pictures_search.py
15 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import sys
import faiss
import numpy as np
import pandas as pd
os.environ["PYARROW_IGNORE_TIMEZONE"] = "1"
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates_mysql import TemplatesMysql
from vgg_model import VGGNet
from curl_cffi import requests, Curl
import requests as requests2
import random
from lxml import etree
import traceback
import os
import re
class PicturesSearch(object):
def __init__(self, site_name='us', search_key='asin', search_value='B0BBNQCXZL', top_k=100):
self.site_name = site_name
self.search_key = search_key
self.search_value = search_value
self.top_k = top_k
self.index_path = rf"/mnt/data/img_data/index/knn.index"
self.my_index = self.load_index()
self.vgg_model = VGGNet()
self.query_vector = np.array
# self.engine = TemplatesMysql().engine
self.engine_pg = TemplatesMysql().engine_pg
# self.server_ip = "192.168.200.210"
self.server_ip = "113.100.143.162:8000"
def xpath_imgurl(self, resp):
print(2222222222222222222)
img_url_list = ["//div[@id='imgTagWrapperId']/img/@src", '//div[@id="img-canvas"]/img/@src',
'//div[@id="imgTagWrapperId"]/img/@src', '//div[@id="img-canvas"]/img/@src',
'//div[@class="image-wrapper"]/img/@src', '//div[@id="mainImageContainer"]/img/@src',
'//img[@id="js-masrw-main-image"]/@src', '//div[@id="a2s-dp-main-content"]//img/@src',
'//div[@id="ppd-left"]//img/@src',
'//div[@id="ebooks-img-canvas"]//img[@class="a-dynamic-image frontImage"]/@src',
'//div[@id="ppd-left"]//img/@src', '//div[@class="a-column a-span12 a-text-center"]/img/@src',
'//img[0]/@src', '//img[@id="seriesImageBlock"]/@src', '//img[@class="main-image"]/@src',
'//img[@class="mainImage"]/@src', '//img[@id="gc-standard-design-image"]/@src',
'//div[@class="a-row a-spacing-medium"]//img[1]/@src',
'//div[@class="a-image-container a-dynamic-image-container greyBackground"]/img/@src']
response_s = etree.HTML(resp)
for i in img_url_list:
image = response_s.xpath(i)
if image:
image_url = image[0]
break
else:
image_url = None
return image_url
def downlad_img(self, asin, site='us'):
for i in range(6):
try:
if site == 'us':
asin_url = f'https://www.amazon.com/dp/{asin}'
if site == "us":
asin_url = f'https://www.amazon.com/dp/{asin}'
elif site == 'uk':
asin_url = f'https://www.amazon.co.uk/dp/{asin}' # 站点url
elif site == 'de':
asin_url = f'https://www.amazon.de/dp/{asin}'
elif site == 'fr':
asin_url = f'https://www.amazon.fr/dp/{asin}'
elif site == 'es':
asin_url = f'https://www.amazon.es/dp/{asin}'
elif site == 'it':
asin_url = f'https://www.amazon.it/dp/{asin}'
headers = {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'zh-CN,zh;q=0.9',
'Cache-Control': 'no-cache',
'Pragma': 'no-cache',
'Sec-Ch-Ua-Mobile': '?0', 'Sec-Ch-Ua-Platform': '"Windows"',
'Sec-Ch-Ua-Platform-Version': '"10.0.0"',
'Sec-Fetch-Dest': 'document', 'Sec-Fetch-Mode': 'navigate', 'Sec-Fetch-Site': 'none',
'Sec-Fetch-User': '?1',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',
'Viewport-Width': '1920'}
session = requests.Session()
print('asin_url::', asin_url)
random_num = random.randint(1, 2)
if random_num == 1:
resp = session.get(asin_url, headers=headers, timeout=10, verify=False,
impersonate="chrome110") # 获取网页
else:
resp = requests2.get(asin_url, headers=headers, timeout=10, verify=False)
image_url = self.xpath_imgurl(resp.text)
if image_url:
str_ = re.findall(r'\._(.*)\.jpg', image_url)[0]
_url = image_url.replace('._' + str_, '')
print('获取图片url:', _url)
resp_img = session.get(_url, headers=headers, timeout=10, verify=False,
impersonate="chrome110") # 获取网页
asin_upper = asin.upper()
path_1 = fr"/mnt/data/img_data/tmp_img/"
if os.path.exists(path_1) == False: # 判断路径是否存在
os.makedirs(path_1)
with open(rf"{path_1}{asin_upper}.jpg",
'wb') as f: # 打开写入到path路径里-二进制文件,返回的句柄名为f
f.write(resp_img.content) # 往f里写入r对象的二进制文件
return {"state": "ok"}
except Exception as e:
print(e, f"\n{traceback.format_exc()}")
return {'state': 'error'}
def download_img(self, asin, site='us'):
for i in range(5):
try:
if site == 'us':
asin_url = f'https://www.amazon.com/dp/{asin}'
if site == "us":
asin_url = f'https://www.amazon.com/dp/{asin}'
elif site == 'uk':
asin_url = f'https://www.amazon.co.uk/dp/{asin}' # 站点url
elif site == 'de':
asin_url = f'https://www.amazon.de/dp/{asin}'
elif site == 'fr':
asin_url = f'https://www.amazon.fr/dp/{asin}'
elif site == 'es':
asin_url = f'https://www.amazon.es/dp/{asin}'
elif site == 'it':
asin_url = f'https://www.amazon.it/dp/{asin}'
headers = {
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7',
'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'zh-CN,zh;q=0.9',
'Cache-Control': 'no-cache',
'Pragma': 'no-cache',
'Sec-Ch-Ua-Mobile': '?0', 'Sec-Ch-Ua-Platform': '"Windows"',
'Sec-Ch-Ua-Platform-Version': '"10.0.0"',
'Sec-Fetch-Dest': 'document', 'Sec-Fetch-Mode': 'navigate', 'Sec-Fetch-Site': 'none',
'Sec-Fetch-User': '?1',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',
'Viewport-Width': '1920'}
curl = Curl(cacert="/path/to/your/cert")
session = requests.Session(curl=curl)
print('asin_url::', asin_url)
resp = session.get(asin_url, headers=headers, timeout=10, verify=False, impersonate="chrome110") # 获取网页
image_url = self.xpath_imgurl(resp.text)
if image_url:
str_ = re.findall(r'\._(.*)\.jpg', image_url)[0]
_url = image_url.replace('._' + str_, '')
print('获取图片url:', _url)
resp_img = session.get(_url, headers=headers, timeout=10, verify=False,
impersonate="chrome110") # 获取网页
asin_upper = asin.upper()
path_1 = fr"/mnt/data/img_data/tmp_img/"
if os.path.exists(path_1) == False: # 判断路径是否存在
os.makedirs(path_1)
asin_path = rf"{path_1}{asin_upper}.jpg"
with open(asin_path, 'wb') as f: # 打开写入到path路径里-二进制文件,返回的句柄名为f
f.write(resp_img.content) # 往f里写入r对象的二进制文件
query_vec = self.vgg_model.vgg_extract_feat(file=asin_path, file_type='bytes')
return query_vec
except Exception as e:
print(e, f"\n{traceback.format_exc()}")
# return query_vec
def load_index(self):
my_index = faiss.read_index(self.index_path)
print("加载索引完成, type(my_index):", type(my_index))
return my_index
def get_features(self, search_key, search_value, file):
print("search_key, search_value, file:", search_key, search_value, file)
if search_key == 'asin':
return self.get_asin_features(search_value)
elif search_key == 'file':
return self.vgg_model.vgg_extract_feat(file=file, file_type='bytes')
else:
print("不符合的查询方式,仅支持asin和图片file两种方式")
def get_asin_features(self, search_value):
sql = f"select * from {self.site_name}_pictures_features where asin='{search_value}'"
print("sql:", sql)
df = pd.read_sql(sql, con=self.engine_pg)
if df.shape[0] == 0:
query_vector = self.download_img(search_value)
# df = pd.read_sql(sql, con=self.engine)
else:
query_vector = eval(list(df.features)[0])
# print("query_vector:", query_vector[:10])
return query_vector
def get_asin_by_index(self, site_name, indices_list):
sql = f"select distinct(asin) as asin from {site_name}_pictures_id_index where indice in {tuple(indices_list)}"
print("sql:", sql)
df = pd.read_sql(sql=sql, con=self.engine_pg)
asin_list = list(df.asin)
return asin_list
def calculate_similarity(self, site_name, indices_list, query_vector):
# sql = f"select asin, features from {site_name}_pictures_features where asin in {tuple(asin_list)}"
# sql = f"""
# select asin, features from {site_name}_pictures_features main
# left join (select distinct(asin) as asin from {site_name}_pictures_id_index where index in {tuple(indices_list)}) a
# on main.asin=a.asin
# """
sql = f"""
SELECT main.asin, a.features FROM
(select asin from {site_name}_pictures_id_index where index in {indices_list}) main
inner join {site_name}_pictures_features a
on main.asin=a.asin
"""
df = pd.read_sql(sql, con=self.engine_pg)
df = df.drop_duplicates(['asin'])
all_vecs_dict = {asin: eval(features) for asin, features in zip(df.asin, df.features)}
# query_vector = query_vector.T
similarities = self.cosine_similarity_matrix(query_vec=query_vector, all_vecs=list(all_vecs_dict.values()))
# print(similarities)
similarities_dict = {asin: (similarity, f"http://{self.server_ip}/images/{site_name}/{asin[:1]}/{asin[:2]}/{asin[:3]}/{asin[:4]}/{asin[:5]}/{asin[:6]}/{asin}.jpg") for similarity, asin in zip(similarities, df.asin)}
# print(similarities_dict)
# for asin in asin_list:
# print(asin, similarities_dict[asin])
# asin_similarities = {search_value: similarities_dict}
# print("asin_similarities:", asin_similarities)
return similarities_dict
def cosine_similarity_matrix(self, query_vec, all_vecs):
# 计算相似度
query_vec_norm = np.linalg.norm(query_vec)
all_vecs_norm = np.linalg.norm(all_vecs, axis=1)
print(query_vec_norm.shape)
print(all_vecs_norm.shape)
dot_products = np.dot(all_vecs, query_vec)
similarities = dot_products / (query_vec_norm * all_vecs_norm)
# 将相似度转换为百分比
similarities_percentage = similarities * 100
# 保留所需的小数位数,例如保留两位小数
similarities_percentage = np.round(similarities_percentage, 2)
return similarities_percentage
def search_api(self, site_name, search_key, search_value, top_k, file):
# 获取向量
query_vector = self.get_features(search_key, search_value, file)
self.query_vector = np.array(query_vector)
self.query_vector = self.query_vector.reshape(1, -1)
distances, indices = self.my_index.search(self.query_vector, top_k)
indices_list = tuple(indices.tolist()[0])
# print("indices.tolist():", indices.tolist())
# print("len(indices.tolist()):", len(indices.tolist()))
# distances_list = distances.tolist()
# print("indices_list:", type(indices_list), len(indices_list), indices_list)
# print("distances_list:", type(distances_list), len(distances_list), distances_list)
# asin_list = self.get_asin_by_index(site_name=site_name, indices_list=indices_list[0])
# asin_path_list = self.get_asin_path_by_asin(site_name=site_name, asin_list=asin_list)
# print("asin_list:", asin_list[:10])
# print("asin_path_list:", asin_path_list)
# 计算相似度
similarities_dict = self.calculate_similarity(site_name, indices_list, query_vector=query_vector)
# print("similarities_dict:", similarities_dict)
# return indices_list, distances_list, asin_list, similarities_dict
return similarities_dict
# print("type(indices), type(distances):", type(indices), type(distances))
# print("indices:", indices[:20])
# print(f"Top {self.top_k} elements in the dataset for max inner product search:")
# for i, (dist, indice) in enumerate(zip(distances[0], indices[0])):
# print(f"{i + 1}: Vector number {indice:4} with distance {dist}")
def search(self):
self.query_vector = np.array(self.query_vector)
self.query_vector = self.query_vector.reshape(1, -1)
distances, indices = self.my_index.search(self.query_vector, self.top_k)
print("type(indices), type(distances):", type(indices), type(distances))
print("indices:", indices[:20])
print(f"Top {self.top_k} elements in the dataset for max inner product search:")
for i, (dist, indice) in enumerate(zip(distances[0], indices[0])):
print(f"{i + 1}: Vector number {indice:4} with distance {dist}")
def run(self):
self.search()
if __name__ == '__main__':
site_name = sys.argv[1] # 参数1:站点
search_key = sys.argv[2] # 参数2:查询类型
search_value = sys.argv[3] # 参数3:查询值
top_k = int(sys.argv[4]) # 参数4:最相似的top前k个值
handle_obj = PicturesSearch(site_name=site_name, search_key=search_key, search_value=search_value, top_k=top_k)
handle_obj.run()