dwt_st_asin_measure_new.py
26.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import os
import sys
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from pyspark.storagelevel import StorageLevel
from utils.templates import Templates
# from ..utils.templates import Templates
# from AmazonSpider.pyspark_job.utils.templates_test import Templates
from pyspark.sql.types import StringType, IntegerType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
class DwdStMeasure(Templates):
def __init__(self, site_name='us', date_type="month", date_info='2022-01'):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save_st_asin = f'dwd_st_asin_measure'
self.db_save_st = f'dwd_st_measure'
self.db_save_asin = f'dwd_asin_measure'
self.spark = self.create_spark_object(
app_name=f"{self.db_save_st_asin}, {self.db_save_st}, {self.db_save_asin}: {self.site_name}, {self.date_type}, {self.date_info}")
# self.df_date = self.get_year_week_tuple() # pandas的df对象
self.get_date_info_tuple()
self.get_year_month_days_dict(year=int(self.year))
self.orders_transform_rate = self.get_orders_transform_rate() # 获取月销-->日销,周销
self.df_st_asin = self.spark.sql(f"select 1+1;")
self.df_st_asin_flow = self.spark.sql(f"select 1+1;")
self.df_st = self.spark.sql(f"select 1+1;")
self.df_brand_analytics = self.spark.sql(f"select 1+1;")
self.df_st_rate = self.spark.sql(f"select 1+1;")
self.df_st_quantity = self.spark.sql(f"select 1+1;")
self.df_asin = self.spark.sql(f"select 1+1;")
self.df_bs_report = self.spark.sql(f"select 1+1;")
self.df_st_asin_duplicated = self.spark.sql(f"select 1+1;")
self.df_save_st_asin = self.spark.sql(f"select 1+1;")
self.df_save_asin = self.spark.sql(f"select 1+1;")
self.df_save_st = self.spark.sql(f"select 1+1;")
self.df_asin_volume = self.spark.sql(f"select 1+1;")
self.df_asin_price_weight = self.spark.sql(f"select 1+1;")
self.df_st_templates = self.spark.sql("select st_zr_counts, st_sp_counts, st_sb1_counts,st_sb2_counts,st_sb3_counts,st_ac_counts,st_bs_counts,st_er_counts,st_tr_counts from dwd_st_measure limit 0")
self.df_asin_templates = self.spark.sql("select asin_zr_counts, asin_sp_counts, asin_sb1_counts,asin_sb2_counts,asin_sb3_counts,asin_ac_counts,asin_bs_counts,asin_er_counts,asin_tr_counts from dwd_asin_measure limit 0")
self.partitions_by = ['site_name', 'date_type', 'date_info']
self.u_is_title_appear = self.spark.udf.register("u_is_title_appear", self.udf_is_title_appear, IntegerType())
def get_orders_transform_rate(self):
month_days = self.year_month_days_dict[int(self.month)]
if self.date_type in ['day', 'week']:
if self.date_type == 'day':
return 1 / month_days
if self.date_type == 'week':
return 7 / month_days
else:
return 1
@staticmethod
def udf_is_title_appear(search_term, title):
if str(search_term).lower() in str(title).lower():
return 1
else:
return 0
def read_data(self):
# 1. ods层
# 1.1 ods_rank_flow
self.read_ods_rank_flow()
# 1.2 ods_brand_analytics
self.read_ods_brand_analytics()
# 1.3 ods_one_category_report
self.read_ods_one_category_report()
# 2. dim层
# 2.1 读取st+asin两个维度:dim_st_asin_info表
self.read_st_asin_info()
# 2.2 读取st维度:dim_st_detail表
self.read_dim_st_detail()
# 2.3 读取asin维度-详细信息:dim_asin_detail表
self.read_dim_asin_detail()
# 2.4 读取asin维度-体积信息:dim_asin_volume_info表
self.read_dim_asin_volume_info()
def read_ods_rank_flow(self):
# 1.1 读取ods_rank_flow表
# ... 编写相应的查询和逻辑
sql = f"select rank as page_rank, flow from ods_rank_flow " \
f"where site_name='{self.site_name}'"
self.df_st_asin_flow = self.spark.sql(sql).cache()
def read_ods_brand_analytics(self):
# 1.2 读取ods_brand_analytics表
# ... 编写相应的查询和逻辑
sql = f"select search_term, date_info from ods_brand_analytics where site_name='{self.site_name}' and date_type='day' and date_info in {self.date_info_tuple}"
print("sql:", sql)
self.df_brand_analytics = self.spark.sql(sqlQuery=sql)
self.df_brand_analytics.persist(StorageLevel.MEMORY_ONLY)
def read_ods_one_category_report(self):
# 1.3 读取ods_one_category_report表
if int(self.year) == 2022 and int(self.month) < 3:
sql = f"SELECT cate_1_id as bsr_cate_1_id, rank as asin_rank, ceil(orders*{self.orders_transform_rate}) as asin_bsr_orders FROM ods_one_category_report " \
f"WHERE site_name='{self.site_name}' AND date_type='month' AND date_info='2022-12';"
else:
sql = f"SELECT cate_1_id as bsr_cate_1_id, rank as asin_rank, ceil(orders*{self.orders_transform_rate}) as asin_bsr_orders FROM ods_one_category_report " \
f"WHERE site_name='{self.site_name}' AND date_type='month' AND date_info='{self.year}-{self.month}';"
self.df_bs_report = self.spark.sql(sqlQuery=sql)
self.df_bs_report.persist(StorageLevel.MEMORY_ONLY)
def read_dim_st_asin_info(self):
# 2.1 读取dim_st_asin_info表
if self.date_type == 'month_old':
self.get_year_week_tuple()
if int(self.month) <= 9 and int(self.year) <= 2022:
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='month' and date_info ='{self.date_info}'"
else:
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple}"
else:
if (int(self.year) == 2022 and int(self.month) < 10) or int(self.year) <= 2021:
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
else:
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='day' and date_info in {self.date_info_tuple}"
print("sql:", sql)
self.df_st_asin = self.spark.sql(sqlQuery=sql).cache()
self.df_st_asin.show(10, truncate=False)
def read_dim_st_detail(self):
# 2.2 读取dim_st_detail表
sql = f"select search_term, st_rank, st_search_sum from dim_st_detail where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info ='{self.date_info}';"
print("sql:", sql)
self.df_st = self.spark.sql(sqlQuery=sql)
self.df_st.persist(StorageLevel.MEMORY_ONLY)
def read_dim_asin_detail(self):
# 2.3 读取dim_asin_detail表
sql = f"SELECT asin, asin_rank, bsr_cate_1_id, asin_title, asin_price, asin_weight " \
f"FROM dim_asin_detail WHERE site_name='{self.site_name}' AND date_type='{self.date_type.replace('_old', '')}' AND date_info='{self.date_info}';"
self.df_asin = self.spark.sql(sql)
# 只选择需要的列
self.df_asin_price_weight = self.df_asin.select("asin", "asin_price", "asin_weight").cache()
self.df_asin = self.df_asin.drop("asin_price", "asin_weight")
self.df_asin.persist(StorageLevel.MEMORY_ONLY)
def read_dim_asin_volume_info(self):
# 2.4 读取dim_asin_volume_info表
sql = f"select asin, asin_length * asin_width * asin_height as asin_volume from dim_asin_volume_info where site_name='{self.site_name}'"
print("sql:", sql)
self.df_asin_volume = self.spark.sql(sqlQuery=sql).cache()
def read_data_old(self):
print("1 读取st+asin两个维度: dim_st_asin_info表和ods_rank_flow表")
print("1.1 读取dim_st_asin_info表")
if self.date_type == 'month_old':
self.get_year_week_tuple()
if int(self.month) <= 9 and int(self.year) <= 2022:
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='month' and date_info ='{self.date_info}'"
else:
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple}"
else:
if (int(self.year) == 2022 and int(self.month) < 10) or int(self.year) <= 2021:
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info='{self.date_info}'"
else:
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='day' and date_info in {self.date_info_tuple}"
print("sql:", sql)
self.df_st_asin = self.spark.sql(sqlQuery=sql).cache()
self.df_st_asin.show(10, truncate=False)
print("1.2 读取ods_rank_flow表")
sql = f"select rank as page_rank, flow from ods_rank_flow " \
f"where site_name='{self.site_name}'"
self.df_st_asin_flow = self.spark.sql(sql).cache()
print("2 读取st维度: dim_st_detail表和ods_brand_analytics表")
print("self.year, self.month:", self.year, self.month)
print("2.1 读取dim_st_detail和ods_brand_analytics表")
sql = f"select search_term, st_rank, st_search_sum from dim_st_detail where site_name='{self.site_name}' and date_type='{self.date_type}' and date_info ='{self.date_info}';"
print("sql:", sql)
self.df_st = self.spark.sql(sqlQuery=sql)
self.df_st.persist(StorageLevel.MEMORY_ONLY)
# 统计词频
print("2.2 读取ods_brand_analytics表")
sql = f"select search_term, date_info from ods_brand_analytics where site_name='{self.site_name}' and date_type='day' and date_info in {self.date_info_tuple}"
print("sql:", sql)
self.df_brand_analytics = self.spark.sql(sqlQuery=sql)
self.df_brand_analytics.persist(StorageLevel.MEMORY_ONLY)
# self.df_st.show(10, truncate=False)
print("3 读取asin维度: dim_asin_detail表")
print("3.1 读取dim_asin_detail表")
sql = f"select asin, asin_rank, bsr_cate_1_id, asin_title, asin_price, asin_weight " \
f"from dim_asin_detail where site_name='{self.site_name}' and date_type='{self.date_type.replace('_old', '')}' and date_info='{self.date_info}';"
self.df_asin = self.spark.sql(sql)
self.df_asin_price_weight = self.df_asin.select("asin", "asin_price", "asin_weight").cache()
self.df_asin = self.df_asin.drop("asin_price", "asin_weight")
self.df_asin.persist(StorageLevel.MEMORY_ONLY)
# self.df_asin_history.show(10)
print("4 读取bsr维度: ods_one_category_report表")
print("4.1 读取ods_one_category_report表")
if int(self.year) == 2022 and int(self.month) < 3:
sql = f"select cate_1_id as bsr_cate_1_id, rank as asin_rank, ceil(orders*{self.orders_transform_rate}) as asin_bsr_orders from ods_one_category_report " \
f"where site_name='{self.site_name}' and date_type='month' and date_info='2022-12';"
else:
sql = f"select cate_1_id as bsr_cate_1_id, rank as asin_rank, ceil(orders*{self.orders_transform_rate}) as asin_bsr_orders from ods_one_category_report " \
f"where site_name='{self.site_name}' and date_type='month' and date_info='{self.year}-{self.month}';"
print("sql:", sql)
self.df_bs_report = self.spark.sql(sqlQuery=sql)
self.df_bs_report.persist(StorageLevel.MEMORY_ONLY)
# self.df_bs_report.show(10, truncate=False)
print("5 读取asin维度-体积信息: dim_asin_volume_info表")
sql = f"select asin, asin_length * asin_width * asin_height as asin_volume from dim_asin_volume_info where site_name='{self.site_name}'"
print("sql:", sql)
self.df_asin_volume = self.spark.sql(sqlQuery=sql).cache()
# self.df_asin_volume.show(10, truncate=False)
def handle_data(self):
self.handle_join()
self.df_save_asin = self.handle_st_asin_counts(cal_type="asin", df_templates=self.df_asin_templates)
self.df_save_st = self.handle_st_asin_counts(cal_type="st", df_templates=self.df_st_templates)
self.handle_st_zr_page1_title_rate()
self.handle_st_asin_orders() # 预估销量和bsr销量
self.handle_st_asin_ao()
self.handle_st_num()
self.handle_st_volume_price_volume()
del self.df_st_asin_duplicated
del self.df_st_asin
def handle_st_attributes(self, attributes_type='asin_volume'):
# 定义窗口函数
window = Window.partitionBy(['search_term']).orderBy(F.desc(f"{attributes_type}"))
# 计算百分比排名并筛选 <= 0.25 的记录
df = self.df_st_asin_duplicated.select("search_term", f"{attributes_type}").filter(f'{attributes_type} is not null') \
.withColumn(f"{attributes_type}_percent_rank", F.percent_rank().over(window)) \
.filter(f'{attributes_type}_percent_rank <= 0.25') \
# 使用 row_number() 方法获取每个 search_term 的最大百分比排名记录
window = Window.partitionBy(['search_term']).orderBy(F.desc(f"{attributes_type}_percent_rank"))
df = df.withColumn(f"{attributes_type}_row_number", F.row_number().over(window)) \
.filter(f'{attributes_type}_row_number = 1')
# 显示结果
df = df.drop(f"{attributes_type}_percent_rank", f"{attributes_type}_row_number")
df = df.withColumnRenamed(f"{attributes_type}", f"{attributes_type.replace('asin', 'st')}_25_percent")
df.show(10, truncate=False)
return df
def handle_st_volume_price_volume(self):
self.df_st_asin_duplicated = self.df_st_asin_duplicated.select('search_term', 'asin')
self.df_st_asin_duplicated = self.df_st_asin_duplicated.join(
self.df_asin_volume, on='asin', how='left'
).join(
self.df_asin_price_weight, on='asin', how='left'
)
df_st_volume = self.handle_st_attributes(attributes_type='asin_volume')
df_st_price = self.handle_st_attributes(attributes_type='asin_price')
df_st_weight = self.handle_st_attributes(attributes_type='asin_weight')
df_st_min = self.df_st_asin_duplicated.groupby(['search_term']).agg(
F.min("asin_volume").alias('st_volume_min'),
F.min("asin_price").alias('st_price_min'),
F.min("asin_weight").alias('st_weight_min')
)
df_st_min = df_st_min.join(
df_st_volume, on='search_term', how='left'
).join(
df_st_price, on='search_term', how='left'
).join(
df_st_weight, on='search_term', how='left'
)
df_st_min = df_st_min.withColumn(
"st_volume_avg",
1.5 * (df_st_min.st_volume_25_percent - df_st_min.st_volume_min) + df_st_min.st_volume_min
).withColumn(
"st_price_avg",
1.5 * (df_st_min.st_price_25_percent - df_st_min.st_price_min) + df_st_min.st_price_min
).withColumn(
"st_weight_avg",
1.5 * (df_st_min.st_weight_25_percent - df_st_min.st_weight_min) + df_st_min.st_weight_min
)
df_st_min.show(10, truncate=False)
self.df_save_st = self.df_save_st.join(
df_st_min, on='search_term', how='left'
)
def handle_join(self):
# st+asin
self.df_st_asin = self.df_st_asin.join(
self.df_st_asin_flow, on=['page_rank'], how='left'
)
# st -- dim_st_detail已经有
# asin
self.df_asin = self.df_asin.join(
self.df_bs_report, on=['asin_rank', 'bsr_cate_1_id'], how='left'
)
# 合并
self.df_st_asin = self.df_st_asin.join(
self.df_st, on=['search_term'], how='left'
).join(
self.df_asin, on=['asin'], how='left'
)
# self.df_st_asin.show(10, truncate=False)
# self.df_st_asin = self.df_st_asin.drop_duplicates(['search_term', 'asin', 'data_type'])
self.df_st_asin = self.df_st_asin.cache()
self.df_st_asin_duplicated = self.df_st_asin.drop_duplicates(['search_term', 'asin', 'data_type']).cache()
# self.df_st_asin.persist(StorageLevel.MEMORY_ONLY)
def handle_st_asin_counts(self, cal_type="asin", df_templates=None):
print(f"计算{cal_type}_counts")
cal_type_complete = "search_term" if cal_type == "st" else cal_type
self.df_st_asin_duplicated = self.df_st_asin_duplicated.withColumn(
f"{cal_type}_data_type",
F.concat(F.lit(f"{cal_type}_"), self.df_st_asin_duplicated.data_type, F.lit(f"_counts"))
)
df = self.df_st_asin_duplicated.groupby([f'{cal_type_complete}']). \
pivot(f"{cal_type}_data_type").count()
df = df_templates.unionByName(df, allowMissingColumns=True) # 防止爬虫数据没有导致程序运行出错
df = df.fillna(0)
# df.show(10, truncate=False)
df = df.withColumn(
f"{cal_type}_sb_counts",
df[f"{cal_type}_sb1_counts"] + df[f"{cal_type}_sb2_counts"] + df[f"{cal_type}_sb3_counts"]
)
df = df.withColumn(
f"{cal_type}_adv_counts",
df[f"{cal_type}_sb_counts"] + df[f"{cal_type}_sp_counts"]
)
df = df.withColumn(f"site_name", F.lit(self.site_name))
df = df.withColumn(f"date_type", F.lit(self.date_type))
df = df.withColumn(f"date_info", F.lit(self.date_info))
# df.show(10, truncate=False)
return df
def handle_st_zr_page1_title_rate(self):
print("计算关键词的zr类型page=1的去重asin的标题密度")
df_zr_page1 = self.df_st_asin.filter(
"data_type='zr' and page=1"
)
df_zr_page1 = df_zr_page1.select("search_term", "asin", "asin_title").drop_duplicates(["search_term", "asin"])
df_zr_page1 = df_zr_page1.withColumn(
"st_asin_in_title_flag",
self.u_is_title_appear(df_zr_page1.search_term, df_zr_page1.asin_title)
)
# df_zr_page1.show(10, truncate=False)
df_zr_page1 = df_zr_page1.groupby(['search_term']).agg(
{
"search_term": "count",
"st_asin_in_title_flag": "sum",
}
)
df_zr_page1 = df_zr_page1.withColumnRenamed(
"sum(st_asin_in_title_flag)", "st_zr_page1_title_appear_counts"
).withColumnRenamed(
"count(search_term)", "st_zr_page1_title_counts"
)
df_zr_page1 = df_zr_page1.withColumn(
"st_zr_page1_title_appear_rate", df_zr_page1.st_zr_page1_title_appear_counts / df_zr_page1.st_zr_page1_title_counts
)
self.df_save_st = self.df_save_st.join(
df_zr_page1, on=['search_term'], how='left'
)
# df_zr_page1.show(10, truncate=False)
# quit()
del df_zr_page1
def handle_st_asin_orders(self):
# 预估销量+bsr销量
print("1. 预估销量:zr, sp的销量")
# 1.1 st+asin
self.df_st_asin = self.df_st_asin.withColumn(
"st_asin_orders",
F.ceil(self.df_st_asin.flow * self.df_st_asin.st_search_sum * self.orders_transform_rate)
)
self.df_save_st_asin = self.df_st_asin.withColumn(
"st_asin_orders_data_type", F.concat(F.lit("st_asin_"), self.df_st_asin.data_type, F.lit("_orders"))
)
self.df_save_st_asin = self.df_save_st_asin.groupby(["search_term", "asin"]). \
pivot("st_asin_orders_data_type").agg(F.mean(f"st_asin_orders"))
self.df_save_st_asin = self.df_save_st_asin.select(
"search_term", "asin", "st_asin_zr_orders", "st_asin_sp_orders"
)
# self.df_save_st_asin = self.df_save_st_asin.cache()
self.df_save_st_asin.persist(StorageLevel.MEMORY_ONLY)
self.df_save_st_asin = self.df_save_st_asin.withColumn(f"site_name", F.lit(self.site_name))
self.df_save_st_asin = self.df_save_st_asin.withColumn(f"date_type", F.lit(self.date_type))
self.df_save_st_asin = self.df_save_st_asin.withColumn(f"date_info", F.lit(self.date_info))
# self.df_save_st_asin.show(10, truncate=False)
# 1.2 st维度的zr和sp预估销量
df_st_orders = self.df_save_st_asin.groupby(['search_term']).agg(
F.sum('st_asin_zr_orders').alias("st_zr_orders"),
F.sum('st_asin_sp_orders').alias("st_sp_orders"),
# F.sum('st_asin_zr_orders').alias("st_zr_orders"),
# F.sum('st_asin_sp_orders').alias("st_zr_orders"),
)
self.df_save_st = self.df_save_st.join(
df_st_orders, on=['search_term'], how='left'
)
# 1.3 asin维度的zr和sp预估销量
df_asin_orders = self.df_save_st_asin.groupby(['asin']).agg(
F.mean('st_asin_zr_orders').alias("asin_zr_orders"),
F.mean('st_asin_sp_orders').alias("asin_sp_orders"),
F.sum('st_asin_zr_orders').alias("asin_zr_orders_sum"),
F.sum('st_asin_sp_orders').alias("asin_sp_orders_sum"),
)
self.df_save_asin = self.df_save_asin.join(
df_asin_orders, on=['asin'], how='left'
)
# 向上取整
self.df_save_asin = self.df_save_asin.withColumn(
"asin_zr_orders", F.ceil(self.df_save_asin.asin_zr_orders)
).withColumn(
"asin_sp_orders", F.ceil(self.df_save_asin.asin_sp_orders)
).withColumn(
"asin_zr_orders_sum", F.ceil(self.df_save_asin.asin_zr_orders_sum)
).withColumn(
"asin_sp_orders_sum", F.ceil(self.df_save_asin.asin_sp_orders_sum)
)
print("2. bsr销量")
# 2.1 st_bsr_orders
df_st_bsr_orders = self.df_st_asin.select("search_term", "asin", "asin_bsr_orders").drop_duplicates(["search_term", "asin"])
df_st_bsr_orders = df_st_bsr_orders.groupby(['search_term']).agg({"asin_bsr_orders": "sum"})
df_st_bsr_orders = df_st_bsr_orders.withColumnRenamed(
"sum(asin_bsr_orders)", "st_bsr_orders"
)
# 2.2 asin_bsr_orders
df_asin_bsr_orders = self.df_st_asin.select("asin", "asin_bsr_orders").drop_duplicates(['asin'])
# df_st_bsr_orders.show(10, truncate=False)
# df_asin_bsr_orders.show(10, truncate=False)
self.df_save_st = self.df_save_st.join(
df_st_bsr_orders, on='search_term', how='left'
)
self.df_save_asin = self.df_save_asin.join(
df_asin_bsr_orders, on='asin', how='left'
)
def handle_st_asin_ao(self):
print("计算st和asin各自维度的ao")
# asin_ao_val和asin_ao_val_rate
self.df_save_asin = self.df_save_asin.withColumn(
"asin_ao_val", self.df_save_asin.asin_adv_counts / self.df_save_asin.asin_zr_counts
)
# self.df_save_asin = self.df_save_asin.fillna({"asin_ao_val": 0}) # 不要把null置为0, null值产生原因是zr类型没有搜到对应的搜索词
window = Window.orderBy(self.df_save_asin.asin_ao_val.asc_nulls_last())
self.df_save_asin = self.df_save_asin.withColumn("asin_ao_val_rate", F.percent_rank().over(window=window))
# st_ao_val和st_ao_val_rate
df_asin_ao = self.df_save_asin.select("asin", "asin_ao_val")
df_st_ao = self.df_st_asin_duplicated.filter("data_type='zr'").select("search_term", "asin").join(
df_asin_ao, on=['asin'], how='left'
)
# 新增关键词对应asin的ao升序排序,前4——20的均值
window = Window.partitionBy(['search_term']).orderBy(df_st_ao.asin_ao_val.asc_nulls_last())
# df_st_ao = df_st_ao.withColumn("asin_ao_val_rank", F.dense_rank().over(window=window))
df_st_ao = df_st_ao.withColumn("asin_ao_val_rank", F.row_number().over(window=window))
df_st_ao_4_20 = df_st_ao.filter("asin_ao_val_rank between 4 and 20").select("search_term", "asin_ao_val")
df_st_ao_4_20 = df_st_ao_4_20.groupby(["search_term"]).agg(F.mean(df_st_ao_4_20.asin_ao_val).alias("st_4_20_ao_avg"))
# df_st_ao.filter("search_term='donna reed'").show(100, truncate=False)
# df_st_ao_4_20.filter("search_term='donna reed'").show(100, truncate=False)
# quit()
df_st_ao = df_st_ao.groupby(["search_term"]).agg({"asin_ao_val": "mean"})
df_st_ao = df_st_ao.withColumnRenamed("avg(asin_ao_val)", "st_ao_val")
# 新增关键词对应zr排名在4-20asin的ao均值
# df_st_ao_4_20 = self.df_save_asin.filter("asin_ao_val_rank between 4 and 20").select("search_term", "asin_ao_val")
# df_st_ao_4_20 = df_st_ao_4_20.groupby(["search_term"]).agg(F.mean(df_st_ao_4_20.asin_ao_val).alias("st_4_20_ao_avg"))
# df_st_ao_4_20 = self.df_st_asin_duplicated.filter("data_type='zr' and page_rank<=20").select("search_term", "asin").join(
# df_asin_ao, on=['asin'], how='left'
# )
# df_st_ao_4_20 = df_st_ao_4_20.groupby(["search_term"]).agg(F.mean(df_st_ao_4_20.asin_ao_val).alias("st_4_20_ao_avg"))
self.df_save_st = self.df_save_st.join(
df_st_ao, on=['search_term'], how='left'
).join(
df_st_ao_4_20, on=['search_term'], how='left'
)
window = Window.orderBy(self.df_save_st.st_ao_val.asc())
self.df_save_st = self.df_save_st.withColumn("st_ao_val_rate", F.percent_rank().over(window=window))
self.df_save_asin = self.df_save_asin.drop("asin_ao_val_rank")
def handle_st_num(self):
df_num = self.df_brand_analytics.drop_duplicates(['search_term', 'date_info'])
df_num = df_num.groupby(['search_term']).count()
df_num = df_num.withColumnRenamed("count", "st_num")
# self.df_save_st = self.df_save_st.withColumn("st_num", F.lit(1))
self.df_save_st = self.df_save_st.join(
df_num, on=['search_term'], how='left'
)
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:day/week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-月-日/年-周/年-月/年-季, 比如: 2022-1
handle_obj = DwdStMeasure(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()