dwt_aba_st_analytics.py
8.77 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import sys
from datetime import datetime
sys.path.append(os.path.dirname(sys.path[0]))
from utils.ssh_util import SSHUtil
from utils.common_util import CommonUtil, DateTypes
from utils.db_util import DBUtil
if __name__ == '__main__':
# 获取入参
site_name = CommonUtil.get_sys_arg(1, None)
date_type = CommonUtil.get_sys_arg(2, None)
date_info = CommonUtil.get_sys_arg(3, None)
# 获取最后一个参数
test_flag = CommonUtil.get_sys_arg(len(sys.argv) - 1, None)
print(f"执行参数为{sys.argv}")
print(test_flag)
if test_flag == 'test':
db_type = 'postgresql_test'
print("导出到测试库中")
else:
CommonUtil.judge_is_work_hours(site_name=site_name, date_type=date_type, date_info=date_info,
principal='chenyuanjie',
priority=2, export_tools_type=1, belonging_to_process=f'新ABA流程_{date_type}')
if date_type in (DateTypes.month.name, DateTypes.week.name,DateTypes.month_week.name):
db_type = 'postgresql_cluster'
print("导出到PG-Cluster库中")
else:
db_type = "postgresql"
print("导出到PG库中")
# 获取数据库连接
engine = DBUtil.get_db_engine(db_type, site_name)
suffix = str(date_info).replace("-", "_")
# 导出表--基准表名
export_base_tb = f"{site_name}_aba_last"
export_base_cols = [
"id",
"search_term",
"rank",
"category_id",
"category_current_id",
"orders",
"bsr_orders",
"search_volume",
"quantity_being_sold",
"st_ao_avg",
"st_ao_val_rate",
"new_bsr_orders_proportion",
"new_asin_proportion",
"page1_title_proportion",
"price_avg",
"total_comments_avg",
"rating_avg",
"weight_avg",
"volume_avg",
"title_length_avg",
"st_num",
"aadd_proportion",
"sp_proportion",
"fbm_proportion",
"cn_proportion",
"amzon_proportion",
"most_proportion",
"max_num",
"asin1",
"asin2",
"asin3",
"click_share1",
"click_share2",
"click_share3",
"total_click_share",
"conversion_share1",
"conversion_share2",
"conversion_share3",
"total_conversion_share",
"new_asin_num",
"total_asin_num",
"new_asin_orders",
"new_asin_bsr_orders",
"is_first_text",
"is_ascending_text",
"is_search_text",
"top3_seller_orders",
"top3_seller_bsr_orders",
"top3_brand_orders",
"top3_brand_bsr_orders",
"page3_brand_num",
"page3_seller_num",
"brand_monopoly",
"seller_monopoly",
"max_num_asin",
"is_self_max_num_asin",
"date_info",
"created_time",
"updated_time",
"gross_profit_fee_air",
"gross_profit_fee_sea",
"multi_color_proportion",
"multi_size_proportion",
"st_word_num",
"st_movie_label",
"st_brand_label",
"st_brand1",
"st_category1",
"st_brand2",
"st_category2",
"st_brand3",
"st_category3",
"st_bsr_cate_1_id_new",
"st_bsr_cate_current_id_new",
"st_crawl_date",
"st_zr_page123_title_appear_rate",
"st_sp_page123_title_appear_rate",
"st_competition_level",
"amazon_monthly_sales",
"st_zr_flow_proportion",
"st_ao_val_matrix",
"st_flow_proportion_matrix",
"lang"
]
if date_type == DateTypes.last30day.name or date_type == DateTypes.month_week.name:
export_tb_target = f"{export_base_tb}_30_day"
export_tb_copy = f"{export_tb_target}_copy"
export_table = export_tb_copy
sql = f"""
create table if not exists {export_tb_copy}
(
like {export_tb_target} including indexes including comments
);
truncate table {export_tb_copy};
"""
# 执行SQL语句
DBUtil.engine_exec_sql(engine, sql)
# 补全动态30天字段
tb_cols = ["color_proportion", "is_new_market_segment", "supply_demand", "market_cycle_type", "is_high_return_text"]
export_cols = export_base_cols + tb_cols
print("导出的字段:", export_cols)
elif date_type in (DateTypes.day.name, DateTypes.week.name, DateTypes.month.name):
# aba基础分区表名
export_table = f"{export_base_tb}_{date_type}_{suffix}"
next_val = CommonUtil.get_next_val(date_type, date_info)
year_str = CommonUtil.safeIndex(date_info.split("-"), 0, None)
if date_type == DateTypes.day.name:
# 特有导出字段
tb_cols = []
# 处理导出表
year_month = CommonUtil.reformat_date(date_info, "%Y-%m-%d", "%Y-%m")
year_month_before = CommonUtil.get_month_offset(year_month, -1).replace("-", "_")
suffix_y_m = year_month.replace("-", "_")
export_master_tb = f"{export_base_tb}_{date_type}_{suffix_y_m}"
export_tb_before = f"{export_base_tb}_{date_type}_{year_month_before}"
elif date_type == DateTypes.week.name:
# week特有导出字段
tb_cols = ["is_new_market_segment", "color_proportion"]
# 处理导出表
export_master_tb = f"{export_base_tb}_{date_type}_{year_str}"
year_month_before = str(int(year_str) - 1)
export_tb_before = f"{export_base_tb}_{date_type}_{year_month_before}"
else:
# month特有导出字段
tb_cols = [
"is_new_market_segment", "color_proportion", "supply_demand", "market_cycle_type", "is_high_return_text",
"st_zr_counts", "st_sp_counts", "st_self_asin_counts", "st_self_asin_proportion"
]
# 处理导出表
export_master_tb = f"{export_base_tb}_{date_type}_{year_str}"
year_month_before = str(int(year_str) - 1)
export_tb_before = f"{export_base_tb}_{date_type}_{year_month_before}"
# 导出字段补全
export_cols = export_base_cols + tb_cols
# sql建表和创建分区
sql = f"""
create table if not exists {export_master_tb}
(
like {export_tb_before} including indexes including comments
)
partition by range (date_info);
create table if not exists {export_table} partition of {export_master_tb} for values from ('{date_info}') to ('{next_val}');
truncate table {export_table};
"""
DBUtil.engine_exec_sql(engine, sql)
else:
print("输入的date_type有误,请检查!!")
quit()
if test_flag == "month_append":
partition_dict = {
"site_name": site_name,
"date_type": "month",
"date_info": date_info
}
else:
partition_dict = {
"site_name": site_name,
"date_type": date_type,
"date_info": date_info
}
# 导出执行sqoop的sh编写
sh = CommonUtil.build_export_sh(
site_name=site_name,
db_type=db_type,
hive_tb="dwt_aba_st_analytics",
export_tb=export_table,
col=export_cols,
partition_dict=partition_dict
)
client = SSHUtil.get_ssh_client()
SSHUtil.exec_command_async(client, sh, ignore_err=False)
client.close()
# 处理流程更新
if date_type in (DateTypes.month_week.name, DateTypes.last30day.name):
DBUtil.exchange_tb(engine,
source_tb_name=export_tb_copy,
target_tb_name=export_tb_target,
cp_index_flag=False)
update_workflow_sql = f"""
replace INTO selection.workflow_everyday
(site_name, report_date, status, status_val, table_name, date_type, page, is_end, remark,export_db_type)
VALUES('{site_name}', '{datetime.now().date()}', '导出PG数据库完成', 14, 'us_aba_last_30_day', '30_day', 'ABA搜索词', '是', 'ABA搜索词最近30天表','{db_type}');
"""
else:
update_workflow_sql = f"""
UPDATE selection.workflow_everyday SET status='导出PG数据库完成', status_val=14,is_end ='是',export_db_type = '{db_type}'
WHERE site_name= '{site_name}' and date_type='{date_type}' and report_date= '{date_info}' and page ='ABA搜索词'
"""
# 往导出流程表插入导出完成数据,方便监听导出脚本是否全部完成
CommonUtil.modify_export_workflow_status(update_workflow_sql, site_name, date_type, date_info)