_fee").cast(DecimalType(10, 3)),
# 长宽高之前
F.col("tmp_row").getField("long_before").cast(DecimalType(10, 3)).alias("long_before"),
F.col("tmp_row").getField("width_before").cast(DecimalType(10, 3)).alias("width_before"),
F.col("tmp_row").getField("high_before").cast(DecimalType(10, 3)).alias("high_before"),
# 计算后
F.col("tmp_row").getField("long").cast(DecimalType(10, 3)).alias("longs"),
F.col("tmp_row").getField("width").cast(DecimalType(10, 3)).alias("width"),
F.col("tmp_row").getField("high").cast(DecimalType(10, 3)).alias("high"),
F.col("tmp_row").getField("fba_fee").cast(DecimalType(10, 3)).alias("fba_fee"),
F.col("tmp_row").getField("fee_type").cast(IntegerType()).alias("fee_type"),
F.col("return_ratio"),
F.col("ocean_freight"),
F.col("air_delivery_fee"),
F.col("operating_costs"),
F.col("costs"),
F.col("advertise"),
F.col("gross_profit_fee_sea"),
F.col("gross_profit_fee_air"),
F.col("cost_rate"),
F.lit(self.site_name).alias("site_name"),
F.lit(self.date_type).alias("date_type"),
F.lit(self.date_info).alias("date_info")
).where("weight < 10000000")
# 分区数量调整
df_save = df_save.repartition(self.get_repartition_num())
partition_dict = {
"site_name": self.site_name,
"date_type": self.date_type,
"date_info": self.date_info,
}
hdfs_path = CommonUtil.build_hdfs_path(self.hive_tb, partition_dict)
HdfsUtils.delete_hdfs_file(hdfs_path)
partition_by = list(partition_dict.keys())
print(f"当前存储的表名为::self.hive_tb,分区为{partition_by}", )
df_save.write.saveAsTable(name=self.hive_tb, format='hive', mode='append', partitionBy=partition_by)
print("success")
if __name__ == '__main__':
site_name = CommonUtil.get_sys_arg(1, None)
date_type = CommonUtil.get_sys_arg(2, None)
date_info = CommonUtil.get_sys_arg(3, None)
obj = DwdStVolumeFba(site_name, date_type, date_info)
obj.run()