dwd_asin_and_st_counts.py
10.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import sys
from pyspark.storagelevel import StorageLevel
sys.path.append(os.path.dirname(sys.path[0])) # 上级目录
from utils.templates import Templates
# from ..utils.templates import Templates
from pyspark.sql.types import StringType
# 分组排序的udf窗口函数
from pyspark.sql.window import Window
from pyspark.sql import functions as F
class DwdAsinAndStCounts(Templates):
def __init__(self, site_name="us", date_type="week", date_info="2022-1"):
super().__init__()
self.site_name = site_name
self.date_type = date_type
self.date_info = date_info
self.db_save_asin = f"dwd_asin_counts"
self.db_save_st = f"dwd_st_counts"
self.spark = self.create_spark_object(app_name=f"{self.db_save_asin}, {self.db_save_st}: {self.site_name}, {self.date_type}, {self.date_info}")
self.df_date = self.get_year_week_tuple()
self.df_save_asin = self.spark.sql(f"select 1+1;")
self.df_save_st = self.spark.sql(f"select 1+1;")
self.df_save_asin_std = self.spark.sql(f"select * from {self.db_save_asin} limit 0;")
self.df_save_st_std = self.spark.sql(f"select * from {self.db_save_st} limit 0;")
self.df_st_asin = self.spark.sql(f"select 1+1;")
self.df_st_ao_val = self.spark.sql(f"select 1+1;")
self.partitions_by = ['site_name', 'date_type', 'date_info']
self.u_ao_val_rate = self.spark.udf.register("u_ao_val_rate", self.udf_ao_val_rate, StringType())
@staticmethod
def udf_ao_val_rate(st_ao_rank, st2_counts):
if st_ao_rank < st2_counts / 100 * 1:
return "top_1"
elif st_ao_rank < st2_counts / 100 * 2:
return "top_2"
elif st_ao_rank < st2_counts / 100 * 3:
return "top_3"
elif st_ao_rank < st2_counts / 100 * 4:
return "top_4"
elif st_ao_rank < st2_counts / 100 * 5:
return "top_5"
elif st_ao_rank < st2_counts / 100 * 10:
return "top_6~10"
elif st_ao_rank < st2_counts / 100 * 20:
return "top_11~20"
elif st_ao_rank < st2_counts / 100 * 30:
return "top_21~30"
elif st_ao_rank < st2_counts / 100 * 40:
return "top_31~40"
elif st_ao_rank < st2_counts / 100 * 50:
return "top_41~50"
elif st_ao_rank < st2_counts / 100 * 60:
return "top_51~60"
elif st_ao_rank < st2_counts / 100 * 70:
return "top_61~70"
elif st_ao_rank < st2_counts / 100 * 80:
return "top_71~80"
elif st_ao_rank < st2_counts / 100 * 90:
return "top_81~90"
elif st_ao_rank <= st2_counts / 100 * 100:
return "top_91~100"
else:
return "top_xxx"
def read_data(self):
print("1. 读取dim_st_asin_info表")
sql = f"select * from dim_st_asin_info where site_name='{self.site_name}' and date_type='week' and date_info in {self.year_week_tuple};"""
print("sql:", sql)
self.df_st_asin = self.spark.sql(sqlQuery=sql).cache()
self.df_st_asin.show(10, truncate=False)
self.df_st_asin = self.df_st_asin.drop_duplicates(["asin", "search_term", "data_type"])
def handle_data(self):
self.df_save_asin = self.handle_data_counts(cal_type="asin")
self.df_save_st = self.handle_data_counts(cal_type="st")
self.handle_ao_val() # 计算asin_ao_val和st_ao_val
self.df_save_asin = self.df_save_asin.withColumn("date_type", F.lit(self.date_type))
self.df_save_asin = self.df_save_asin.withColumn("date_info", F.lit(self.date_info))
self.df_save_st = self.df_save_st.withColumn("date_type", F.lit(self.date_type))
self.df_save_st = self.df_save_st.withColumn("date_info", F.lit(self.date_info))
# self.df_save_asin.show(10, truncate=False)
# self.df_save_st.show(10, truncate=False)
# quit()
def handle_data_counts(self, cal_type="asin"):
print(f"2. 计算{cal_type}_counts")
cal_type_complete = "search_term" if cal_type == "st" else cal_type
self.df_st_asin = self.df_st_asin.withColumn(
f"{cal_type}_data_type",
F.concat(F.lit(f"{cal_type}_"), self.df_st_asin.data_type, F.lit(f"_counts"))
)
df = self.df_st_asin.groupby([f'{cal_type_complete}']).\
pivot(f"{cal_type}_data_type").count()
if cal_type == "asin":
df = df.unionByName(self.df_save_asin_std, allowMissingColumns=True)
else:
self.df_save_st_std = self.df_save_st_std.drop("st_ao_val")
df = df.unionByName(self.df_save_st_std, allowMissingColumns=True)
df = df.fillna(0)
# df.show(10, truncate=False)
df = df.withColumn(
f"{cal_type}_sb_counts",
df[f"{cal_type}_sb1_counts"] + df[f"{cal_type}_sb2_counts"] + df[f"{cal_type}_sb3_counts"]
)
df = df.withColumn(
f"{cal_type}_adv_counts",
df[f"{cal_type}_sb_counts"] + df[f"{cal_type}_sp_counts"]
)
df = df.withColumn(f"site_name", F.lit(self.site_name))
# df.show(10, truncate=False)
return df
def handle_ao_val(self):
print("3. 计算asin_ao_val和st_ao_val")
print("3.1 计算asin_ao_val")
self.df_save_asin = self.df_save_asin.withColumn("asin_ao_val", self.df_save_asin.asin_adv_counts / self.df_save_asin.asin_zr_counts)
self.df_save_asin = self.df_save_asin.fillna({"asin_ao_val": 0})
# 选择最新一周关键词对应的asin,根据zr类型的page_rank计算ao_val(仔细考虑之后,直接去重即可)
print("3.2 计算st_ao_val")
# df_asin_ao_val = self.df_save_asin.select("asin", "asin_ao_val")
# self.df_st_ao_val = self.df_st_asin. \
# filter("data_type='zr' and page_rank<=20"). \
# drop_duplicates(["search_term", "asin"])
# self.df_st_ao_val = self.df_st_ao_val.join(df_asin_ao_val, on='asin', how='left')
# window = Window.partitionBy(['search_term']). \
# orderBy(self.df_st_ao_val.asin_ao_val.desc())
# self.df_st_ao_val = self.df_st_ao_val.withColumn("st_ao_rank", F.row_number().over(window))
# # self.df_st_ao_val.show(50, truncate=False)
# df_ao_val1 = self.df_st_ao_val.filter("st_ao_rank>3").groupby(['search_term']).agg({"asin_ao_val": "mean"})
# df_ao_val1 = df_ao_val1.withColumnRenamed("avg(asin_ao_val)", "st_ao_val")
# # df_ao_val1.show(10, truncate=False)
# df_ao_val2 = self.df_st_ao_val.join(df_ao_val1.filter("st_ao_val=0"), on='search_term', how='inner'). \
# groupby(['search_term']).agg({"asin_ao_val": "mean"})
# # df_ao_val2.show(10, truncate=False)
# df_ao_val2 = df_ao_val2.withColumnRenamed("avg(asin_ao_val)", "st_ao_val")
# # df_ao_val2.show(10, truncate=False)
# df_ao_val = df_ao_val1.filter("st_ao_val>0").unionByName(df_ao_val2, allowMissingColumns=True)
# # df_ao_val.show(10, truncate=False)
# self.df_save_st = self.df_save_st.join(df_ao_val, on='search_term', how='left')
# ao_val计算方式调整:取均值
df_asin_ao = self.df_save_asin.select("asin", "asin_ao_val")
df_st_asin = self.df_st_asin.drop_duplicates(["search_term", "asin"]).cache()
df_st_asin = df_st_asin.join(
df_asin_ao, on='asin', how='left'
)
df_st_ao = df_st_asin.groupby(['search_term']).agg(F.avg('asin_ao_val').alias("st_ao_val"))
self.df_save_st = self.df_save_st.join(
df_st_ao, on='search_term', how='left'
)
# # ao_val计算方式调整:取均值
# df_asin_ao_val = self.df_save_asin.select("asin", "asin_ao_val")
# self.df_st_ao_val = self.df_st_asin. \
# filter("data_type='zr'"). \
# drop_duplicates(["search_term", "asin"])
# self.df_st_ao_val = self.df_st_ao_val.join(df_asin_ao_val, on='asin', how='left')
# # self.df_st_ao_val.filter("search_term='agujas dermapen 36 puntas'").show(100)
# df_ao_val = self.df_st_ao_val.groupby(['search_term']).agg({"asin_ao_val": "mean"})
# df_ao_val = df_ao_val.withColumnRenamed("avg(asin_ao_val)", "st_ao_val")
# self.df_save_st = self.df_save_st.join(df_ao_val, on='search_term', how='left')
df_save_st1 = self.df_save_st.filter("st_ao_val=0")
df_save_st1 = df_save_st1.withColumn("st_ao_val_rank", F.lit(0))
df_save_st1 = df_save_st1.withColumn("st_ao_val_rate", F.lit("top_0"))
df_save_st2 = self.df_save_st.filter("st_ao_val>0")
window = Window.orderBy(df_save_st2.st_ao_val.asc())
df_save_st2 = df_save_st2.withColumn("st_ao_val_rank", F.row_number().over(window))
# df_save_st2.filter("st_ao_val_rank>10000").show(100, truncate=False)
# st2_counts = df_save_st2.count()
# df_save_st2 = df_save_st2.withColumn("st2_counts", F.lit(st2_counts))
df_save_st2 = df_save_st2.withColumn(
"st_ao_val_rate",
self.u_ao_val_rate(
"st_ao_val_rank", F.lit(df_save_st2.count())
)
)
# df_save_st2.show(20, truncate=False)
# df_save_st2.filter("st_ao_val_rate='top_xxx'").show(20, truncate=False)
# df_save_st2.groupby(['st_ao_val_rate']).count().show(20, truncate=False)
self.df_save_st = df_save_st1.unionByName(df_save_st2, allowMissingColumns=True)
def save_data(self):
self.reset_partitions(partitions_num=5)
self.save_data_common(
df_save=self.df_save_asin,
db_save=self.db_save_asin,
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
self.reset_partitions(partitions_num=1)
self.save_data_common(
df_save=self.df_save_st,
db_save=self.db_save_st,
partitions_num=self.partitions_num,
partitions_by=self.partitions_by
)
if __name__ == "__main__":
site_name = sys.argv[1] # 参数1:站点
date_type = sys.argv[2] # 参数2:类型:week/4_week/month/quarter
date_info = sys.argv[3] # 参数3:年-周/年-月/年-季, 比如: 2022-1
handle_obj = DwdAsinAndStCounts(site_name=site_name, date_type=date_type, date_info=date_info)
handle_obj.run()